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Abstract

J. Németh has extended several basic theorems of R. P. Boas Jr. pertaining
to Fourier series with positive coefficients from Lipschitz classes to generalized
Lipschitz classes. The goal of the present work is to find the common root of
known results of this type and to establish two theorems that are generalizations
of Németh’s results. Our results can be considered as sample examples show-
ing the utility of the notion of power-monotone sequences in a new research Power-monotone sequences

field. and Fourier series with positive
coefficients
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The notion of the power-monotone sequences, as far as we know, appeared
first in the paper of A. A. Konyushkov/], where he proved that the following
classical inequality of Hardy and Littlewood][

n

o0 p oo
@) Y (Mw) K@Y wa, anz0pzle>1,
n=1 n=1

k=1
can be reversed iifz_Tan | (r < 0), i.e. if the sequencéa,} is T-power- a:g";’g;:;‘:’;‘;‘g:giﬁ%“:g;‘:;e
monotone decreasing. coefficients
In [8], among others, we generalized 1) as follows N
o0 n p o0 . oo p »
@2 (X a) sr () d pz 1o
n=1 k=1 n=1 k=n
) ) ) ] Contents
The reader can discover a large number of very interesting classical and mod-
ern inequalities of Hardy-Littlewood type in the eminent papers of G. Bennett A 44
[1, 2, 3], < >
The author (IC] see also 9]) also proved that the converse of inequality )
Go Bac

(1.2 holds if and only if the sequendg\, } is nearly geometric in nature. That
is, if it is quasi geometrically monotone. This was achieved without requiring Close
additional conditions on the nonnegative sequehGg.

. . Quit
Recently, it was found that the quasi power-monotone sequences and the
guasi geometrically monotone sequences are closely interlinked; furthermore, Page 3 of 23
these sequences have appeared in the generalizations of several classical results,
SOmetImES Only Imp“CItly J. Ineq. Pure and Appl. Math. 1(1) Art. 1, 2000
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Very recently, we have also observed that the quasi power-monotone se-
guences have implicitly emerged in the investigation of Fourier series with non-
negative coefficients. See for example the papers by R. P. Boag] amd J.
Németh [.2]. Both Boas and Németh proved several interesting results. Boas’
theorems treat the connection of the nonnegative Fourier coefficients to the clas-
sical Lipschitz classes (Lip, 0 < o < 1), and Németh extends the Boas results
to the so called generalized Lipschitz classes.

We can recall some of these theorems only after recollecting some defini-
tions, and this will clear up the notions used loosely above. But before doing  Power-monotone sequences
this we present the aim of our work. A IR e TN pesti

The object of our paper is to uncover the common root of the results men-
tioned above and show that quasi power-monotone sequences play a crucial
role in the analysis. Furthermore, we shall formulate the generalizations of two
theorems of J. Németh as sample examples. We also claim that by using our Title Page
method some further generalizations can be proved.
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Before formulating the known and new results we recall some definitions and
notations.

Let w(4) be a modulus of continuity, i.e. a nondecreasing function on the
interval[0, 2] having the propertiesy(0) = 0, w(d; + d2) < w(d7) + w(ds).

Denotew( f; ) the modulus of continuity of a functiofi.

Let2,(0 < a < 1) denote the set of the moduli of continuityd) = w,(9)
having the following properties:

Power-monotone sequences
and Fourier series with positive

1. for anyo’ > « there exists a natural number= ;(a’) such that coefficients
, L. Leindler
(2.1) 2w (27"H) > 2wa(27")  holds for all  n(> 1),

2. for every natural number there exists a natural numbat:= N(v) such MRS PEEE
that Contents
(2.2) 20, (277) < 2wa (27, if > . « dd

< 4
For anyw,, € Q, the classH“~, i.e. o Back
H* = {f : Cd(f7 5) = O(wa(é))}y Close
Quit

will be called ageneralized Lipschitz claskenoted by Lipv,.
We note that a class Lip, can be larger, but also smaller than the class Lip Page 5 of 23
«, depending on the considered modulus of continujfy).
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We shall say that a sequenge= {~,,} of positive terms igjuasi;-power-
monotone increasing (decreasinfghere exists a natural numbar := N (3, v)
and constank’ := K (3,~) > 1 such that

(2.3) Knfy, > mPy, (0, < KmPy,)

holds for anyn > m > .

Here and in the sequell and K; denote positive constants that are not
necessarily the same at each occurrence.

If (2.3) holds with = 0 then we omit the attribute5” in the equation.

