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Abstract

In this paper an inequality of Hadamard type for convex functions defined on
a disk in the plane is proved. Some mappings naturally connected with this
inequality and related results are also obtained.
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1. Introduction
Let f : I ⊆ R → R be a convex mapping defined on the intervalI of real
numbers anda, b ∈ I with a < b. The following double inequality

(1.1) f

(
a+ b

2

)
≤ 1

b− a

∫ b

a

f (x) dx ≤ f (a) + f (b)

2

is known in the literature as Hadamard’s inequality for convex mappings. Note
that some of the classical inequalities for means can be derived from (1.1) for
appropriate particular selections of the mappingf.

In the paper [4] (see also [6] and [7]) the following mapping naturally con-
nected with Hadamard’s result is considered

H : [0, 1] → R, H (t) :=
1

b− a

∫ b

a

f

(
tx+ (1− t)

a+ b

2

)
dx.

The following properties are also proved:

(i) H is convex and monotonic nondecreasing.

(ii) One has the bounds

sup
t∈[0,1]

H (t) = H (1) =
1

b− a

∫ b

a

f (x) dx

and

inf
t∈[0,1]

H (t) = H (0) = f

(
a+ b

2

)
.
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Another mapping also closely connected with Hadamard’s inequality is the
following one [6] (see also [7])

F : [0, 1] → R, F (t) :=
1

(b− a)2

∫ b

a

∫ b

a

f (tx+ (1− t) y) dxdy.

The properties of this mapping are itemized below:

(i) F is convex on[0, 1] and monotonic nonincreasing on
[
0, 1

2

]
and nonde-

creasing on
[

1
2
, 1

]
.

(ii) F is symmetric about1
2
. That is,

F (t) = F (1− t) , for all t ∈ [0, 1] .

(iii) One has the bounds

sup
t∈[0,1]

F (t) = F (0) = F (1) =
1

b− a

∫ b

a

f (x) dx

and

inf
t∈[0,1]

F (t) = F

(
1

2

)
=

1

(b− a)2

∫ b

a

∫ b

a

f

(
x+ y

2

)
dxdy ≥ f

(
a+ b

2

)
.

(iv) The following inequality holds

F (t) ≥ max {H (t) , H (1− t)} , for all t ∈ [0, 1] .
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In this paper we will point out a similar inequality to Hadamard’s that ap-
plies to convex mappings defined on a disk embedded in the planeR2. We will
also consider some mappings similar in a sense to the mappingsH andF and
establish their main properties.

For recent refinements, counterparts, generalizations and new Hadamard’s
type inequalities, see the papers [1]-[11] and [14]-[15] and the book [13].
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2. Hadamard’s Inequality on the Disk
Let us consider a pointC = (a, b) ∈ R2 and the diskD (C,R) centered at the
pointC and having the radiusR > 0. The following inequality of Hadamard
type holds.

Theorem 2.1. If the mappingf : D (C,R) → R is convex onD (C,R), then
one has the inequality

(2.1) f (C) ≤ 1

πR2

∫∫
D(C,R)

f (x, y) dxdy ≤ 1

2πR

∫
S(C,R)

f (γ) dl (γ)

whereS (C,R) is the circle centered at the pointC with radiusR. The above
inequalities are sharp.

Proof. Consider the transformation of the planeR2 in itself given by

h : R2 → R2, h = (h1, h2) and h1 (x, y) = −x+ 2a, h2 (x, y) = −y+ 2b.

Thenh (D (C,R)) = D (C,R) and since

∂ (h1, h2)

∂ (x, y)
=

∣∣∣∣ −1 0
0 −1

∣∣∣∣ = 1,

we have the change of variable∫∫
D(C,R)

f (x, y) dxdy =

∫∫
D(C,R)

f (h1 (x, y) , h2 (x, y))

∣∣∣∣∂ (h1, h2)

∂ (x, y)

∣∣∣∣ dxdy
=

∫∫
D(C,R)

f (−x+ 2a,−y + 2b) dxdy.
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Now, by the convexity off onD (C,R) we also have

1

2
[f (x, y) + f (−x+ 2a,−y + 2b)] ≥ f (a, b)

which gives, by integration on the diskD (C,R), that

(2.2)
1

2

[∫∫
D(C,R)

f (x, y) dxdy +

∫∫
D(C,R)

f (−x+ 2a,−y + 2b) dxdy

]
≥ f (a, b)

∫∫
D(C,R)

dxdy = πR2f (a, b) .

