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Abstract

The following inequalities for power-exponential functions are proved
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where 0 < x < y < 1 or 1 < x < y.
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1. Introduction
It is well-known that, if0 < x < y < e, then

(1.1) xy < yx.

If e < x < y, then inequality (1.1) is reversed. If0 < x < e, then

(1.2) (e + x)e−x > (e− x)e+x.

For details about these inequalities, please refer to [1, p. 82] and [3, p. 365].
In [3, p. 365 and p. 768], an open problem was proposed: How do we com-

pare the value ofab with that of ba for 1 < a < e < b? Although it looks
like a simple problem, not much progress has been made on it. Recently, some
discussion was given in [1, p. 82] by Professor P.S. Bullen. Moreover, more
detailed discussion on this open problem was given in [4] by Mr. Z. Luo and
J.-J. Wen.

There is a rich literature on inequalities for power-exponential functions, see
[1, 2, 3].

In this paper, based on the revised Cauchy’s mean-value theorem in integral
form [7, 8], we will give some new inequalities for power-exponential functions,
and propose an open problem.
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2. Main Results
Theorem 2.1 (Main Theorem).For 0 < x < y < 1 or 1 < x < y, we have

yxy

xyx >
y

x
>

yx

xy
,(2.1) (y

x

)xy

>
yy

xx
.(2.2)

For 0 < x < 1 < y, the right hand side of (2.1) and (2.2) are reversed.
If 0 < x < 1 < y or 0 < x < y < e, then

1 <
y ln x

x ln y
· yx − 1

xy − 1
<

yx

xy
.(2.3)

If e < x < y, inequality (2.3) is reversed.

First Proof of Theorem2.1. We first prove the right hand side of inequality (2.1)

(2.4)
y

x
>

yx

xy
,

where0 < x < y < 1 or 1 < x < y. This inequality is equivalent to

ln y − ln x > x ln y − y ln x,

which can be written as

(2.5)
ln y
y
− ln x

x

ln y − ln x
<

1

xy
.
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Since d
dt

(
ln t
t

)
= 1−ln t

t2
, an integral form of inequality (2.4) follows from (2.5),

that is

(2.6)
∫ y

x

1− ln t

t2
dt <

1

xy

∫ y

x

1

t
dt.

The reciprocal change of variables in (2.6) gives

(2.7)
∫ 1/x

1/y

(1 + ln t) dt <
1

xy

∫ 1/x

1/y

1

t
dt.

Substitutingu = 1
x

andv = 1
y

in (2.7) yields the following result∫ u

v

(1 + ln t) dt < uv

∫ u

v

1

t
dt.(2.8)

In order to prove (2.4), it is sufficient to show (2.6) for 1 < x < y, and (2.8)
for 1 < v < u. Introduce the following

f(x, y) =

∫ y

x

1− ln t

t2
dt− 1

xy

∫ y

x

1

t
dt, y > x > 1;(2.9)

h(u, v) =

∫ u

v

(1 + ln t) dt− uv

∫ u

v

1

t
dt, u > v > 1.(2.10)
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After some straightforward calculations, we obtain the following results

∂f(x, y)

∂y
=

(∫ y

x

1

t
dt + x(1− ln y)− 1

)
1

xy2
≡ g(x, y)

xy2
,

∂g(x, y)

∂y
=

1− x

y
< 0,

f(x, x) = 0,

g(x, x) = x(1− ln x)− 1,

dg(x, x)

dx
= − ln x < 0,

g(1, 1) = 0,

∂h(u, v)

∂u
= 1 + ln u− v − v

∫ u

v

1

t
dt,

∂2h(u, v)

∂u2
=

1− v

u
< 0.

Sincedg(x,x)
dx

< 0, theng(x, x) decreases, thusg(x, x) < g(1, 1) = 0. From
∂g(x,y)

∂y
< 0, we have thatg(x, y) decreases iny, so g(x, y) < g(x, x) < 0.

Then ∂f(x,y)
∂y

< 0, f(x, y) decreases iny, thereforef(x, y) < f(x, x) = 0. This
completes the proof of inequality (2.6) for 1 < x < y.

