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1. I NTRODUCTION

Let f : X → R be a convex mapping defined on the linear spaceX andxi ∈ X, pi ≥ 0
(i = 1, ...,m) with Pm :=

∑m
i=1 pi > 0.

The following inequality is well known in the literature as Jensen’s inequality

(1.1) f

(
1

Pm

m∑
i=1

pixi

)
≤ 1

Pm

m∑
i=1

pif(xi).

There are many well known inequalities which are particular cases of Jensen’s inequality, such
as the weighted arithmetic mean-geometric mean-harmonic mean inequality, the Ky-Fan in-
equality, the Hölder inequality, etc. For a comprehensive list of recent results on Jensen’s in-
equality, see the book [25] and the papers [9]-[15] where further references are given.

In 1994, Dragomir and Ionescu [18] proved the following inequality which counterparts (1.1)
for real mappings of a real variable.
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2 I. BUDIMIR , S.S. DRAGOMIR, AND J. PEČARIĆ

Theorem 1.1. Let f : I ⊆ R → R be a differentiable convex mapping on
◦
I (

◦
I is the interior

of I), xi ∈
◦
I, pi ≥ 0 (i = 1, ..., n) and

∑n
i=1 pi = 1. Then we have the inequality

0 ≤
n∑

i=1

pif(xi)− f

(
n∑

i=1

pixi

)
(1.2)

≤
n∑

i=1

pixif
′(xi)−

n∑
i=1

pixi

n∑
i=1

pif
′(xi),

wheref ′ is the derivative off on
◦
I.

Using this result and the discrete version of the Grüss inequality for weighted sums, S.S.
Dragomir obtained the following simple counterpart of Jensen’s inequality [5]:

Theorem 1.2.With the above assumptions forf and ifm, M ∈
◦
I andm ≤ xi ≤ M (i = 1, ..., n),

then we have

(1.3) 0 ≤
n∑

i=1

pif(xi)− f

(
n∑

i=1

pixi

)
≤ 1

4
(M −m) (f ′ (M)− f ′ (m)) .

This was subsequently applied in Information Theory for Shannon’s and Rényi’s entropy.
In this paper we point out some other counterparts of Jensen’s inequality that are similar to

(1.3), some of which are better than the above inequalities.

2. SOME NEW COUNTERPARTS FOR JENSEN’ S DISCRETE I NEQUALITY

The following result holds.

Theorem 2.1. Let f : I ⊆ R → R be a differentiable convex mapping on
◦
I andxi ∈

◦
I with

x1 ≤ x2 ≤ · · · ≤ xn andpi ≥ 0 (i = 1, ..., n) with
∑n

i=1 pi = 1. Then we have

0 ≤
n∑

i=1

pif(xi)− f

(
n∑

i=1

pixi

)
(2.1)

≤ (xn − x1) (f ′(xn)− f ′(x1)) max
1≤k≤n−1

{
Pk P̄k+1

}
≤ 1

4
(xn − x1) (f ′(xn)− f ′(x1)) ,

wherePk :=
∑k

i=1 pi andP̄k+1 := 1− Pk.

Proof. We use the following Grüss type inequality due to J. E. Pečaríc (see for example [25]):

(2.2)

∣∣∣∣∣ 1

Qn

n∑
i=1

qiaibi −
1

Qn

n∑
i=1

qiai ·
1

Qn

n∑
i=1

qibi

∣∣∣∣∣ ≤ |an − a1| |bn − b1| max
1≤k≤n−1

[
Qk Q̄k+1

Q2
n

]
,

provided thata, b are two monotonicn−tuples,q is a positive one,Qn :=
∑n

i=1 qi > 0, Qk :=∑k
i=1 qi andQ̄k+1 = Qn −Qk+1.

If in (2.2) we chooseqi = pi, ai = xi, bi = f ′(xi) (andai, bi will be monotonic nondecreasing),
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REVERSERESULTS FORJENSEN’ S DISCRETEINEQUALITY 3

then we may state that

(2.3)
n∑

i=1

pixif
′(xi)−

n∑
i=1

pixi

n∑
i=1

pif
′(xi)

≤ (xn − x1) (f ′(xn)− f ′(x1)) max
1≤k≤n−1

{
Pk P̄k+1

}
.