In addition, as∫∫
D(C,R)

f (x, y) dxdy =

∫∫
D(C,R)

f (−x+ 2a,−y + 2b) dxdy,

then by the inequality (2.2) we obtain the first part of (2.1).
Now, consider the transformation

g = (g1, g2) : [0, R]× [0, 2π] → D (C,R)

given by

g :

{
g1 (r, θ) = r cos θ + a,
g2 (r, θ) = r sin θ + b,

r ∈ [0, R] , θ ∈ [0, 2π] .

Then we have
∂ (g1, g2)

∂ (r, θ)
=

∣∣∣∣ cos θ sin θ
−r sin θ r cos θ

∣∣∣∣ = r.
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Thus, we have the change of variable∫∫
D(C,R)

f (x, y) dxdy =

∫ R

0

∫ 2π

0

f (g1 (r, θ) , g2 (r, θ))

∣∣∣∣∂ (g1, g2)

∂ (r, θ)

∣∣∣∣ drdθ
=

∫ R

0

∫ 2π

0

f (r cos θ + a, r sin θ + b) rdrdθ.

Note that, by the convexity off onD (C,R), we have

f (r cos θ + a, r sin θ + b) = f
( r
R

(R cos θ + a,R sin θ + b) +
(
1− r

R

)
(a, b)

)
≤ r

R
f (R cos θ + a,R sin θ + b) +

(
1− r

R

)
f (a, b) ,

which yields that

f (r cos θ + a, r sin θ + b) r ≤ r2

R
f (R cos θ + a,R sin θ + b)+r

(
1− r

R

)
f (a, b)

for all (r, θ) ∈ [0, R]× [0, 2π].
Integrating on[0, R]× [0, 2π] we get

∫∫
D(C,R)

f (x, y) dxdy ≤
∫ R

0

r2

R
dr

∫ 2π

0

f (R cos θ + a,R sin θ + b) dθ

+ f (a, b)

∫ 2π

0

dθ

∫ R

0

r
(
1− r

R

)
dr

=
R2

3

∫ 2π

0

f (R cos θ + a,R sin θ + b) dθ +
πR2

3
f (a, b) .

(2.3)
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Now, consider the curveγ : [0, 2π] → R2 given by

γ :

{
x (θ) := R cos θ + a,
y (θ) := R sin θ + b,

θ ∈ [0, 2π] .

Then γ ([0, 2π]) = S (C,R) and we write (integrating with respect to arc
length)∫

S(C,R)

f (γ) dl (γ) =

∫ 2π

0

f (x (θ) , y (θ))
(
[ẋ (θ)]2 + [ẏ (θ)]2

) 1
2 dθ

= R

∫ 2π

0

f (R cos θ + a,R sin θ + b) dθ.

By the inequality (2.3) we obtain∫∫
D(C,R)

f (x, y) dxdy ≤ R

3

∫
S(C,R)

f (γ) dl (γ) +
πR2

3
f (a, b)

which gives the following inequality which is interesting in itself

(2.4)
1

πR2

∫∫
D(C,R)

f (x, y) dxdy ≤ 2

3
· 1

2πR

∫
S(C,R)

f (γ) dl (γ)+
1

3
f (a, b) .

As we proved that

f (C) ≤ 1

πR2

∫∫
D(C,R)

f (x, y) dxdy,
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then by the inequality (2.4) we deduce the inequality

(2.5) f (C) ≤ 1

2πR

∫
S(C,R)

f (γ) dl (γ) .

Finally, by (2.5) and (2.4) we have

1

πR2

∫∫
D(C,R)

f (x, y) dxdy ≤ 2

3
· 1

2πR

∫
S(C,R)

f (γ) dl (γ) +
1

3
f (C)

≤ 1

2πR

∫
S(C,R)

f (γ) dl (γ)

and the second part of (2.1) is proved.
Now, consider the mapf0 : D (C,R) → R, f0 (x, y) = 1. Thus

1 = f0 (λ (x, y) + (1− λ) (u, z))

= λf0 (x, y) + (1− λ) f0 (u, z) = 1.

Thereforef0 is convex onD (C,R) → R. We also have

f0 (C) = 1,
1

πR2

∫∫
D(C,R)

f0 (x, y) dxdy = 1 and
1

2πR

∫
S(C,R)

f0 (γ) dl (γ) = 1,

which shows us the inequalities (2.1) are sharp.
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3. Some Mappings Connected to Hadamard’s In-
equality on the Disk

As above, assume that the mappingf : D (C,R) → R is a convex mapping on
the disk centered at the pointC = (a, b) ∈ R2 and having the radiusR > 0.
Consider the mappingH : [0, 1] → R associated with the functionf and given
by

H (t) :=
1

πR2

∫∫
D(C,R)

f (t (x, y) + (1− t)C) dxdy,

which is well-defined for allt ∈ [0, 1].
The following theorem contains the main properties of this mapping.