Furthermore, we shall say that a sequence= {~,} of positive terms is
guasi geometrically increasing (decreasinighere exists natural numbetis:=
(), N :== N(v) and a constank” := K () > 1 such that
(2.4)

1

Tt = 2Vn and v, < Kyn4 ('Vn-i-u < E’Yn and Y41 < K%l)

hold for alln > N.
Finally a sequencéy, } will be calledbounded by blocki the inequalities

alffﬁ) <, < agFg\Z), <o <ag <o
hold for any2* < n < 281 k =1,2,..., where

I'®) = min(ygr, yor+1)  and Fs\? := max(Yok, Yok+1).

m

Power-monotone sequences
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To begin, we recall two theorems of J. Németh][

Theorem 3.1.Let )\, > 0 be the Fourier sine or cosine coefficientsfThen
¢ € Lipw,,0<vy<1,ifand only if

(3.1) i)\k -0 (WW (%)) ,
k=n

or equivalently

Power-monotone sequences
and Fourier series with positive
coefficients

n 1 L. Leindler
(3.2) > k=0 <W7 (-)) .
n
k=1

Title Page
Theorem 3..2. If A\, > 0 are the Fourier sine coefficients ¢gf theny € Lip w; Contents
if and only if
44 44
a 1
3.3 kX, = O 1. < >
(3.3) >k (nwl (n>>
k=1 Go Back
In the special case,(0) = ¢” (0 < v < 1), these theorems reduce to the Close
classical results of Boagl]. Again, observe that in general, the class Lip Quit

can be larger (or smaller) than the class tip
For completeness, we add that in a notable paper by M. and S. 12{ymi [ Page 7 of 23
their Theorem 1 is very similar to Theore®nl. The difference being the form

of the conditions and notation used. The notions used by Németh show an 7 nea Pure and Appl. Math. 1) Art. 1, 2000
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undoubted similarity to that of the classical Lipschitz classes, therefore we use
these notions and notations in the present paper. We also omit the discussion of
lzumi’s result.

As noted above, the quasi power-monotone sequences and the quasi geomet-
rically monotone sequences are closely interlinked. A result showing this strong
connection is the following (see [], Corollary 1).

Proposition 3.3. A positive sequendg,, } bounded by blocks is quasipower-
monotone increasing (decreasing) with a certain negative (positive) exponent
if and only if the sequend@,- } is quasi geometrically increasing (decreasing).

Power-monotone sequences
and Fourier series with positive

We note that if a sequende, } is either quasi-power-monotone increasing coefficients

or decreasing, then it is also bounded by blocks. In the following sections we L. Leindler
shall use this remark and the cited Proposition several times. We now proceed

to formulate our new theorems. Title Page
Theorem 3.4. Assume that a given positive sequefigg} has the following Contents

properties. There exists a positivesuch that:
(P,) the sequencén®v,} is quasi monotone decreasing and « dd
(P_) the sequencén'~v,} is quasi monotone increasing. < 4

If \,, > 0 are the Fourier sine or cosine coefficients of a functigrthen

Go Back

1
(3.4) w (so, —) = O(7n) Ol

n
) _ Quit
if and only if

Page 8 of 23
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or equivalently
(3.6) Z kA, = O(n,).

Theorem 3.5.1f \,, > 0 are the Fourier sine coefficients gfand the sequence
{7} has the property P, ), then 3.4) holds if and only if 8.6) is true.

A simple consideration shows that Theorgrincludes Theoreri.1. Namely,
setting,, := wv( ), and keeping in mind th&t < v < 1, then Proposmors 3
and the property4.2) of w, () imply that the sequencén® wv( )} for some
small ¢ has the propertyP, ). A similar argument shows that the sequence
{n'~=w,(+)} satisfies the propert{P_). In this case we use the properg1)
of w,(9) instead of £.2).

In a similar manner we can verify that Theor@&®includes Theorer.2.

We mention that if the sequence

S~

satisfies the propertigs”, ) and(P_), then, by Theorem.4, we have the esti-
mate

(3.7) o (w2) =0t

or equivalently that

(3.8) > ke = 0(nA,)

Power-monotone sequences
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holds.
Itis easy to see that if the coefficients are monotone decreasing thénd)
implies
A= O0(n'A,).

Thus, the equivalence o2 (7) and (3.8) can be considered as a generalization

of the following classical theorem of G. G. Loreniz]

If A, | 0.and)\, are the Fourier sine or cosine coefficientsgftheny €
Lip o, 0 < o < 1, ifand only if\, = O(n=17%).

