Journal of Inequalities in Pure and Applied Mathematics

http://jipam.vu.edu.au/

Volume 1, Issue 1, Article 3, 2000

A STEFFENSEN TYPE INEQUALITY
 HILLEL GAUCHMAN

Department of Mathematics, Eastern Illinois University, Charleston, IL 61920, USA
cfhvg@ux1.cts.eiu.edu
Received 26 October, 1999; accepted 7 December, 1999
Communicated by D.B. Hinton

Abstract

Steffensen's inequality deals with the comparison between integrals over a whole interval $[a, b]$ and integrals over a subset of $[a, b]$. In this paper we prove an inequality which is similar to Steffensen's inequality. The most general form of this inequality deals with integrals over a measure space. We also consider the discrete case.

Key words and phrases: Steffensen inequality, upper-separating subsets.

1. Introduction

The most basic inequality which deals with the comparison between integrals over a whole interval $[a, b]$ and integrals over a subset of $[a, b]$ is the following inequality, which was established by J.F. Steffensen in 1919, [3].

Theorem 1.1. (STEFFENSEN'S INEQUALITY) Let a and b be real numbers such that $a<b$, f and g be integrable functions from $[a, b]$ into \mathbb{R} such that f is nonincreasing and for every $x \in[a, b], 0 \leq g(x) \leq 1$. Then

$$
\int_{b-\lambda}^{b} f(x) d x \leq \int_{a}^{b} f(x) g(x) d x \leq \int_{a}^{a+\lambda} f(x) d x
$$

where $\lambda=\int_{a}^{b} g(x) d x$.
The following is a discrete analogue of Steffensen's inequality, [1]:
Theorem 1.2. (DISCRETE STEFFENSEN'S INEQUALITY). Let $\left(x_{i}\right)_{i=1}^{n}$ be a nonincreasing finite sequence of nonnegative real numbers, and let $\left(y_{i}\right)_{i=1}^{n}$ be a finite sequence of real numbers such

[^0]that for every $i, 0 \leq y_{i} \leq 1$. Let $k_{1} k_{2} \in\{1, \ldots, n\}$ be such that $k_{2} \leq \sum_{i=1}^{n} y_{i} \leq k_{1}$. Then
$$
\sum_{i=n-k_{2}+1}^{n} x_{i} \leq \sum_{i=1}^{n} x_{i} y_{i} \leq \sum_{i=1}^{k_{1}} x_{i}
$$

In section 2 we consider the discrete case. Our first result is the following.
Theorem 1.3. Let $\ell \geq 0$ be a real number, $\left(x_{i}\right)_{i=1}^{n}$ be a nonincreasing finite sequence of real numbers in $[\ell, \infty)$, and $\left(y_{i}\right)_{i=1}^{n}$ be a finite sequence of nonnegative real numbers. Let $\Phi:[\ell, \infty) \rightarrow[0, \infty)$ be strictly increasing, convex, and such that $\Phi(x y) \geq \Phi(x) \Phi(y)$ for all $x, y, x y \geq \ell$. Let $k \in\{1, \ldots, n\}$ be such that $k \geq \ell$ and $\Phi(k) \geq \sum_{i=1}^{n} y_{i}$. Then either

$$
\sum_{i=1}^{n} \Phi\left(x_{i}\right) y_{i} \leq \Phi\left(\sum_{i=1}^{k} x_{i}\right) \quad \text { or } \quad \sum_{i=1}^{k} y_{i} \geq 1
$$

Theorem 1.3 takes an especially simple form if $\Phi(x)=x^{\alpha}$, where $\alpha \geq 1$.
Theorem 1.4. Let $\left(x_{i}\right)_{i=1}^{n}$ be a nonincreasing finite sequence of nonnegative real numbers, and let $\left(y_{i}\right)_{i=1}^{n}$ be a finite sequence of nonnegative real numbers. Assume that $\alpha \geq 1$. Let $k \in\{1, \ldots, n\}$ be such that

$$
k \geq\left(\sum_{i=1}^{n} y_{i}\right)^{\frac{1}{\alpha}}
$$

Then either

$$
\sum_{i=1}^{n} x_{i}^{\alpha} y_{i} \leq\left(\sum_{i=1}^{k} x_{i}\right)^{\alpha} \quad \text { or } \quad \sum_{i=1}^{k} y_{i} \geq 1
$$