Theorem 3.1.With the above assumption, we have:

(i) The mappingH is convex on[0, 1].

(ii) One has the bounds

(3.1) inf
t∈[0,1]

H (t) = H (0) = f (C)

and

(3.2) sup
t∈[0,1]

H (t) = H (1) =
1

πR2

∫∫
D(C,R)

f (x, y) dxdy.

(iii) The mappingH is monotonic nondecreasing on[0, 1].

http://jipam.vu.edu.au/
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Proof. (i) Let t1, t2 ∈ [0, 1] andα, β ≥ 0 with α+ β = 1. Then we have

H (αt1 + βt2) =
1

πR2

∫∫
D(C,R)

f (α (t1 (x, y) + (1− t1)C)

+ β (t2 (x, y) + (1− t2)C)) dxdy

≤ α · 1

πR2

∫∫
D(C,R)

f (t1 (x, y) + (1− t1)C) dxdy

+β · 1

πR2

∫∫
D(C,R)

f (t2 (x, y) + (1− t2)C) dxdy

= αH (t1) + βH (t2) ,

which proves the convexity ofH on [0, 1].

(ii) We will prove the following identity

(3.3) H (t) =
1

πt2R2

∫∫
D(C,tR)

f (x, y) dxdy

for all t ∈ (0, 1].

Fix t in (0, 1] and consider the transformationg = (ψ, η) : R2 → R2 given
by

g :

{
ψ (x, y) := tx+ (1− t) a,
η (x, y) := ty + (1− t) b,

(x, y) ∈ R2;

theng (D (C,R)) = D (C, tR).

Indeed, for all(x, y) ∈ D (C,R) we have

(ψ − a)2 + (η − b)2 = t2
[
(x− a)2 + (y − b)2] ≤ (tR)2

http://jipam.vu.edu.au/
mailto:sever.dragomir@vu.edu.au
http://jipam.vu.edu.au/


On Hadamard’s Inequality on a
Disk

S.S. Dragomir

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 13 of 25

J. Ineq. Pure and Appl. Math. 1(1) Art. 2, 2000

http://jipam.vu.edu.au

which shows that(ψ, η) ∈ D (C, tR), and conversely, for all(ψ, η) ∈
D (C, tR) , it is easy to see that there exists(x, y) ∈ D (C,R) so that
g (x, y) = (ψ, η).

We have the change of variable∫∫
D(C,tR)

f (ψ, η) dψdη =

∫∫
D(C,R)

f (ψ (x, y) , η (x, y))

∣∣∣∣∂ (ψ, η)

∂ (x, y)

∣∣∣∣ dxdy
=

∫∫
D(C,R)

f (t (x, y) + (1− t) (a, b)) t2dxdy

= πR2t2H(t)

since
∣∣∣∂(ψ,η)
∂(x,y)

∣∣∣ = t2, which gives us the equality (3.3).

Now, by the inequality (2.1), we have

1

πt2R2

∫∫
D(C,tR)

f (x, y) dxdy ≥ f (C)

which gives usH (t) ≥ f (C) for all t ∈ [0, 1] and sinceH (0) = f (C),
we obtain the bound (3.1).
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By the convexity off on the diskD (C,R) we have

H (t) ≤ 1

πR2

∫∫
D(C,R)

[tf (x, y) + (1− t) f (C)] dxdy

=
t

πR2

∫∫
D(C,R)

f (x, y) dxdy + (1− t) f (C)

≤ t

πR2

∫∫
D(C,R)

f (x, y) dxdy +
1− t

πR2

∫∫
D(C,R)

f (x, y) dxdy

=
1

πR2

∫∫
D(C,R)

f (x, y) dxdy.

As we have

H (1) =
1

πR2

∫∫
D(C,R)

f (x, y) dxdy,

then the bound (3.2) holds.

(iii) Let 0 ≤ t1 < t2 ≤ 1. Then, by the convexity of the mappingH we have

H (t2)−H (t1)

t2 − t1
≥ H (t1)−H (0)

t1
≥ 0

asH (t1) ≥ H (0) for all t1 ∈ [0, 1]. This proves the monotonicity of the
mappingH in the interval[0, 1].

Further on, we shall introduce another mapping connected to Hadamard’s

http://jipam.vu.edu.au/
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inequality

h : [0, 1] → R, h (t) :=


1

2πtR

∫
S(C,tR)

f (γ) dl (γ (t)) , t ∈ (0, 1] ,

f (C) , t = 0,

wheref : D (C,R) → R is a convex mapping on the diskD (C,R) centered at
the pointC = (a, b) ∈ R2 and having the same radiusR.