Now, using (1.2) and (2.3) we obtain the first inequality in (2.1).
For the second inequality, we observe that

Pk P̄k+1 = Pk (1− Pk) ≤
1

4
(Pk + 1− Pk)

2 =
1

4

for all k ∈ {1, ..., n− 1} and then

max
1≤k≤n−1

{
Pk P̄k+1

}
≤ 1

4
,

which proves the last part of (2.1). �

Remark 2.2. It is obvious that the inequality (2.1) is an improvement of (1.3) if we assume that
the order forxi is as in the statement of Theorem 2.1.

Another result is embodied in the following theorem.

Theorem 2.3.Letf : I ⊆ R → R be a differentiable convex mapping on
◦
I andm,M ∈

◦
I with

m ≤ xi ≤ M (i = 1, ..., n) andpi ≥ 0 (i = 1, ..., n) with
∑n

i=1 pi = 1. If S is a subset of the
set{1, ..., n} minimizing the expression

(2.4)

∣∣∣∣∣∑
i∈S

pi −
1

2

∣∣∣∣∣ ,
then we have the inequality

0 ≤
n∑

i=1

pif(xi)− f

(
n∑

i=1

pixi

)
(2.5)

≤ Q (M −m) (f ′(M)− f ′(m)) ≤ 1

4
(M −m) (f ′(M)− f ′(m)) ,

where

Q =
∑
i∈S

pi

(
1−

∑
i∈S

pi

)
.

Proof. We use the following Grüss type inequality due the Andrica and Badea [2]:

(2.6)

∣∣∣∣∣Qn

n∑
i=1

qiaibi −
n∑

i=1

qiai ·
n∑

i=1

qibi

∣∣∣∣∣ ≤ (M1 −m1) (M2 −m2)
∑
i∈S

qi

(
Qn −

∑
i∈S

qi

)
provided thatm1 ≤ ai ≤ M1, m2 ≤ bi ≤ M2 for i = 1, ..., n, andS is the subset of{1, ..., n}
which minimises the expression ∣∣∣∣∣∑

i∈S

qi −
1

2
Qn

∣∣∣∣∣ .
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4 I. BUDIMIR , S.S. DRAGOMIR, AND J. PEČARIĆ

Choosingqi = pi, ai = xi, bi = f ′(xi), then we may state that

0 ≤
n∑

i=1

pixif
′(xi)−

n∑
i=1

pixi

n∑
i=1

pif
′(xi)(2.7)

≤ (M −m) (f ′(M)− f ′(m))
∑
i∈S

pi

(
1−

∑
i∈S

pi

)
.

Now, using (1.2) and (2.7), we obtain the first inequality in (2.5). For the last part, we observe
that

Q ≤ 1

4

(∑
i∈S

pi + 1−
∑
i∈S

pi

)2

=
1

4

and the theorem is thus proved. �

The following inequality is well known in the literature as the arithmetic mean-geometric
mean-harmonic-mean inequality:

(2.8) An (p, x) ≥ Gn (p, x) ≥ Hn (p, x) ,

where

An (p, x) : =
n∑

i=1

pixi - the arithmetic mean,

Gn (p, x) : =
n∏

i=1

xpi

i - the geometric mean,

Hn (p, x) : =
1

n∑
i=1

pi

xi

- the harmonic mean,

and
∑n

i=1 pi = 1
(
pi ≥ 0, i = 1, n

)
.

Using the above two theorems, we are able to point out the following reverse of the AGH -
inequality.

Proposition 2.4. Letxi > 0 (i = 1, ..., n) andpi ≥ 0 with
∑n

i=1 pi = 1.

(i) If x1 ≤ x2 ≤ · · · ≤ xn−1 ≤ xn, then we have

1 ≤ An (p, x)

Gn (p, x)
(2.9)

≤ exp

[
(xn − x1)

2

x1xn

max
1≤k≤n−1

{
PkP̄k+1

}]

≤ exp

[
1

4
· (xn − x1)

2

x1xn

]
.

(ii) If the setS ⊆ {1, ..., n} minimizes the expression (2.4), and0 < m ≤ xi ≤ M < ∞
(i = 1, ..., n), then

(2.10) 1 ≤ An (p, x)

Gn (p, x)
≤ exp

[
Q · (M −m)2

mM

]
≤ exp

[
1

4
· (M −m)2

mM

]
.

