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ABSTRACT. In this paper we obtain some Hadamard type inequalities for triple integrals. The
results generalize those obtained in (S.S. DRAGOMIR, On Hadamard's inequality for the convex
mappings defined on a ball in the space and applicatR@MIA (preprint), 1999).
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1. INTRODUCTION

Let f : [a,b] — R be a convex mapping defined on the interiab]. The following
double inequality

(1.1) 7 (“*b) < bia/abf(x) 4y < 1@+ 1)

2 2

is known in the literature as Hadamard'’s inequality for convex mappings.
In [1] S.S. Dragomir considered the following mapping naturally connected to Hadamard’s
inequality

H:[01] >R, H{t) = — /abf(ter(l—t)a;rb)dx

b—a
and proved the following properties of this function

() H is convex and monotonic nondecreasing.
(i) H has the bounds

sup H(t) = H(1) = — /f(x)dx

te[0,1] b—a
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and

iMH@%:Hm):f(a+b).

te[0,1] 2

In the recent paper [2], S.S. Dragomir gave some inequalities of Hadamard's type for convex
functions defined on the bal#(C, R), where

C=(a,b,c) €R?* R>0
and
B(C,R) = {(z,y,2) €ER®| (x —a)r + (y — b)* + (2 — ¢)* < R?}
More precisely he proved the following theorem.

Theorem 1.1.Let f : B(C, R) — R be a convex mapping on the bal(C, R). Then we have
the inequality

1
(1.2) fla,b,¢) < m///B(C,R) f(z,y, 2) dedydz

1
= o(B(C. R) / /sw,m Flesgz)do
where
S(C,R) = {(,9.2) € B (2 — ) + (y — ) + (2 — ) = B
and
U@wﬁ»:ﬁf, o(B(C, R)) — 4 2.

In [2] S.S. Dragomir considers, for a convex mappinglefined on the balB(C, R), the
mappingH : [0,1] — R given by

1
H(t) = m ///B(QR) flt(z,y,2) + (1 —t)C) dedydz.

The main properties of this mapping are contained in the following theorem.
Theorem 1.2. With the above assumption, we have

(i) The mappingH is convex ono, 1].
(i) H has the bounds

(1.3) inf H(t) = H(0) = f(C)

and

1
(1.4) tzl[g)u H(t)y=H(1) = m ///B(C,R) f(z,y, 2) dedydz.

(iii) The mappingH is monotonic nondecreasing ¢ 1].

In this paper we shall give a generalization of the Theorem 1.2 for a positive linear func-
tional defined orC' (D), whereD C R™ (m € N*) is a convex domain. We shall give also a
generalization of the Theorgm [L.1.
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2. RESULTS

Let D C R™ be a convex domain and : C'(D) — R be a given positive linear functional
such thatd(eg) = 1, whereey(z) = 1, z € D. Letx = (z4,...,z,) be a point fromD we
note byp;, i = 1,2,...,m the function defined o® by

pi(x) = x;, i=1,2,...,m
and bya;, 1 = 1,2,...,m the value of the functionad in p;, i.e.
A(p;) = a;, i=1,2,...,m.
In addition, letf be a convex mapping of. We consider the mapping : [0,1] — R
associated with the functiofiand given by
H(t)=A(f(tx+ (1 —t)a))
wherea = (aq, aq, ..., a,,) and the functionall acts analagous to the variahle
Theorem 2.1. With above assumption, we have
(i) The mappingH is convex ono, 1].
(i) The bounds of the functioA are given by

(2.1) uf H (t) = H(0) = f(a)
and
(2.2) til[épl]H(t) = H(1) = A(f).

(iii) The mappingH is monotonic nondecreasing ¢ 1].
Proof. (i) Lett,t, € [0, 1] anda, 5 > 0 with a + 3 = 1. Then we have
H(aty + Bts) = A[f((aty + Bta)x + (1 — (aty + Bia))a)]
= Alf(a(tiz+ (1 —t1)a) + B(tax + (1 — t2)a))]
< aA[f(tiz + (1 = t1)a)] + BA[f (tox + (1 — t2)a)]
= aH(t1) + BH(t2)
which proves the convexity o on [0, 1].