As an example of an application of Theorem 1.4 we obtain the following result:
Theorem 1.5. Let α and β be real numbers such that $\alpha \geq 1+\beta, 0 \leq \beta \leq 1$. Let $\left(x_{i}\right)_{i=1}^{n}$ be a nonincreasing sequence of nonnegative real numbers. Assume that

$$
\sum_{i=1}^{n} x_{i} \leq A, \quad \sum_{i=1}^{n} x_{i}^{\alpha} \geq B^{\alpha}
$$

where A and B are positive real numbers. Let $k \in\{1,2 \ldots, n\}$ be such that

$$
k \geq\left(\frac{A}{B}\right)^{\frac{\beta}{\alpha-1}}
$$

Then

$$
\sum_{i=1}^{k} x_{i}^{\beta} \geq B^{\beta}
$$

For $\beta=1$ this is a result from [1].
The main result of section 3 is Theorem 3.2. This theorem is similar to Theorem 1.3, but it involves integrals over a measure space instead of finite sums. The key tool that we use to state and to prove Theorem 3.2 is the concept of separating subsets introduced and studied in [1]. If we take a measure space to be just a closed interval of the real line \mathbb{R}, we obtain the following simplest case of Theorem 3.2.

Theorem 1.6. Let $\ell \geq 0$ be a real number, a and b be real numbers such that $a<b, f$ and g be integrable functions from $[a, b]$ into $[\ell, \infty)$ and $[0, \infty)$ respectively, such that f is nonincreasing. Let $\Phi:[\ell, \infty) \rightarrow[0, \infty)$ be strictly increasing, convex, and such that $\Phi(x y) \geq \Phi(x) \Phi(y)$ for all $x, y, x y \geq \ell$. Let λ be a real number such that $\Phi(\lambda)=\int_{a}^{b} g(x) d x$. Assume that $\lambda \leq b-a$ and

$$
f(a)-f(a-\lambda) \leq \int_{a}^{a+\lambda}[f(x)-f(a+\lambda)] d x .
$$

Then either

$$
\int_{a}^{b}(\Phi \circ f) g d x \leq \Phi\left(\int_{a}^{a+\lambda} f d x\right) \quad \text { or } \quad \int_{a}^{a+\lambda} g d x \geq 1
$$

Remark 1.1. In Theorems 1.3, 1.4, 1.6 and 3.2 the assumption that Φ is convex can be weakened: it is enough to assume that Φ is Wright-convex, where Wright-convexity means [4] that $\Phi\left(t_{2}\right)$ $\Phi\left(t_{1}\right) \leq \Phi\left(t_{2}+\delta\right)-\Phi\left(t_{1}+\delta\right)$ for all $t_{1}, t_{2}, \delta \in[0, \infty)$ such that $t_{1} \leq t_{2}$. It is known that each convex function is Wright-convex, but the converse is not true.

2. The Discrete Case

Proof. of Theorem 1.3

$$
\begin{aligned}
\sum_{i=1}^{n} \Phi\left(x_{i}\right) y_{i} & =\sum_{i=1}^{k} \Phi\left(x_{i}\right) y_{i}+\sum_{i=k+1}^{n} \Phi\left(x_{i}\right) y_{i} \\
& \leq \sum_{i=1}^{k} \Phi\left(x_{i}\right) y_{i}+\Phi\left(x_{k}\right) \sum_{i=k+1}^{n} y_{i} \\
& =\sum_{i=1}^{k} \Phi\left(x_{i}\right) y_{i}+\Phi\left(x_{k}\right)\left(\sum_{i=1}^{n} y_{i}-\sum_{i=1}^{k} y_{i}\right) \\
& =\sum_{i=1}^{k} y_{i}\left[\Phi\left(x_{i}\right)-\Phi\left(x_{k}\right)\right]+\Phi\left(x_{k}\right) \sum_{i=1}^{n} y_{i} .
\end{aligned}
$$