The proof goes by the inequalities (2.1) and (2.5), choosingf(x) = − ln x. A similar result
can be stated forGn andHn.
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REVERSERESULTS FORJENSEN’ S DISCRETEINEQUALITY 5

Proposition 2.5. Letp ≥ 1 andxi > 0, pi ≥ 0 (i = 1, ..., n) with
∑n

i=1 pi = 1.

(i) If x1 ≤ x2 ≤ · · · ≤ xn−1 ≤ xn, then we have

0 ≤
n∑

i=1

pix
p
i −

(
n∑

i=1

pixi

)p

(2.11)

≤ p (xn − x1)
(
xp−1

n − xp−1
1

)
max

1≤k≤n−1

{
PkP̄k+1

}
≤ p

4
(xn − x1)

(
xp−1

n − xp−1
1

)
.

(ii) If the setS ⊆ {1, ..., n} minimizes the expression (2.4), and0 < m ≤ xi ≤ M < ∞
(i = 1, ..., n), then

0 ≤
n∑

i=1

pix
p
i −

(
n∑

i=1

pixi

)p

(2.12)

≤ pQ (M −m)
(
Mp−1 −mp−1

)
≤ 1

4
p (M −m)

(
Mp−1 −mp−1

)
.

Remark 2.6. The above results are improvements of the corresponding inequalities obtained in
[5].

Remark 2.7. Similar inequalities can be stated if we choose other convex functions such as:
f(x) = x ln x, x > 0 or f(x) = exp (x), x ∈ R. We omit the details.

3. A CONVERSE I NEQUALITY FOR CONVEX M APPINGS DEFINED ON Rn

In 1996, Dragomir and Goh [15] proved the following converse of Jensen’s inequality for
convex mappings onRn.

Theorem 3.1.Letf : Rn → R be a differentiable convex mapping onRn and

(∇f) (x) :=

(
∂f (x)

∂x1
, ...,

∂f(x)

∂xn

)
,

the vector of the partial derivatives,x = (x1, ..., xn) ∈ Rn.
If xi ∈ Rm (i = 1, ...,m), pi ≥ 0, i = 1, ...,m, with Pm :=

∑m
i=1 pi > 0, then

0 ≤ 1

Pm

m∑
i=1

pif(xi)− f

(
1

Pm

m∑
i=1

pixi

)
(3.1)

≤ 1

Pm

m∑
i=1

pi 〈∇f(xi), xi〉 −

〈
1

Pm

m∑
i=1

pi∇f(xi),
1

Pm

m∑
i=1

pixi

〉
.

The result was applied to different problems in Information Theory by providing different coun-
terpart inequalities for Shannon’s entropy, conditional entropy, mutual information, conditional
mutual information, etc.

For generalizations of (3.1) in Normed Spaces and other applications in Information Theory,
see Matíc’s Ph.D dissertation [23].

Recently, Dragomir [4] provided an upper bound for Jensen’s difference

(3.2) ∆ (f, p, x) :=
1

Pm

m∑
i=1

pif(xi)− f

(
1

Pm

m∑
i=1

pixi

)
,
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6 I. BUDIMIR , S.S. DRAGOMIR, AND J. PEČARIĆ

which, even though it is not as sharp as (3.1), provides a simpler way, and for applications, a
better way, of estimating the Jensen’s differences∆. His result is embodied in the following
theorem.

Theorem 3.2. Let f : Rn → R be a differentiable convex mapping andxi ∈ Rn, i = 1, ...,m.
Suppose that there exists the vectorsφ, Φ ∈ Rn such that

(3.3) φ ≤ xi ≤ Φ (the order is considered on the co-ordinates)

andm, M ∈ Rn are such that

(3.4) m ≤ ∇f(xi) ≤ M

for all i ∈ {1, ...,m}. Then for allpi ≥ 0 (i = 1, ...,m) with Pm > 0, we have the inequality

(3.5) 0 ≤ 1

Pm

m∑
i=1

pif(xi)− f

(
1

Pm

m∑
i=1

pixi

)
≤ 1

4
‖Φ− φ‖ ‖M −m‖ ,

where‖·‖ is the usual Euclidean norm onRn.

He applied this inequality to obtain different upper bounds for Shannon’s and Rényi’s en-
tropies.

In this section, we point out another counterpart for Jensen’s difference, assuming that the
∇−operator is of Hölder’s type, as follows.