Finally, we comment on the following theorem of J. NémetH] [

If A\, > 0 are the Fourier sine or cosine coefficientsofhen the conditions

o9 S0 (+(2))

and

(3.10) > k=0 (nw (1»
k=1 n

imply

(3.11) e H”,

for arbitrary modulus of continuity.
He also showed that neithe?.0) nor (3.10 are sufficient to satisfy3(11).
Theorem3.4 shows that if the sequendes(+)} itself has the propertiegP, )

Power-monotone sequences
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and(P_) then 3.9 and 3.10 are equivalent, and both satisB.{1). Moreover,
given (3.11), both (3.9) and 3.10 can be shown to be true.

As we have verified, the moduli of continuity,,0 < v < 1, have the
properties P,) and(P-).

Power-monotone sequences
and Fourier series with positive
coefficients
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To prove our theorems we recall one known lemma and generalize two lemmas

of [4].

Lemma 4.1. ([ 10]) For any positive sequence:= {~, } the inequalities
Z%gfﬁm (m=1,2,...; K > 1),

or

Z%SK%” (m=1,2,...; K > 1),

n=1
hold if and only if the sequeneeis quasi geometrically decreasing or increas-
ing, respectively.

Lemma4.2.Letyu, >0, 3, > 0andd > 0. Assume that there exists a positive
¢ such that the sequence

{n"°Bn}

and the sequence

(4.2) 18 quasi monotone increasing,

4.2) {n*7°B,} is quasi monotone decreasing.
Then
(4.3) > K= 0(8,)

k=1

Power-monotone sequences
and Fourier series with positive
coefficients
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is equivalent to

(4.4) > k= 0(B.n).
k=n

Proof. By Proposition3.3, taking into account4.1) and ¢@.2), we have that the
sequence$d,. } and{27°3,. } are quasi geometrically increasing and decreas-
ing, respectively. Thus, by Lemndal, we also have that

(4.5) Z Bon = O(fym)

and

(4.6) i 27 Bon = O(27™ Bym)
hold. _

To begin, we show that4(3) implies @.4). Assume thaR” < n < 2v+1,
Then, by @.3), (4.6) and @.2) we have

0o 2m,+1

Zﬂk < Z Z o < K Z 27 Bymir < K127 0B,

m=v k=2m+1

< K27 By < Kn™°f,.

Power-monotone sequences
and Fourier series with positive
coefficients

L. Leindler

Title Page
Contents
44 44
< >
Go Back
Close
Quit
Page 13 of 23

J. Ineq. Pure and Appl. Math. 1(1) Art. 1, 2000
http://jipam.vu.edu.au


http://jipam.vu.edu.au/
mailto:leindler@math.u-szeged.hu
http://jipam.vu.edu.au/

The proof of the implication4.4) = (4.3) runs similarly. Namely, by4.4),
(4.5, (4.1) and @.2), we have

v 2m+1 2m+1

Zk“*mZ > k:,uk<K22m5 > Nk<K22m5ﬁ 2 < K3

m=0 k=2m+1 k=2m41

]

Lemma 4.3. Let ux, > 0, > u be convergent and@ < o < 1. Moreover,
assume that a given positive sequefigg} has the following properties. There
exists a positive such that:
(i) the sequencdn—*4,} is quasi monotone decreasing
and
(iv) the sequencén® 274, } is quasi monotone increasing.

Finally let

, 1
5(1.) = 5n Z.f Tr = ﬁa n Z 17
linear on the interval[1/(n + 1),1/n].

Then
4.7) i p(1 = coskz) = O(z%6(x)) (v — 0)
if and only if -

(4.8) i p = O(n™6,).

k=n

Power-monotone sequences
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Proof. Under the hypotheses of (iii) and (iv) it is obvious that the sequence

(4.9) B, = n2°5,

satisfies the assumptions.{) and @.2) of Lemma4.2 with 6 = 2. Using this
we can begin to show the equivalence4f/f and @.8). For (@4.7) to imply (4.8)
first observe from4.7) that

Hence, since (1 — cost) decreases of, 1), it follows that

(4.10) > K = O(x*5(x)),
and withz = 1/n

= O(n26,).

(7=
T
=

(4.11)
k=1

Thus, by Lemmat.2with § = 2 and3, = n?~%4,, it follows that @.8) is true.

To complete the proof assumé.®) is true, thus 4.10 and @.11) also hold.

