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ABSTRACT. Higher order upper and lower solutions are used to establish the existence and local

uniqueness of solutions 2™ = f(t,y,y",...,y**=2), satisfying boundary conditions of
the formg; (y*'=2(0),y >~ (1)) =y =2(0) = 0, hs(y*=2(0),y* =2 (1)) —y*~2(0) =
0,1 << n.
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1. INTRODUCTION

In this paper we wish to consider the existence and local uniqueness to problems of the form

(1'1) y(Qn) = f(t7 y7 y”7 A 7y(2n_2))
subject to boundary conditions of the form
(1.2) gi(y(Qi—Z)(())’ y(Qi—z)(1>> _ y(Qi—Q)(O) — 07

hi(y®=2(0),y* =2 (1)) — y*=2(1) =0,

1 < i < n, whereg; andh; are continuous functions. These conditions generalize the usual
Lidstone boundary conditions, which have been of recent interest.[ See [1, 5].

The method of upper and lower solutions, sometimes referred to as differential inequalities,
is generally used to obtain the existence of solutions within specified bounds determined by the
upper and lower solutions. Important papers using these techniques include [2] 3, 4, 9, 11,
14,/15]. These techniques are also used in the more recent papers of Eloe and Henhderson [8]
and Thompson [17, 18]. This paper will consider problems described as fully nonlinear by
Thompson in[[1/7, 18].

ISSN (electronic): 1443-5756
(© 2000 Victoria University. All rights reserved.
021-99


http://jipam.vu.edu.au/
jehme@spelman.edu
hendej2@mail.auburn.edu
http://www.ams.org/msc/

2 EHME AND HENDERSON

The classic papers by Klassen[13] and Kelly![12] apply higher order upper and lower solu-
tions methods. In additior§edal[16], Eloe and Grimm[7], and Hong and Hul[10] have also
considered higher order methods involving upper and lower solutions.

In [6] Ehme, Eloe, and Henderson applied this metho@:t6¢ order problems in order to
obtain the existence of solutions to problems with nonlinear boundary conditions. This paper
extends those results to obtaimm@quesolution within the appropriate bounds.

2. PRELIMINARIES

In this section we make some useful definitions and prove some elementary, yet key, lemmas.
We will use the norm

= t O, ... 2?2t
||| tem[%{lfc()Hx()\, 222 ()|}

as our norm or?"~2[0, 1]. We begin with the following representation lemma which converts
our boundary value problerp (1.1, (IL.2) into an integral equation.

Lemma 2.1. Suppose:(t) is a solution to the integral equation
x(t) = Z gi(x(%_z)(O), x(gi_Q)(l))pi(t) + Z hi(x@"_z)(()), x(gi_Q)(l))qi(t)
=1 =1

+ /0 G(t,s)f(s,2(s),2"(s), ..., 2" (s))ds

whereG(t, s) is the Green’s function for>” = 0,22-2(0) = 2=2(1) = 0, 1< i < n.
Here the functiong; and; satisfy

P70 = 0507 (1) =0, g7 7(0) =0, g7 (1) =0y, 10 j <,

with p; and¢; solutions tar®>® = 0. Thenz is a solution to[(1.]1),[(1]2). Conversely, if x is a
solution to [(1.1),[(1]2), then x is a solution to the above integral equation.

Proof. Supposer is a solution to the integral equation above. Then using the boundary condi-
tions that the Green'’s function and theandg; satisfy att = 0, we obtain

272(0) = g;(2%2(0), x(Qj*Q)(l))pgzjd)(O).

Butp'* 2 (0) = 1 implies

9,7 (0),2¥(1)) = 27(0) = 0.
A similar argument at = 1 shows
hi(2®2(0),272(1)) =272 (1) = 0.

This showsr satisfies the boundary conditions (1.2). The right hand side of the integral equa-
tion is 2n times differentiable. Differentiating the integral equatibntimes yieldsr satisfies

€.D).
For the converse, supposesatisfies[(1[1)[(1]2). Then

j;; (m(t) - /01 G(t,s)f (s, z(s),... ,x(2”2)(5))d5> —0.

Thus X
x(t) — /0 G(t,s)f (s, z(s),... ,x(2"_2)(3))d8 = w(t)
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wherew(t) is a2n — 1 degree polynomial. The functiops, ¢;, 1 < ¢ < n, form a basis for the
2n — 1 degree polynomials, hence there exists constants. , a,, by, ..., b, such that

(2.1) z(t) — /0 G(t, s)f(s,x(s), . ,33(2"_2)(3))0[3 = Zajpj(t) + Z bigq;(t).