Theorem 3.3. Let f : Rn → R be a differentiable convex mapping andxi ∈ Rn, pi ≥ 0
(i = 1, ...,m) withPm > 0. Suppose that the∇−operator satisfies a condition ofr−H−Hölder
type, i.e.,

(3.6) ‖∇f(x)−∇f(y)‖ ≤ H ‖x− y‖r , for all x, y ∈ Rn,

whereH > 0, r ∈ (0, 1] and‖·‖ is the Euclidean norm.
Then we have the inequality:

0 ≤ 1

Pm

m∑
i=1

pif(xi)− f

(
1

Pm

m∑
i=1

pixi

)
(3.7)

≤ H

P 2
m

∑
1≤i<j≤m

pipj ‖xi − xj‖r+1 .

Proof. We recall Korkine’s identity,

1

Pm

m∑
i=1

pi 〈yi, xi〉−

〈
1

Pm

m∑
i=1

piyi,
1

Pm

m∑
i=1

pixi

〉
=

1

2P 2
m

n∑
i,j=1

pipj 〈yi − yj, xi − xj〉 , x, y ∈ Rn,

and simply write

1

Pm

m∑
i=1

pi 〈∇f(xi), xi〉 −

〈
1

Pm

m∑
i=1

pi∇f(xi),
1

Pm

m∑
i=1

pixi

〉

=
1

2P 2
m

n∑
i,j=1

pipj 〈∇f(xi)−∇f(xj), xi − xj〉 .
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Using (3.1) and the properties of the modulus, we have

0 ≤ 1

Pm

m∑
i=1

pif(xi)− f

(
1

Pm

m∑
i=1

pixi

)

≤ 1

2P 2
m

m∑
i,j=1

pipj |〈∇f(xi)−∇f(xj), xi − xj〉|

≤ 1

2P 2
m

m∑
i,j=1

pipj ‖∇f(xi)−∇f(xj)‖ ‖xi − xj‖

≤ H

P 2
m

m∑
i,j=1

pipj ‖xi − xj‖r+1

and the inequality (3.7) is proved. �

Corollary 3.4. With the assumptions of Theorem 3.3 and if∆ = max1≤i<j≤m ‖xi − xj‖, then
we have the inequality

(3.8) 0 ≤ 1

Pm

m∑
i=1

pif(xi)− f

(
1

Pm

m∑
i=1

pixi

)
≤ H∆r+1

2P 2
m

(
1−

m∑
i=1

p2
i

)
.

Proof. Indeed, as ∑
1≤i<j≤m

pipj ‖xi − xj‖r+1 ≤ ∆r+1
∑

1≤i<j≤m

pipj.

However, ∑
1≤i<j≤m

pipj =
1

2

(
m∑

i,j=1

pipj −
∑
i=j

pipj

)
=

1

2

(
1−

m∑
i=1

p2
i

)
,

and the inequality (3.8) is proved. �

The case of Lipschitzian mappings is embodied in the following corollary.

Corollary 3.5. Let f : Rn → R be a differentiable convex mapping andxi ∈ Rn, pi ≥ 0
(i = 1, ..., n) with Pm > 0. Suppose that the∇−operator is Lipschitzian with the constant
L > 0, i.e.,

(3.9) ‖∇f(x)−∇f(y)‖ ≤ L ‖x− y‖ , for all x, y ∈ Rn,

where‖·‖ is the Euclidean norm. Then

0 ≤ 1

Pm

m∑
i=1

pif(xi)− f

(
1

Pm

m∑
i=1

pixi

)
(3.10)

≤ L

 1

Pm

m∑
i=1

pi ‖xi‖2 −

∥∥∥∥∥ 1

Pm

m∑
i=1

pixi

∥∥∥∥∥
2
 .

Proof. The argument is obvious by Theorem 3.3, taking into account that forr = 1,∑
1≤i<j≤m

pipj ‖xi − xj‖2 = Pm

m∑
i=1

pi ‖xi‖2 −

∥∥∥∥∥
m∑

i=1

pixi

∥∥∥∥∥
2

,

and‖·‖ is the Euclidean norm. �
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8 I. BUDIMIR , S.S. DRAGOMIR, AND J. PEČARIĆ

Moreover, if we assume more about the vectors(xi)i=1,n, we can obtain a simpler result that
is similar to the one in [4].