(i) Let g be a convex function o®. Then there exist the real numbets, A, ..., A,, such
that

(2.3) 9(x) > g(a) + (r1 — a1) A1 + (2 — az) As + - + (T, — a) A,

foranyz = (zy,...,2,) € D.
Using the fact that the functional is linear and positive, from the inequalify (R.3) we obtain
the inequality

(2.4) A(g) = g(a).
Now, for a fixed numbet, ¢ € [0, 1] the functiong : D — R defined by
g(x) = fltr + (1 —1)a)
is a convex function. From the inequalify (2.4) we obtain
A(f(tz + (1 =t)a)) > f(ta+ (1 = t)a) = f(a)

or

H(t) > H(0)
for everyt € (0, 1], which proves the equality (2.1).
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Let0 < t; <ty < 1. By the convexity of the mapping we have
H(ty) — H(ty) S H(t;) — H(0)
to — 11 - t1

So the functiord is a nondecreasing function ait{¢) < H(1). The theorem is proved.[]

> 0.

Remark2.1 Form =1, D = [a,b] and

:bia/abf(x)dx

the functionH is the function which was considered in the papér [1].
Remark2.2 Form =3 andD = B(C R) and

Al) = B(C, R) ///B(CR %Y, 2) dudydz

a beingC, the functionH is the functional from the Theorem 1.2.
Let D be a bounded convex domain frdd with a piecewise smooth boundasy We define

the notation
o= // ds,
s
ap = l // xdS,
0JJs
1
ag == — // ydS,
as —//zdS
V= // f(z,y, z) dedydz.
v

Let us assume that the surfages oriented with the aid of the unit normaldirected to the
exterior of D

h = (cos a, cos [3, cos ).
The following theorem is a generalization of the Theofem 1.1.
Theorem 2.2.Let f be a convex function obR. With the above assumption we have the follow-
ing inequalities

(2.5) U//S fds — 0//S[(al —x)cosa+ (ayg —y)cos B+ (a3 — z) cosvy] f(x,y, z)dS

> 4o // f(z,y, z) dedydz
D
and

(2.6) / / [ 0,2 dodyds = f(aa 200

where

1 1 1
Ty = —/// x dxdydz, Yo = —/// ydxdydz, Ze = —/// z dxdydz.
v D v D v D
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f of

0z

Proof. We can suppose that the functigrihas the partial derlvatlveg— and these are

continuous onD.
For every poin{u, v, w) € S and(z,y, z) € D the following inequality holds:

of of

(27) f(U,U,IU) > f(xvya Z)—i_%(‘%vya Z)(U—ﬂf)—Fa-y(l'?y,Z)(’U—y)+$<£L’,y,2)(’w—2).

From the inequality{ (2]7) we have
9]
(2.8) //s flz,y,2)dS > f(x,y,2)0 + a—i(m,y, 2)(a1 — x)o

0 0
+ e - o+ P @ - 2o

The above inequality leads us to the inequality

(2.9) U//fxy, dS>a// f(z,y, 2) dedydz

0
+a/// [83: a—x)f(z,y, ))+8y((a2—y)f(a: Y, 2 ))Jr%((ag—z)f(:v,y,z))] dwdydz

+ 30 // f(z,y, z) dedydz.
D

Using the Gauss-Ostrogradsky’ theorem we obtain the equality

e [[[ [ (@1 = 0)f(e.9.2) + (0 = ) (0,3,

+ %((ag —2)f(z,y, z)] dxdydz

= //S[(al —z)cosa + (ag —y)cos B+ (az — z) cosy] f(x,y, z) dS.

From the relationg (2]9) and (2]10) we obtain the inequdlity (2.4). The inequality (2.6) is the
inequality [2.4) for the functional

f(z,y, z) dedydz
///D dxdydz

Remark2.3. For D = B(C, R) we have
(ala ag, a3) = C
and
r — aq 5 Y — Qg oS Z — asg
COSP = —— = .
R R 7T TR
In this case the inequality (2.4) becomes

- / / / f(2,y,2) dedydz < v / / J(2,y,2) do
B(C,R) S(C.R)
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