Since $\Phi(k) \geq \sum_{i=1}^{n} y_{i}$ and $\Phi\left(k x_{k}\right) \geq \Phi(k) \Phi\left(x_{k}\right)$, we obtain

$$
\sum_{i=1}^{n} \Phi\left(x_{i}\right) y_{i} \leq \sum_{i=1}^{k} y_{i}\left[\Phi\left(x_{i}\right)-\Phi\left(x_{k}\right)\right]+\Phi\left(k x_{k}\right) .
$$

Since Φ is Wright-convex,

$$
\begin{aligned}
\Phi\left(x_{i}\right)-\Phi\left(x_{k}\right) & \leq \Phi\left(x_{i}+(k-1) x_{k}\right)-\Phi\left(x_{k}+(k-1) x_{k}\right) \\
& =\Phi\left(x_{i}+(k-1) x_{k}\right)-\Phi\left(k x_{k}\right) \\
& \leq \Phi\left(\sum_{i=1}^{k} x_{i}\right)-\Phi\left(k x_{k}\right) .
\end{aligned}
$$

Therefore

$$
\sum_{i=1}^{n} \Phi\left(x_{i}\right) y_{i} \leq\left[\Phi\left(\sum_{i=1}^{k} x_{i}\right)-\Phi\left(k x_{k}\right)\right] \sum_{i=1}^{k} y_{i}+\Phi\left(k x_{k}\right)
$$

It follows that

$$
\begin{equation*}
\sum_{i=1}^{n} \Phi\left(x_{i}\right) y_{i}-\Phi\left(\sum_{i=1}^{k} x_{i}\right) \leq\left[\Phi\left(\sum_{i=1}^{k} x_{i}\right)-\Phi\left(k x_{k}\right)\right]\left(\sum_{i=1}^{k} y_{i}-1\right) \tag{2.1}
\end{equation*}
$$

since

$$
\sum_{i=1}^{k} x_{i} \geq k x_{k}, \quad \Phi\left(\sum_{i=1}^{k} x_{i}\right)-\Phi\left(k x_{k}\right) \geq 0
$$

Assume first that

$$
\Phi\left(\sum_{i=1}^{k} x_{i}\right)-\Phi\left(k x_{k}\right)=0 .
$$

Since Φ is strictly increasing we obtain that

$$
\sum_{i=1}^{k} x_{i}=k x_{k} \quad \text { and therefore } \quad x_{1}=\cdots=x_{k}
$$

Then

$$
\begin{aligned}
\Phi\left(\sum_{i=1}^{k} x_{i}\right)-\sum_{i=1}^{n} \Phi\left(x_{i}\right) y_{i} & \geq \Phi\left(k x_{k}\right)-\Phi\left(x_{k}\right) \sum_{i=1}^{n} y_{i} \\
& \geq \Phi(k) \Phi\left(x_{k}\right)-\Phi\left(x_{k}\right) \sum_{i=1}^{n} y_{i} \\
& =\Phi\left(x_{k}\right)\left(\Phi(k)-\sum_{i=1}^{n} y_{i}\right) \geq 0
\end{aligned}
$$

Thus, in the case $\Phi\left(\sum_{i=1}^{k} x_{i}\right)-\Phi\left(k x_{k}\right)=0$ we obtain that

$$
\sum_{i=1}^{n} \Phi\left(x_{i}\right) y_{i} \leq \Phi\left(\sum_{i=1}^{k} x_{i}\right)
$$

and we are done.
Assume now that $\Phi\left(\sum_{i=1}^{k} x_{i}\right)-\Phi\left(k x_{k}\right)>0$. Then equation 2.1) implies that either

$$
\sum_{i=1}^{n} \Phi\left(x_{i}\right) y_{i} \leq \Phi\left(\sum_{i=1}^{k} x_{i}\right) \quad \text { or } \quad \sum_{i=1}^{k} y_{i} \geq 1
$$