Using the properties of the Green'’s function, we obtainifef i < n,

n

i— 2i—2 21—2
2@2(0) = > ap P 0) + Y bigl P (0).
j=1

j=1
The properties of thg;, ¢; imply 2(=2(0) = a;. Butx satisfies[(1]2), hence
a; = gi(z*2(0), 272 (1)).
A similar argument shows
by = hi(##72(0), 2#72(1)).
Equation[(2.]1) implies satisfies the correct integral equation. O

It is well known that for0 < i < 2n — 2 the Green'’s function above satisfies
< /1 D'G(t, s)
PO |

for appropriate constant®/;, ;. These constants will play a role in the statement of our main
theorem.

The following key lemma will be indispensable in passing sign information from higher order
derivatives to lower order derivatives.

Lemma 2.2. If z(t) € C?[0, 1] then

ds| t € [0, 1]} < My

z(t) = z(0)(1 —¢t) + z(1)t + /01 H(t,s)x"(s)ds
whereH (¢, s) is the Green'’s function for
" =0, z(0) = z(1) = 0.
Proof. Let
uw(t) = z(0)(1 —¢) + (1)t + /1 H(t,s)z"(s)ds.
Thenu(0) = z(0),u(1) = z(1), andu”(t) = 2" (t). HOence by the uniqueness of solutions to
" =0, z(0) = z(1) =0,
it follows thatu(t) = z(t) for all t. O
Lemma 2.3. Suppose; andg; satisfy
P 0) = 8, o) =0, ¢ V(0) =0, V() =0y, 1<ij<n,
with p; andg; solutions tar®>™ = 0. Then||p;||,||¢]| < 1.

Proof. If i = 1theng,(t) = t and the result clearly holds. Assume- 1 and letG.(t, s)
denote the Green'’s function for th2i (— 2) order Lidstone problem

2(2i-2) _ 0, x(%)(()) =0, x(Ql)(l) =0, $(2i—4)(1) =1,
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4 EHME AND HENDERSON

where0) < k£ <7 —2,and0 <[ <i— 3. It can easily be verified that

oG,
otr (t,5)

<1 forallt,se[0,1].

Set

thenv?=2)(t) = t and this yields
v?=2(0)=0 and v (1) =1.

Obviously if & > 2i thenv®(0) = v®)(1) = 0. If k < 2i — 4, then the properties of the
Green'’s functiorG, imply v*)(0) = 0 v®) (1) = 0. By uniqueness, we segt) = ¢;(t). Thus
"G,

forl <k <2n-2,
1
(k)
"] < t
|g; ()|_/0 atr(’s)

Hencel|¢;|| < 1. Thep; are handled similarly. O
An upper solutiorfor (1.1), (1.2) is a functiog(t) € C*™]0, 1] satisfying
¢*" < f(tq.q",. . g ?)

s| ds < 1.

gi(q(2i_2)(0>7 q(2i—2)(1)) _ q(2i—2)(0) < 0, i=n—2k+2
hi(@®72(0),¢*2(1)) — ¢ 2(1) < 0, i=n—2k+2
gi(q(2i—2) (0), q(2i—2)(1)) _ q(2i—2)<0) > 0, i=n—2k+1
hi(q(zzez) (0), q(2i72)(1)) _ q(2i72)<1) > 0, i=n—2k+1

wherek > 1.
A lower solutionfor (1.1), [1.2) is a functiop(t) € C*™0, 1] satisfying

p® > ft,p,p", ..., ")

gi<p(2i—2)(0)7p(2i—2)(1)) . p(2i—2)(0) 2 07 i—=n— 2% + 9
hi(p@=2(0),p®=2(1)) —p* (1) > 0, i=n—2k+2
gi<p(2i—2)(0)7p(2i72)(1)) _ p(2¢72)(0) <0, i=n—2k+1
hi(p®=2(0), p®=2(1)) — p®=2(1) < 0, i=n—2k+1

wherek > 1.
The functionf(t, x4, ..., x,) is said to be.ip-¢p if there exist positive constantssuch that
forall (xy,...,x,) and(yi,...,y,) such that