Since∂2h(u,v)
∂u2 < 0, then∂h(u,v)

∂u
decreases inu, hence

∂h(u, v)

∂u
<

∂h(u, v)

∂u

∣∣∣∣
u=v

= 1− v + ln v < 0,
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soh(u, v) decreases inu, thenh(u, v) < h(v, v) = 0. This completes the proof
of (2.8) for u > v > 1.

Next, we prove the left hand side of inequality (2.1)

yxy

xyx >
y

x
,(2.11)

where0 < x < y < 1 or 1 < x < y. We can rewrite (2.11) in the form

xy ln y − yx ln x > ln y − ln x.(2.12)

This is equivalent to

xy − 1

yx − 1
>

ln x

ln y
.(2.13)

Sincexy−1 = (ln x)
∫ y

0
xt dt, yx−1 = (ln y)

∫ x

0
yt dt, then inequality (2.13)

can be rewritten in the integral form∫ y

0
xt dt∫ x

0
yt dt

> 1.(2.14)

Making the change of variables,t = ys, gives∫ y

0

xt dt = y

∫ 1

0

(xy)s ds,(2.15) ∫ x

0

yt dt = x

∫ 1

0

(yx)s ds.(2.16)
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Therefore, the equivalent form of (2.14) is∫ 1

0
(yx)s ds∫ 1

0
(xy)s ds

<
y

x
.(2.17)

Hence, it is sufficient to show that inequality (2.17) is valid for 0 < x < y < 1
or 1 < x < y.

From the revised Cauchy’s mean value theoren in integral form in [7, 8], we
get ∫ 1

0
(yx)s ds∫ 1

0
(xy)s ds

=

(
yx

xy

)θ

, θ ∈ (0, 1).(2.18)

Using inequality (2.4) leads to(
yx

xy

)θ

<
(y

x

)θ

<
y

x
.

Thus the inequality (2.17) is proved and the proof of (2.11) is complete.
It follows from (2.4) and (2.11) that the inequality (2.1) holds.
It is clear that inequality (2.2) is equivalent to

(2.19)
y

x
>

(y − 1) ln x

(x− 1) ln y
.

It is evident that

(y − 1) ln x

(x− 1) ln y
=

ln xy−1

ln yx−1
=

ln xy − ln x

ln yx − ln y
=

∫ 1

0
ys ds∫ 1

0
xs ds

=
(y

x

)θ

<
y

x
, θ ∈ (0, 1).
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This leads to the inequality (2.2).
Finally, inequality (2.3) can easily be derived from (1.1) and (2.18). Making

similar arguments as above enables us to establish the reversed inequalities.

Second Proof of Inequalities (2.2) and (2.4). It is easy to see that

t > 1 + ln t, t > 0, t 6= 1.

Therefore (
t ln t

t− 1

)′

=
t− 1− ln t

(t− 1)2
> 0,

and the functiont ln t
t−1

is increasing. This gives

y ln y

y − 1
>

x ln x

x− 1
, 1 < x < y or 0 < x < y < 1.

This can be written as

xy(ln y − ln x) > y ln y − x ln x.

Thus, the desired inequality (2.2) follows.
Sincet < 1 + ln t for t 6= 1 andt > 0, we have(

ln t

t− 1

)′

=
t− 1− t ln t

t(t− 1)2
< 0,

that is, the functionln t
t−1

is decreasing, thus

ln y

y − 1
<

ln x

x− 1
,

ln y − ln x > x ln y − y ln x
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hold for0 < x < y < 1 or 1 < x < y. This yields inequality (2.4).

Remark2.1. It has been pointed out by Professor P.S. Bullen that inequality
(2.4), the right hand side of inequality (2.1), is equivalent to inequality (2.2),
this can be seen only if we replacex, y by 1

x
, 1

y
respectively.
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3. Open Problem
Adopting the following notations:

f1(x, y) = x,(3.1)

fk+1(x, y) = xfk(y,x),(3.2)

Fk(x, y) =
fk(y, x)

fk(x, y)
(3.3)

for 0 < x < y < 1 or 1 < x < y, andk > 1.
The following inequalities need to be proved or disproved

F2k−1(x, y) > F2k(x, y),(3.4)

F2k+4(x, y) > F2k+1(x, y).(3.5)

That is,

(3.6) F2(x, y) < F1(x, y) < F4(x, y) < F3(x, y) < F6(x, y) < · · · .
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