Proof. of Theorem 1.5 Take x_{i}^{β} instead of x_{i} and $\frac{\alpha-1}{\beta}$ instead of α in Theorem 1.4. Then we get that

$$
k \geq\left(\sum_{i=1}^{n} y_{i}\right)^{\frac{\beta}{\alpha-1}}
$$

implies that either

$$
\sum_{i=1}^{n} x_{i}^{\alpha-1} y_{i} \leq\left(\sum_{k=1}^{k} x_{i}^{\beta}\right)^{\frac{\alpha-1}{\beta}} \quad \text { or } \quad \sum_{i=1}^{k} y_{i} \geq 1
$$

Take $y_{i}=\frac{x_{i}}{B}$ for $i=1, \ldots, n$, then

$$
\sum_{i=1}^{n} y_{i}=\frac{1}{B} \sum_{i=1}^{n} x_{i} \leq \frac{A}{B}
$$

Since $k \geq\left(\frac{A}{B}\right)^{\frac{\beta}{\alpha-1}}$, we obtain that

$$
k \geq\left(\sum_{i=1}^{n} y_{i}\right)^{\frac{\beta}{\alpha-1}}
$$

This implies that either

$$
\begin{aligned}
\sum_{i=1}^{k} x_{i}^{\beta} & \geq\left(\sum_{i=1}^{n} x_{i}^{\alpha-1} y_{i}\right)^{\frac{\beta}{\alpha-1}} \\
& =\left(\frac{1}{B} \sum_{i=1}^{n} x_{i}^{\alpha}\right)^{\frac{\beta}{\alpha-1}} \\
& \geq\left(\frac{B^{\alpha}}{B}\right)^{\frac{\beta}{\alpha-1}}=B^{\beta}
\end{aligned}
$$

or

$$
\sum_{i=1}^{k} x_{i}=B \sum_{i=1}^{k} y_{i} \geq B
$$

However, if

$$
\sum_{i=1}^{k} x_{i} \geq B
$$

then, since $0 \leq \beta \leq 1$,

$$
\sum_{i=1}^{k} x_{i}^{\beta} \geq\left(\sum_{i=1}^{k} x_{i}\right)^{\beta} \geq B^{\beta}
$$

Therefore in both cases we have that

$$
\sum_{i=1}^{k} x_{i}^{\beta} \geq B^{\beta}
$$

Example 2.1. Let $\left(x_{i}\right)_{i=1}^{n}$ be a nonincreasing sequence in $[0, \infty)$ such that $\sum_{i=1}^{k} x_{i} \leq 400$ and $\sum_{i=1}^{k} x_{i}^{2} \geq 10,000$. Then $\sqrt{x_{1}}+\sqrt{x_{2}} \geq 10$. For a proof take $\alpha=2, \beta=\frac{1}{2}, A=400$, and $B=100$ in Theorem 1.5. The result is the best possible since if $n \geq 16$ and $x_{1}=\cdots=x_{16}=25$, $x_{17}=\cdots=x_{n}=0$, we have that $\sum_{i=1}^{n} x_{i}=400, \sum_{i=1}^{n} x_{i}^{2}=10,000$, and $\sqrt{x_{1}}+\sqrt{x_{2}}=10$.

3. The Case of Integrals over a Measure Space.

Let $X=(X, \mathcal{A}, \mu)$ be a measure space. From now on we will assume that $0<\mu(X)<\infty$.
Definition 3.1. [1]. Let $f \in L^{\circ}(X)$, where $L^{\circ}(X)$ means the set of all measurable functions on X. Let $(U, c) \in \mathcal{A} \times \mathbb{R}$. We say that the pair (U, c) is upper-separating for f iff

$$
\{x \in X: f(x)>c\} \stackrel{a}{\subseteq} U \stackrel{a}{\subseteq}\{x \in X: f(x) \geq c\}
$$

where $A \subseteq B$ means that A is almost contained in B, i.e. $\mu(A \backslash B)=0$. We say that a subset U of X is upper-separating for f if there exists $c \in \mathbb{R}$ such that (U, c) is an upper-separating pair for f.