(1) PP (1) < @iir, Ynoinr < (1)), 1<i <o,
it follows that
lf(t, e, ... ) — f(E, yl,...,yn\<2q]xz il
We note that iff is continuously differentiable on a swtable region, thfenill be Lip-gp.
A boundary conditiony; : R? — R is said to beéncreasing with respect to regiogp if
(_1>i+1p(2n—2i)(0) << (_1)i+1q(2n—2i)(0)’
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and
(_1)i+1p(2n—2i)(1) <y< (_1)i+1q(2n—2i)(1)
imply
(P 2(0), p*" (1)) < gi(w,y) < gi(¢®"27(0),¢*" (1)) for i odd,
and

gi(q®"72(0), ¢ (1)) < gilw, y) < gi(p®"*7(0), p" (1)) for i even.
It should be noted that this condition is trivially satisfiedifis an increasing function of both
of its arguments.
Throughout the rest of this paper, we shall assume our boundary conditions are Lipschitz.
That s,

9i (21, 22) — 9i(y1, y2)| < cuslrr — yn| + cailwa — o
and

|hi(z1, 02) — hi(y1, y2)| < csilzt — ya| + cailwa — v,
for some constants,, .

3. EXISTENCE AND LOCAL UNIQUENESS
In this section, we present our main theorem, which establishes the existence and local
uniqueness of a solution to (1.1]), ([1.2) that lies between an upper and lower solution.
Theorem 3.1. Assume
(1) f(t,x1,...,2,) : [0,1] x R* — Ris continuous;
(2) f(t,xq,...,z,)isincreasing in thex, o, variables fork > 1;
(3) f(t,x1,...,z,) is decreasing in the, o variables fork > 1.
Assume, in addition, there exisandp such that
(a) ¢ andp are upper and lower solutions to (1.1), (IL.2) respectively, so(thay*+!p"~2)(t)
< (=1)*1gCn=20(¢) for all t € [0, 1];

(b) f(tv'rla s 73311) iS Llp-qp7
(c) Eachg; andh; is Lipschitz and increasing with respect to regigm-

Then, if

maX{Z(Cli+CQi+CSi+C4i)+Mj+1ZC7;|j:0,...,n—2} <1,

=1 =1
there exists a unique solutiarit) to (1.1), (1.2) such that
(—1) 1 pRn2 (1) < (—1) @ 20) < (—1)1 g2 (1) for all ¢ € [0, 1]
andi=1,2,....n
Proof. For1 < j < n, define

(gm0 gy) — { ma(pCr D (0), mindyCr 20 (2), g (D)), i jis odd,
Q2n—2;\Y | max{¢® %) (t), min{y "2 (), p®=2)(¢)}}, if jis even,

wherey is a function defined o, 1]. If y(2"=2) is continuous, them,,, »; is continuous.
Moreover,

(_1)i+1p(2n72i) (t) < (_1)i+1042n—2i(y(2n72i) (Zf)) < (_1)i+1q(2n72i) (t) forallt € [07 1]
andi =1,2,...,n. DefineF; : [0,1] x C*"2[0,1] — R by
Fl (ta Y, y”a s ’y(QTL—Q)) = f(ta C\{()(y(t)), ceey a?n—Q(y(Qn_z) (t)))
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A tedious, but straight forward, computation shows eagh ,; is a non-expansive function

Fi(ty,y", oy ) = Fi(t 2, 2", 20 ) ] <> ely® () — 2P (1).
1=1
I is also continuous. Choosg > 0 such that
maX{Z(Cli + o + €3; + C45) +Mj+1zci|j =0,...,mn— 2} +co < 1.
i=1 i=1
Now defineF : [0,1] x C*"~2[0,1] — R by
( Pty oy ) 4 (P (t) — A1),
if y=2)(t) > ¢r=2(t)
B F (t y y// y(2n—2))
Ey(t,y,y", ... .y%"2) = 1\
2 (t, .y Y ) if p(2n- 2)()<y2n Q(t)<q2n 2)()
Fi(t,y, ",y ) = co(p® 2 () — yP2(1)),
{ if y(2n 2)(t) < p2n 2)( )

Then F; is continuous. By considering various cases, it can be showrFilestisfies

(2n—2)) . Fg(t, 2, Z”, .,Z<2n_2))}

n—1
<Y el -
i=1

‘FQ(tayayﬂv e Y
(2i—2)| + (Cn + CO)|y(2n—2) _ Z(2n_2)|.

This showsFs is also Lipschitz.
For 1< i < n, define the bounded functiogsandh; by

3i(y®2(0),y%2(1)) = gi(o2i2(y®2(0)), azia(y* (1))
ha(y®=2(0), y*=2(1)) = hi(ani-2(y*2(0)), anio(y* 2 (1))).

It can be shown that the fact that and i; are Lip-gp implies g; and h; are Lip-gp for the
— C*72(0, 1] by

constants:;, cy;, 3, cy;. DefineT : C?"~20, 1]

(0), 2 W)palt) + Y ha®
=1

- /o G(t,s)Fy(s,x(s),2"(s), ..., 2D (s))ds.