The main properties of this mapping are embodied in the following theorem.

Theorem 3.2.With the above assumptions one has:

(i) The mappingh : [0, 1] → R is convex on[0, 1].

(ii) One has the bounds

(3.4) inf
t∈[0,1]

h (t) = h (0) = f (C)

and

(3.5) sup
t∈[0,1]

h (t) = h (1) =
1

2πR

∫
S(C,R)

f (γ) dl (γ) .

(iii) The mappingh is monotonic nondecreasing on[0, 1].

(iv) We have the inequality

H (t) ≤ h (t) for all t ∈ [0, 1] .
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Proof. For a fixedt in [0, 1] consider the curve

γ :

{
x (θ) = tR cos θ + a,
y (θ) = tR sin θ + b,

θ ∈ [0, 2π] .

Thenγ ([0, 2π]) = S (C, tR) and

1

2πtR

∫
S(C,tR)

f (γ) dl (γ)

=
1

2πtR

∫ 2π

0

f (tR cos θ + a, tR sin θ + b)

√
(ẋ (θ))2 + (ẏ (θ))2dθ

=
1

2π

∫ 2π

0

f (tR cos θ + a, tR sin θ + b) dθ.

We note that, then

h (t) =
1

2π

∫ 2π

0

f (tR cos θ + a, tR sin θ + b) dθ

=
1

2π

∫ 2π

0

f (t (R cos θ, R sin θ) + (a, b)) dθ

for all t ∈ [0, 1].

(i) Let t1, t2 ∈ [0, 1] andα, β ≥ 0 with α + β = 1. Then, by the convexity of
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f we have that

h (αt1 + βt2) =
1

2π

∫ 2π

0

f (α [t1 (R cos θ,R sin θ) + (a, b)]

+ β [t2 (R cos θ,R sin θ) + (a, b)]) dθ

≤ α · 1

2π

∫ 2π

0

f (t1 (R cos θ,R sin θ) + (a, b)) dθ

+β · 1

2π

∫ 2π

0

f (t2 (R cos θ,R sin θ) + (a, b)) dθ

= αh (t1) + βh (t2)

which proves the convexity ofh on [0, 1].

(iv) In the above theorem we showed that

H (t) =
1

πt2R2

∫∫
D(C,tR)

f (x, y) dxdy for all t ∈ (0, 1] .

By Hadamard’s inequality (2.1) we can state that

1

πt2R2

∫∫
D(C,tR)

f (x, y) dxdy ≤ 1

2πtR

∫
S(C,tR)

f (γ) dl (γ)

which gives us that

H (t) ≤ h (t) for all t ∈ (0, 1] .

As it is easy to see thatH (0) = h (0) = f (C), then the inequality em-
bodied in(iv) is proved.
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(ii) The bound (3.4) follows by the above considerations and we shall omit the
details.

By the convexity off on the diskD (C,R) we have

h (t) =
1

2π

∫ 2π

0

f (t [(R cos θ, R sin θ) + (a, b)] + (1− t) (a, b)) dθ

≤ t · 1

2π

∫ 2π

0

f (R cos θ + a,R sin θ + b) dθ

+ (1− t) f (a, b)
1

2π

∫ 2π

0

dθ

≤ t · 1

2π

∫ 2π

0

f (R cos θ + a,R sin θ + b) dθ

+ (1− t) · 1

2π

∫ 2π

0

f (R cos θ + a,R sin θ + b) dθ

=
1

2π

∫ 2π

0

f (R cos θ + a,R sin θ + b) dθ = h (1) ,

for all t ∈ [0, 1], which proves the bound (3.5).

(iii) Follows by the above considerations as in the Theorem3.1. We shall omit
the details.

For a convex mappingf defined on the diskD (C,R) we can also consider
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the mapping

g (t, (x, y)) :=
1

πR2

∫∫
D(C,R)

f (t (x, y) + (1− t) (z, u)) dzdu

which is well-defined for allt ∈ [0, 1] and(x, y) ∈ D (C,R).
The main properties of the mappingg are enclosed in the following proposi-

tion.

Proposition 3.3. With the above assumptions on the mappingf one has:

(i) For all (x, y) ∈ D (C,R), the mapg (·, (x, y)) is convex on[0, 1].

(ii) For all t ∈ [0, 1], the mapg (t, ·) is convex onD (C,R).