Corollary 3.6. Assume thatf is as in Corollary 3.5. If

(3.11) φ ≤ xi ≤ Φ (on the co-ordinates),φ, Φ ∈ Rn (i = 1, ..,m) ,

then we have the inequality

0 ≤ 1

Pm

m∑
i=1

pif(xi)− f

(
1

Pm

m∑
i=1

pixi

)
(3.12)

≤ 1

4
· L · ‖Φ− φ‖2 .

Proof. It follows by the fact that inRn, we have the following Grüss type inequality (as proved
in [4])

(3.13)
1

Pm

m∑
i=1

pi ‖xi‖2 −

∥∥∥∥∥ 1

Pm

m∑
i=1

pixi

∥∥∥∥∥
2

≤ 1

4
‖Φ− φ‖2 ,

provided that (3.11) holds. �

Remark 3.7. For some Grüss type inequalities in Inner Product Spaces, see [7].

4. SOME RELATED RESULTS

Start with the following definitions from [3].

Definition 4.1. Let −∞ < a < b < ∞. ThenCM [a, b] denotes the set of all functions with
domain[a, b] that are continuous and strictly monotonic there.

Definition 4.2. Let −∞ < a < b < ∞, and letf ∈ CM [a, b]. Then, for each positive
integern, eachn−tuplex = (x1, ..., xn) , wherea ≤ xj ≤ b (j = 1, 2, ..., n), and eachn-tuple
p = (p1, p2, ..., pn) , wherepj > 0 (j = 1, 2, ..., n) and

∑n
j=1 pj = 1, let Mf (x, y) denote the

(weighted) mean

f−1

{
n∑

j=1

pjf (xj)

}
.

We may state now the following result.

Theorem 4.1.LetS be the subset of{1, ..., n}which minimizes the expression
∣∣∑

i∈S pi − 1/2
∣∣.

If f, g ∈ CM [a, b], then

sup
x
{|Mf (x, p)−Mg (x, p)|} ≤ Q ·

∥∥∥(f−1
)′∥∥∥

∞
·
∥∥∥(f ◦ g−1

)′′∥∥∥
∞
· |g(b)− g(a)|2 ,

provided that the right-hand side of the inequality is finite, where, as above,

Q =

(∑
i∈S

pi

)(
1−

∑
i∈S

pi

)
,

and‖·‖∞ is the usual sup-norm.

Proof. Let, as in [3],h = f ◦ g−1, n > 1,

x = (x1, x2, ..., xn) andp = (p1, p2, ..., pn)

J. Inequal. Pure and Appl. Math., 2(1) Art. 5, 2001 http://jipam.vu.edu.au/
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be as in the Definition 4.2, andyj = g (xj) (j = 1, 2, ..., n). By the mean-value theorem, for
someα in the open interval joiningf(a) to f(b), we have

Mf (x, p)−Mg(x, p) = f−1

{
n∑

j=1

pjf(xj)

}
− f−1

[
h

{
n∑

j=1

pjg(xj)

}]

=
(
f−1
)′

(α)

[
n∑

j=1

pjf(xj)− h

{
n∑

j=1

pjg(xj)

}]

=
(
f−1
)′

(α)

[
n∑

j=1

pjh(yj)− h

{
n∑

j=1

pjyj

}]

=
(
f−1
)′

(α)

[
n∑

j=1

pj

{
h(yj)− h

(
n∑

k=1

pkyk

)}]
.

Using the mean-value theorem a second time, we conclude that there exists pointsz1, z2, ..., zn

in the open interval joiningg(a) to g(b), such that

Mf (x, p)−Mg (x, p) =
(
f−1
)′

(α)
[
p1 {(1− p1) y1 − p2y2 − · · · − pnyn}h′(z1)

+p2 {−p1y1 + (1− p2) y2 − · · · − pnyn}h′(z2)

+ · · ·
+pn {−p1y1 − p2y2 − · · ·+ (1− pn) yn}h′(zn)

]
=

(
f−1
)′

(α)
[
p1 {p2 (y1 − y2) + · · ·+ pn (y1 − yn)}h′(z1)

+p2 {p1 (y2 − y1) + · · ·+ pn (y2 − yn)}h′(z2)

+ · · ·
+pn {p1 (yn − y1) + · · ·+ pn−1 (yn − yn−1)}h′(zn)

]
=

(
f−1
)′

(α)
∑

1≤i<j≤n

pipj (yi − yj) {h′(zi)− h′(zj)} .

