[28Xxx]  --  Measure and integration

  • [28Axx]  --  Classical measure theory 
      [28A25]  --  Integration with respect to measures and other set functions
      [28A35]  --  Measures and integrals in product spaces
      [28A75]  --  Length, area, volume, other geometric measure theory
 

Editors

R.P. Agarwal
G. Anastassiou
T. Ando
H. Araki
A.G. Babenko
D. Bainov
N.S. Barnett
H. Bor
J. Borwein
P.S. Bullen
P. Cerone
S.H. Cheng
L. Debnath
S.S. Dragomir
N. Elezovic
A.M. Fink
A. Fiorenza
T. Furuta
L. Gajek
H. Gauchman
C. Giordano
F. Hansen
D. Hinton
A. Laforgia
L. Leindler
C.-K. Li
L. Losonczi 
A. Lupas
R. Mathias
T. Mills
G.V. Milovanovic
R.N. Mohapatra
B. Mond
M.Z. Nashed
C.P. Niculescu
I. Olkin
B. Opic
B. Pachpatte
Z. Pales
C.E.M. Pearce
J. Pecaric
L.-E. Persson
L. Pick
I. Pressman
S. Puntanen
F. Qi
A.G. Ramm
T.M. Rassias
A. Rubinov
S. Saitoh
J. Sandor
S.P. Singh
A. Sofo
H.M. Srivastava
K.B. Stolarsky
G.P.H. Styan
L. Toth
R. Verma
F. Zhang

© 2000 School of Communications and Informatics, Victoria University of Technology. All rights reserved.
JIPAM is published by the School of Communications and Informatics which is part of the Faculty of Engineering and Science, located in Melbourne, Australia. All correspondence should be directed to the editorial office.

Copyright/Disclaimer