Using Lemmad.2with 5, given in @.9) andd = 2 we obatin

1/x 1/z
Z,uk (1—cos k) <Z+ Z < Kz? Zk‘?,uk+K Z iy = (x)).
k=1 k>1/x k>1/x

Power-monotone sequences
and Fourier series with positive
coefficients
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This verifies {.7) (see the argument given at the proof 6f1(0).
Herewith the proof of Lemma4.3is complete.
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Proof. (of TheorenB.4). First we show that the statemen&5) and (3.6) are
equivalent. This follows by Lemmé& 2 with § = 1 and,, = nv,. We can ap-
ply Lemmad4.2in this case, namely the sequer{eé <+, } is quasi monotone
increasing and simultaneously the sequefice,, } is quasi monotone decreas-
ing; see the propertigs’, ) and(P-).

Next, we prove that ib A\, cos nx is the Fourier series af and (3.4) holds
then (3.5 also holds. The assumptioB.{) clearly implies that

(5.1) o(2) — (0)] < Kry(2),
where
, 1
(5.2) y(z) = { W if =, n2l,
linear on the interval[l/(n + 1), 1/n].

By (P, ) and 6.2), Proposition3.3implies that

D (2 < oo,
n=1

whence
xy(z) € L(0,1)

follows. Thus by 6.1) and Dini’s test, the Fourier series @f converges at
x=0,i.e.) A\ < oo, whence, by§.1),

(5.3) Z Ak(1 — coskx) = O(v(x))
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follows.

Using Lemma4.3 with u, = A\x, a = 0 and),, = v, we have that¥.3) is
equivalent to 8.5).

Conversely, assuming that.f) holds, then) )\, converges; and if\,, are
the Fourier cosine coefficients gf we shall show that3(4) also holds.

We have that

lo(x + 2h) — p(x)] = ‘Z Mg (cos k(x + 2h) — cos kx))

- 2‘2 A sink(z + h) sin k;h(
k=1
(5.4) 1h

QZAk51nkh+2 Z "

k>1/h
1/h

<2h2k)\k+2 > e

E>1/h

Here the second sum@3(+(%)) by the assumptior(5). Utilizing the formerly
proved equivalence oB(5) and @3.6), we clearly have that the first term is also
O(7(h)). Thus, @.4) is verified assuming3 5).

In what follows, Theoren3.4is proved for the Fourier cosine series. Let us
assume that the Fourier seriesgfs > A, sinnz and that 8.4) holds. Since
the Fourier series can be integrated term by term, we have

(5.5) /Om o(t)dt = — Zn_l)\n(l — cosnzx) = O(zy(x)).

n=1
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A consideration similar to that given above shows that we can apply Lefrina

with o = 1, 6,, = v, andu, = k=1 )\,. Thus we have that(5) is equivalent to

> kN =0(n ).
k=n

Hence, it follows that
2n
k=n

Since the sequendey,- } is quasi geometrically decreasing, théngf implies
(3.5.

Hence, the necessity of the conditiods5) and (3.6) for Fourier sine series
have been proved.

Finally, we verify the sufficiency of3.5) for Fourier sine series. Consider

(5.7) o(x +2h) — p(zr) =2 Z An cosn(x + h) sinnh.

n=1

It is easy to see that the same estimation as giveb.#) ¢an also be used in
this case. Therefore the proof th&t %) implies 3.4) is similar to that in the
cosine case.

The proof of Theoren3.4is thus complete. O
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Proof. (of Theoren8.5). First, assume that the conditioB.§) holds. Using the
equality 6.7) and the closing estimate d3.¢) we have

1/h
(5.8) o(a +2h) — p(2)] 20> kM +2 ) M.
k=1 k>1/h

Here, the first term i®)(y(h)) by the assumption3(6). To prove the same for
the second term we observe thatd) implies that

2m+1

Z Ak < Kvyam.
k=2m

In addition, by(P, ) Proposition3.3yields that the sequende,~} decreases
guasi geometrically, thus

k=n

This and the previously obtained partial result, 5y8], verifies that 8.4) holds.
Conversely, let us assume that4) is true. Then, as before iB.5), we have

(5.9) Zn_l)\n(l —cosnzx) = O(xy(x)).
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Furthermore, byg.9),

1/ 1/x

— coskx
Zk: 1)\k 1 —coskzr)=x Zk:)\k 12,2

cosk‘x _
< 77 ka e Zk: (1 = cos kz) = O(zy(z)),
k=

whence by: = 1 we obtain

Z A kc/oj Ko (m (%)) = O(n).

This shows (see the consideration 4tl()) that the statemenB(6) holds
from (3.4).
The proof of the Theorer.5is thus complete. O
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