Using the mean value theorem a third time, we conclude that there exists pointsωij (1 ≤ i < j ≤ n)
in the open interval joiningg(a) to g(b), such that

(
f−1
)′

(α)
∑

1≤i<j≤n

pipj (yi − yj) {h′(zi)− h′(zj)}

=
(
f−1
)′

(α)
∑

1≤i<j≤n

pipj (yi − yj) (zi − zj) h′′(ωij).

Consequently,

|Mf (x, p)−Mg (x, p)| ≤
∣∣∣(f−1

)′
(α)
∣∣∣ ∑

1≤i<j≤n

pipj |yi − yj| · |zi − zj| · |h′′(ωij)|

≤
∥∥∥(f−1

)′∥∥∥
∞
· ‖h′′‖∞ ·

∑
1≤i<j≤n

pipj |yi − yj| · |zi − zj|
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≤ (by the Cauchy-Buniakowski-Schwartz inequality)

≤
∥∥∥(f−1

)′∥∥∥
∞
·
∥∥∥(f ◦ g−1

)′′∥∥∥
∞
·
√ ∑

1≤i<j≤n

pipj |yi − yj|2 ·
√ ∑

1≤i<j≤n

pipj |zi − zj|2

≤ (by the Andrica and Badea result)

≤
∥∥∥(f−1

)′∥∥∥
∞
·
∥∥∥(f ◦ g−1

)′′∥∥∥
∞
·

√√√√(∑
i∈S

pi

)(
1−

∑
i∈S

pi

)
|g(b)− g(a)|2

·

√√√√(∑
i∈S

pi

)(
1−

∑
i∈S

pi

)
|g(b)− g(a)|2

= Q
∥∥∥(f−1

)′∥∥∥
∞
·
∥∥∥(f ◦ g−1

)′′∥∥∥
∞
· |g(b)− g(a)|2 ,

and the theorem is proved. �

Corollary 4.2. If f, g ∈ CM [a, b], then

sup
x
{|Mf (x, p)−Mg (x, p)|} ≤ Q ·

∥∥∥∥ 1

f ′

∥∥∥∥
∞
·
∥∥∥∥ 1

g′

(
f ′

g′

)′∥∥∥∥
∞
· |g(b)− g(a)|2 ,

provided that the right hand side of the inequality exists.

Proof. This follows at once from the fact that(
f−1
)′

=
1

f ′ ◦ f−1

and (
f ◦ g−1

)′′
=

(g′ ◦ g−1) (f ′′ ◦ g−1)− (f ′ ◦ g−1) (g′′ ◦ g−1)

(g′ ◦ g−1)3 =

[
1

g′

(
f ′

g′

)′]
◦ g−1.

�

Remark 4.3. This establishes Theorem 4.3 from [3] and replaces the multiplicative factor1
4

by Q. In Corollary 4.2, we also replaced the multiplicative factor1
4

by Q.

5. APPLICATIONS IN I NFORMATION THEORY

We give some new applications for Shannon’s entropy

Hb (X) :=
r∑

i=1

pi logb

1

pi

,

whereX is a random variable with the probability distribution(pi)i=1,r.

Theorem 5.1. LetX be as above and assume thatp1 ≥ p2 ≥ · · · ≥ pr or p1 ≤ p2 ≤ · · · ≤ pr.
Then we have the inequality

(5.1) 0 ≤ logb r −Hb (X) ≤ (p1 − pr)
2

p1pr

max
1≤k≤r

{
PkP̄k+1

}
.

Proof. We choose in Theorem 2.1,f(x) = − logb x, x > 0, xi = 1
pi

(i = 1, ..., r). Then we
havex1 ≤ x2 ≤ · · · ≤ xr and by (2.1) we obtain

0 ≤ logb r −Hb (X) ≤
(

1

pr

− 1

p1

)(
1

− 1
pr

+
1
1
p1

)
max
1≤k≤r

{
PkP̄k+1

}
,
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which is equivalent to (5.1). The same inequality is obtained ifp1 ≤ p2 ≤ · · · ≤ pr. �

Theorem 5.2.LetX be as above and suppose that

pM : = max {pi|i = 1, ..., r} ,

pm : = min {pi|i = 1, ..., r} .

If S is a subset of the set{1, ..., r}minimizing the expression
∣∣∑

i∈S pi − 1/2
∣∣, then we have the

estimation

(5.2) 0 ≤ logb r −Hb (X) ≤ Q · (pM − pm)2

ln b · pMpm

.