Proof. (i) Let t1, t2 ∈ [0, 1] andα, β ≥ 0 with α + β = 1. By the convexity
of f we have

g (αt1 + βt2, (x, y)) =
1

πR2

∫∫
D(C,R)

f (α [t1 (x, y) + (1− t1) (z, u)]

+ β [t2 (x, y) + (1− t2) (z, u)]) dzdu

≤ α · 1

πR2

∫∫
D(C,R)

f (t1 (x, y) + (1− t1) (z, u)) dzdu

+ β · 1

πR2

∫∫
D(C,R)

f (t2 (x, y) + (1− t2) (z, u)) dzdu

= αg (t1, (x, y)) + βg (t2, (x, y)) ,

for all (x, y) ∈ D (C,R), and the statement is proved.
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(ii) Let (x1, y1) , (x2, y2) ∈ D (C,R) andα, β ≥ 0 with α+ β = 1. Then

g (t, α (x1, y1) +β (x2, y2))

=
1

πR2

∫∫
D(C,R)

f [α (t (x1, y1) + (1− t) (z, u))

+β (t (x2, y2) + (1− t) (z, u))] dzdu

≤ α
1

πR2

∫∫
D(C,R)

f (t (x1, y1) + (1− t) (z, u)) dzdu

+ β
1

πR2

∫∫
D(C,R)

f (t (x2, y2) + (1− t) (z, u)) dzdu

= αg (t, (x1, y1)) + βg (t, (x2, y2)) ,

for all t ∈ [0, 1], and the statement is proved.

By the use of this mapping we can introduce the following application as
well

G : [0, 1] → R, G (t) :=
1

πR2

∫∫
D(C,R)

g (t, (x, y)) dxdy

whereg is as above.
The main properties of this mapping are embodied in the following theorem.

Theorem 3.4.With the above assumptions we have:

(i) For all s ∈
[
0, 1

2

]
G

(
s+

1

2

)
= G

(
1

2
− s

)
,
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and for all t ∈ [0, 1] one has

G (1− t) = G (t) .

(ii) The mappingG is convex on the interval[0, 1].

(iii) One has the bounds

inf
t∈[0,1]

G (t) = G

(
1

2

)
=

1

(πR2)2

∫∫∫∫
D(C,R)×D(C,R)

f

(
x+ z

2
,
y + u

2

)
dxdydzdu

≥ f (C)

and

sup
t∈[0,1]

G (t) = G (0) = G (1) =
1

πR2

∫∫
D(C,R)

f (x, y) dxdy.

(iv) The mappingG is monotonic nonincreasing on
[
0, 1

2

]
and nondecreasing

on
[

1
2
, 1

]
.

(v) We have the inequality

(3.6) G (t) ≥ max {H (t) , H (1− t)} , for all t ∈ [0, 1] .

Proof. The statements(i) and(ii) are obvious by the properties of the mapping
g defined above and we shall omit the details.
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(iii) By (i) and(ii) we have

G (t) =
G (t) +G (1− t)

2
≥ G

(
1

2

)
, for all t ∈ [0, 1]

which proves the first bound in(iii).

Note that the inequality

G

(
1

2

)
≥ f (C)

follows by (3.6) for t = 1
2

and taking into account thatH
(

1
2

)
≥ f (C).

We also have

G (t) =
1

(πR2)2

∫∫
D(C,R)

(∫∫
D(C,R)

f (t (x, y) + (1− t) (z, u)) dzdu

)
dxdy

≤ 1

(πR2)2

×
∫∫

D(C,R)

[
tf (x, y)πR2 + (1− t)

∫∫
D(C,R)

f (z, u) dzdu

]
dxdy

=
1

(πR2)2

×
[
tπR2

∫∫
D(C,R)

f (x, y) dxdy + (1− t)πR2

∫∫
D(C,R)

f (x, y) dxdy

]
=

1

πR2

∫∫
D(C,R)

f (x, y) dxdy
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for all t ∈ [0, 1], and the second bound in(iii) is also proved.

(iv) The argument is similar to the proof of Theorem3.1(iii) (see also [6]) and
we shall omit the details.

(v) By Theorem2.1we have that

G (t) =
1

πR2

∫∫
D(C,R)

g (t, (x, y)) dxdy

≥ g (t, (a, b)) =
1

πR2

∫∫
D(C,R)

f (t (x, y) + (1− t) (a, b)) dxdy

= H (t)

for all t ∈ [0, 1].

AsG (t) = G (1− t) ≥ H (1− t), we obtain the desired inequality (3.6).

The theorem is thus proved.
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ZBL No. 729:26017.

[2] S.S. DRAGOMIR, Some refinements of Hadamard’s inequalities,Gaz.
Mat. Metod.(Romania),11 (1990), 189-191.
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