It is possible to prove, [1], that if μ is continuous (for a definition of a continuous measure see, for example, [2]), then, given $f \in L^{\circ}(X)$, for any real number λ such that $0 \leq \lambda \leq \mu(X)$, there exists an upper-separating subset U for f such that $\mu(U)=\lambda$.
Lemma 3.1. [1]. Let $\Phi:[0, \infty) \rightarrow \mathbb{R}$ be convex and increasing. Let $c \in[0, \infty)$ and let $f \in L^{1}(X)$ have nonnegative values and satisfy the condition

$$
\begin{equation*}
0 \leq f-c \leq \int_{X}(f-c) d \mu \quad \text { a.e. } \tag{3.1}
\end{equation*}
$$

Then

$$
\Phi \circ f-\Phi(c) \leq \Phi\left(\int_{X} f d \mu\right)-\Phi(c \mu(X)) \quad \text { a.e. }
$$

Proof. The conclusion is trivial if $f=c$ a.e. Suppose that $\mu(\{x \in X: f(x)>c\})>0$. Then the left inequality (3.1) implies that

$$
\int_{X}(f-c) d \mu>0 .
$$

On the other hand, by integrating the right inequality (3.1), we obtain

$$
\int_{X}(f-c) d \mu \leq\left(\int_{X}(f-c) d \mu\right) \mu(X)
$$

which implies $\mu(X) \geq 1$. Since Φ is Wright-convex, we obtain that

$$
\begin{aligned}
\Phi \circ f-\Phi(c) & \leq \Phi(f+c(\mu(X)-1))-\Phi(c+c(\mu(X)-1)) \\
& =\Phi(f-c+c \mu(X))-\Phi(c \mu(X)) \quad \text { a.e. }
\end{aligned}
$$

Because Φ is increasing it follows by (3.1) that

$$
\begin{aligned}
\Phi \circ f-\Phi(c) & \leq \Phi\left(\int_{X}(f-c) d \mu+\int_{X} c d \mu\right)-\Phi(c \mu(X)) \\
& =\Phi\left(\int_{X} f d \mu\right)-\Phi(c \mu(X))
\end{aligned}
$$

Theorem 3.2. Let $\ell \geq 0$ be a real number. Let $\Phi:[\ell, \infty) \rightarrow \mathbb{R}$ be convex strictly increasing, and such that $\Phi(x y) \geq \Phi(x) \Phi(y)$ for all $x, y, x y \geq \ell$. Let $f, g \in L^{\prime}(X)$ be such that $f \geq \ell$ and $g \geq 0$ a.e.. Let λ be a real number and such that $\Phi(\lambda)=\int_{X} g d \mu$. Assume that $0 \leq \lambda \leq \mu(X)$,
and let (U, c) be an upper-separating pair for f such that $\mu(U)=\lambda$. Assume that $f-c \leq$ $\int_{U}(f-c) d \mu$ a.e. on U. Then either

$$
\int_{X}(\Phi \circ f) g d \mu \leq \Phi\left(\int_{U} f d \mu\right) \quad \text { or } \quad \int_{U} g d \mu \geq 1 .
$$

Proof.

$$
\begin{aligned}
\int_{X}(\Phi \circ f) g d \mu & =\int_{U}(\Phi \circ f) g d \mu+\int_{X \backslash U}(\Phi \circ f) g d \mu \\
& \leq \int_{U}(\Phi \circ f) g d \mu+\Phi(c) \int_{X \backslash U} g d \mu \\
& =\int_{U}(\Phi \circ f) g d \mu+\Phi(c)\left(\int_{X} g d \mu-\int_{U} g d \mu\right) \\
& =\int_{U} g(\Phi \circ f-\Phi(c)) d \mu+\Phi(c) \Phi(\lambda) .
\end{aligned}
$$