Proof. We shall choose in Theorem 2.3,

f(x) = − logb x, x > 0, xi =
1

pi

(
i = 1, r

)
.

Thenm = 1
pM

, M = 1
pm

, f ′(x) = − 1
x ln b

and the inequality (2.3) becomes:

0 ≤ logb r −
r∑

i=1

pi logb

1

pi

≤ Q
1

ln b

(
1

pm

− 1

pM

)(
− 1

1
pm

+
1
1

pM

)

= Q · 1

ln b
· (pM − pm)2

pMpm

,

hence the estimation (5.2) is proved. �

Consider the Shannon entropy

(5.3) H (X) := He (X) =
r∑

i=1

pi ln
1

pi

and Rényi’s entropy of orderα (α ∈ (0,∞) \ {1})

(5.4) H[α] (X) :=
1

1− α
ln

(
r∑

i=1

pα
i

)
.

Using the classical Jensen’s discrete inequality for convex mappings, i.e.,

(5.5) f

(
r∑

i=1

pixi

)
≤

r∑
i=1

pif(xi),

wheref : I ⊆ R → R is a convex mapping onI, xi ∈ I (i = 1, ..., r) and (pi)i=1,r is a
probability distribution, for the convex mappingf(x) = − ln x, we have

(5.6) ln

(
r∑

i=1

pixi

)
≥

r∑
i=1

pi ln xi.

Choosexi = pα−1
i (i = 1, ..., r) in (5.6) to obtain

ln

(
r∑

i=1

pα
i

)
≥ (α− 1)

r∑
i=1

pi ln pi,

which is equivalent to
(1− α)

[
H[α] (X)−H (X)

]
≥ 0.
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Now, if α ∈ (0, 1) , thenH[α] (X) ≤ H (X) , and if α > 1 thenH[α] (X) ≥ H (X) . Equal-
ity holds iff (pi)i=1,r is a uniform distribution and this fact follows by the strict convexity
of − ln (·) . This inequality also follows as a special case of the following well known fact:
H[α] (X) is a nondecreasing function ofα. See for example [26] or [22].

Theorem 5.3. Under the above assumptions, given thatpm = mini=1,r pi, pM = maxi=1,r pi,
then we have the inequality

(5.7) 0 ≤ (1− α)
[
H[α] (X)−H (X)

]
≤ Q ·

(
pα−1

M − pα−1
m

)2
pα−1

M pα−1
m

,

for all α ∈ (0, 1) ∪ (1,∞).

Proof. If α ∈ (0, 1), then
xi := pα−1

i ∈
[
pα−1

M , pα−1
m

]
and ifα ∈ (1,∞), then

xi = pα−1
i ∈

[
pα−1

m , pα−1
M

]
, for i ∈ {1, ..., n} .

Applying Theorem 2.3 forxi := pα−1
i andf(x) = − ln x, and taking into account thatf ′(x) =

− 1
x
, we obtain

(1− α)
[
H[α] (X)−H (X)

]
≤


Q
(
pα−1

m − pα−1
M

) (
− 1

pα−1
m

+ 1
pα−1

M

)
if α ∈ (0, 1) ,

Q
(
pα−1

M − pα−1
m

) (
− 1

pα−1
M

+ 1
pα−1

m

)
if α ∈ (1,∞)

=


Q · (pα−1

m −pα−1
M )

2

pα−1
m pα−1

M

if α ∈ (0, 1) ,

Q · (pα−1
M −pα−1

m )
2

pα−1
M pα−1

m
if α ∈ (1,∞)

= Q ·
(
pα−1

M − pα−1
m

)2
pα−1

M pα−1
m

for all α ∈ (0, 1) ∪ (1,∞) and the theorem is proved. �

Using a similar argument to the one in Theorem 5.3, we can state the following direct appli-
cation of Theorem 2.3.

Theorem 5.4.Let (pi)i=1,r be as in Theorem 5.3. Then we have the inequality

(5.8) 0 ≤ (1− α) H[α] (X)− ln r − α ln Gr (p) ≤ Q ·
(
pα−1

M − pα−1
m

)2
Pα−1

M pα−1
m

,

for all α ∈ (0, 1) ∪ (1,∞).

Remark 5.5. The above results improve the corresponding results from [5] and [4] with the
constantQ which is less than1

4
.
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