22 (1)gi(t)

=1

http://jipam.vu.edu.au/
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For0 < k < 2n — 2, andz,y € C*"2[0, 1], it follows that

|(Ta) B () = (T )P (1)]

Z gi(x(%ﬁ) (0)’ 2(2-2) (1))pz(k) (t) _ Z gi(y(zi—2) (O), y(2i—2)(1))pgk) (t)
=t i=1

<

+ 3 hi(®72(0), 272 (1))g™ (1) = Y ha(y®2(0),y# 2 (1)) (1)
=1 =1

_1 oG
| g 9 Fals,a(s). 2’ (5), ... a7 (s))
0

—Fy(s.y(s),y/(s), ..,y 2(s)) ds]

< D (eula®2(0) = y(PP(0)] + arla® D (1) =y ()] - Il
i=1

+ Y (eal2®72(0) = y(B2(0)] + eale® 2 (1) — y(*I(W)) - gl
=1

n—1

+ My () eille =yl + (e + co)llz = yll)
=1

<> (ille =yl + eallz —yl) + D (calle = yll + calle — yll)

i=1 i=1

n—1
+ M (Z cille =yl + (en + o)z — yH)

i=1

n n—1
(Z(Cu + o + ¢3; + Cai) + Moy (Z ¢+ (e + Co))) |z —yll.

i=1 i=1

The choice ot guarantees the above growth constant is strictly less than one. As this is true
for eachk, it follows 7' is a contraction and hence has a unique fixed paint

We now demonstratey;_»(z*=2(t)) = 22 (t), for 1 < i < n. Suppose there ex-
iststy such thatr®»=2) (¢,) > ¢"=2) (¢,) . Without loss of generality, assumé&® 2 (t,) —

q>"=2 (t,) is maximized. Ifty = 0 then Lemma 2]1 implies

W (2®772(0), 24772 (1))
n(qP"2(0), ¢*" (1))
a2 (¢%"2(0),¢®"2(1))
#=2(0)

x(2n—2) (0)

IA I
>

IA I
QO Q
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which is a contradiction. A similar argument appliegif= 1. Hencet, € (0,1). Thus

0> 2 (tg) — ¢* (to)
> Fy(to, x (to) 2@ (t0)) = flto,q (to) .- ... ¢*" " (to))
> Fl(toﬁ(to)w- 22 (1)) + cola®" ) (to) — ¢ (to) |

_f<t07Q<t0)7'--7q(2n 2 (t ))

> f(to, q(to),....q®" ) (to)) + colz®" ) (to) — ¢ (to) |
— f(to,q(to) ;- q®"? (to))

>0

where use was made of the increasing/decreasing propertiésaoid /. This contradiction
showsz®"=2)(t) < ¢?"=2)(¢) for all t. A similar argument establishe&" =2 (t) < z("=2)(¢).

Now suppose®"=4)(t,) < ¢*"(t,). The same argument using the boundary conditions can
be used to establish # 0, 1. Thus using Lemmga 2.2,

x(2n74) (t) o q(2n74) (t) _ (x(2n74) (0) o q(2n74)(0))(1 _ t) + (.%’(2”74)(1) _ q(2n74)<1))t

+/0 H(t, s)(x(Q”_Q)(s) — q(Z”_Q)(S))ds

forty € (0,1). Thusz®"=4(t) > ¢4 (¢) forall ¢, € [0,1]. A similar argument establishes
pr=(t) > 2= (¢) for all t, € [0,1]. Continuing in this manner, we obtain
( )z—l—lp(Qn 2i) ( ) < (_1)i+1x(2n—2i)t) < (_1)i+1q(2n—2i)(t) forallt {0’ 1]
andi = 1,2,...,n, which is equivalent tevy; »(x~2(t)) = 22 (¢), for 1 <i < n. But
this in turn implies
By(t,z, 2", .., a2® D) = f(t,z,2",. ..,
9i(z*72(0), 2*72 (1)) gi(azi2(x*79(0)), ag; o (x*72(1))),
hi(2®72(0),2%72(1)) = hi(azi—a(x72(0)), azi_a(x* 72 (1))
This impliesz is a solution to[(1]1)] (I]2) satisfying the appropriate bounds.
Suppose is another solution tad (1].1), (1.2) satisfying the appropriate bounds. Then, it must
be the case thaty; »(2?~2(t)) = 2%=2(t), for 1 < i < n. Lemma[2.1 coupled with the
definition of F3, g;, andh; imply Tz = z. ButT has a unique fixed point, henge= :. O

x(2n72))7
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