By Lemma 3.1

$$
\begin{aligned}
\int_{X}(\Phi \circ f) g d \mu & \leq\left[\Phi\left(\int_{U} f d \mu\right)-\Phi(c \lambda)\right] \int_{U} g d \mu+\Phi(c) \Phi(\lambda) \\
& \leq\left[\Phi\left(\int_{U} f d \mu\right)-\Phi(c \lambda)\right] \int_{U} g d \mu+\Phi(c \lambda)
\end{aligned}
$$

It follows that
(3.2) $\int_{X}(\Phi \circ f) g d \mu-\Phi\left(\int_{U} f d \mu\right) \leq\left[\Phi\left(\int_{U} f d \mu\right)-\Phi(c \lambda)\right]\left(\int_{U} g d \mu-1\right)$.

Since (U, c) is upper-separating for $f, f \geq c$ on U. Hence

$$
\int_{U} f d \mu \geq c \lambda \quad \text { and therefore } \quad \Phi\left(\int_{U} f d \mu\right)-\Phi(c \lambda) \geq 0 .
$$

Assume first that

$$
\Phi\left(\int_{U} f d \mu\right)-\Phi(c \lambda)=0, \quad \text { then } \quad \Phi\left(\int_{U} f d \mu\right)=\Phi\left(\int_{U} c d \mu\right)
$$

Since Φ is strictly increasing,

$$
\int_{U} f d \mu=\int_{U} c d \mu, \quad \text { hence } \quad \int_{U}(f-c) d \mu=0 \text {. }
$$

Since $f \geq c$ on U, we obtain that $f=c$ a.e. on U. Then

$$
\begin{aligned}
\Phi\left(\int_{U} f d \mu\right)-\int_{X}(\Phi \circ f) g d \mu & =\Phi\left(\int_{U} c d \mu\right)-\int_{X}(\Phi \circ f) g d \mu \\
& =\Phi(c \lambda)-\int_{X}(\Phi \circ f) g d \mu \\
& \geq \Phi(c) \Phi(\lambda)-\int_{X}(\Phi \circ f) g d \mu .
\end{aligned}
$$

Since (U, c) is upper-separating for f, we obtain that $f=c$ a.e. on U and $f \leq c$ a.e. on $X \backslash U$. Hence $f \leq c$ a.e. on X. It follows that

$$
\begin{aligned}
\Phi\left(\int_{U} f d \mu\right)-\int_{X}(\Phi \circ f) g d \mu & \geq \Phi(c) \Phi(\lambda)-\int_{X} \Phi(c) g d \mu \\
& =\Phi(c)\left[\Phi(\lambda)-\int_{X} g d \mu\right]=0
\end{aligned}
$$

This proves Theorem 1.6 in the case $\Phi\left(\int_{U} f d \mu\right)-\Phi(c \lambda)=0$.
Assume now that $\Phi\left(\int_{U} f d \mu\right)-\Phi(c \lambda)>0$, then equation 3.2 implies that either

$$
\int_{X}(\Phi \circ f) g d \mu-\Phi\left(\int_{U} f d \mu\right) \leq 0 \quad \text { or } \quad \int_{U} g d \mu \geq 1
$$

References

[1] J.-C. EVARD and H. GAUCHMAN, Steffensen type inequalities over general measure spaces, Analysis, 17 (1997), 301-322.
[2] P. HALMOS, Measure Theory, Springer-Verlag, New York, 1974.
[3] J.F. STEFFENSEN, On certain inequalities and methods of approximation, J. Inst. Actuaries, 51 (1919), 274-297.
[4] E.M. WRIGHT, An inequality for convex functions, Amer. Math. Monthly, 61 (1954), 620-622.

[^0]: ISSN (electronic): 1443-5756
 (c) 2000 Victoria University. All rights reserved.

 009-99

