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ABSTRACT. In this paper, we obtain some new Gronwall-Bellman type integral inequalities, and
we give an application of our results in the study of boundedness of the solutions of nonlinear
integrodifferential equations.
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1. I NTRODUCTION

Integral inequalities play a significant role in the study of differential and integral equations.
In particular, there has been a continuous interest in the following inequality.

Lemma 1.1. Let u(t) andg(t) be nonnegative continuous functions onI = [0,∞) for which
the inequality

u(t) ≤ c +

∫ t

a

g(s)u(s)ds, t ∈ I

holds, wherec is a nonnegative constant. Then

u(t) ≤ c exp

(∫ t

a

g(s)ds

)
, t ∈ I.

Due to various motivations, several generalizations and applications of this lemma have been
obtained and used extensively, see the references under [1, 3].

Pachpatte [5] obtained a useful general version of this lemma. The aim of this work is to
establish some useful generalizations of the inequalities obtained in [5]. Some consequences of
our results are also given.
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2. STATEMENT OF RESULTS

Our main results are given in the following theorems:

Theorem 2.1. Let u(t), f(t) be nonnegative continuous functions in a real intervalI = [a, b].
Suppose thatk(t, s) and its partial derivativeskt(t, s) exist and are nonnegative continuous
functions for almost everyt, s ∈ I. If the inequality

(2.1) u(t) ≤ c +

∫ t

a

f(s)u(s)ds +

∫ t

a

f(s)

(∫ s

a

k(s, τ)u(τ)dτ

)
ds, a ≤ τ ≤ s ≤ t ≤ b,

holds, wherec is a nonnegative constant, then

(2.2) u(t) ≤ c

[
1 +

∫ t

a

f(s) exp

(∫ s

a

(f(τ) + k(τ, τ))dτ

)
ds

]
.

Proof. Define a functionv(t) by the right hand side of (2.1). Then it follows that

(2.3) u(t) ≤ v(t).

Therefore

v′(t) = f(t)u(t) + f(t)

∫ t

a

k(t, τ)u(τ)dτ, v(a) = c(2.4)

≤ f(t)

(
v(t) +

∫ t

a

k(t, τ)v(τ)dτ

)
. (by (2.3))

If we put

(2.5) m(t) = v(t) +

∫ t

a

k(t, τ)v(τ)dτ,

then it is clear that

(2.6) v(t) ≤ m(t).

Therefore

m′(t) = v′(t) + k(t, t)v(t) +

∫ t

a

kt(t, τ)v(τ)dτ, m(a) = v(a) = c(2.7)

≤ v′(t) + k(t, t)v(t),

≤ f(t)m(t) + k(t, t)v(t), (by (2.4))

≤ (f(t) + k(t, t)) m(t). (by (2.6))

Integrate (2.7) froma to t, we obtain

(2.8) m(t) ≤ c exp

(∫ t

a

(
f(s) + k(s, s)

)
ds

)
.

Substitute (2.8) into (2.4), we have

(2.9) v′(t) ≤ cf(t) exp

(∫ t

a

(
f(s) + k(s, s)

)
ds

)
.

Integrating both sides of (2.9) froma to t, we obtain

v(t) ≤ c

[
1 +

∫ t

a

f(s) exp

(∫ s

a

(
f(τ) + k(τ, τ)

)
dτ

)
ds

]
.

By (2.3) we have the desired result. �
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Remark 2.2. If in Theorem 2.1 we setk(t, s) = g(s), our estimate reduces to Theorem 1
obtained in [5].

Theorem 2.3. Let u(t), f(t), h(t) andg(t) be nonnegative continuous functions in a real in-
terval I = [a, b]. Suppose thath′(t) exists and is a nonnegative continuous function. If the
following inequality

u(t) ≤ c +

∫ t

a

f(s)u(s)ds +

∫ t

a

f(s)h(s)

(∫ s

a

g(τ)u(τ)dτ

)
ds a ≤ τ ≤ s ≤ t ≤ b,

holds, wherec is a nonnegative constant, then

u(t) ≤ c

[
1 +

∫ t

a

f(s) exp

(∫ s

a

(f(τ) + g(τ)h(τ) + h′(τ)

∫ τ

a

g(σ)dσ)dτ

)
ds

]
.

Proof. This follows by similar argument as in the proof of Theorem 2.1. We omit the details.
�

Remark 2.4. If in Theorem 2.3, we seth(t) = 1, then our result reduces to Theorem 1 obtained
in [5].

Remark 2.5. If in Theorem 2.3,h′(t) = 0 then our estimate is more general than Theorem 1
obtained by Pachpatte in [5].

Lemma 2.6. Letv(t) be a positive differentiable function satisfying the inequality

(2.10) v′(t) ≤ f(t)v(t) + g(t)vp(t), t ∈ I = [a, b],

where the functionsf(t) andg(t) are continuous inI, andp ≥ 0, p 6= 1, is a constant. Then

(2.11) v(t) ≤ exp

(∫ t

a

f(s)ds

) [
vq(a) + q

∫ t

a

g(s) exp

(
−q

∫ s

a

f(τ)dτ

)
ds

] 1
q

,

for t, s ∈ [a, β), whereq = 1− p andβ is chosen so that the expression[
vq(a) + q

∫ t

a

g(s) exp

(
−q

∫ s

a

f(τ)dτ

)
ds

] 1
q

is positive in the subinterval[a, β).

Proof. We reduce (2.10) to a simpler differential inequality by the following substitution. Let

z(t) =
vq(t)

q
.

Then

z′(t) = vq−1(t)× v′(t)(2.12)

≤ vq−1(t) (f(t)v(t) + g(t)vp(t)) , (by (2.10))

= qf(t)z(t) + g(t) (sinceq = 1− p).

By Lemma 1.1 [1], (2.12) gives

z(t) ≤ vq(a)

q
exp

(∫ t

a

qf(s)ds

)
+

∫ t

a

g(s) exp

(∫ t

s

qf(τ)dτ

)
ds.

That is

vq(t) ≤ exp

(∫ t

a

qf(s)ds

) [
vq(a) +

∫ t

a

g(s) exp

(
−

∫ s

a

qf(τ)dτ

)
ds

]
.
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From this, it follows that

v(t) ≤ exp

(∫ t

a

f(s)ds

) [
cq + q

∫ t

a

g(s) exp

(
−q

∫ s

a

f(τ)dτ

)
ds

] 1
q

.

�

Theorem 2.7. Let u(t), f(t) be nonnegative continuous functions in a real intervalI = [a, b].
Suppose that the partial derivativeskt(t, s) exist and are nonnegative continuous functions for
almost everyt, s ∈ I. If the the inequality

(2.13) u(t) ≤ c +

∫ t

a

f(s)u(s)ds

+

∫ t

a

f(s)

(∫ s

a

k(s, τ)up(τ)dτ

)
ds, a ≤ τ ≤ s ≤ t ≤ b

holds, where0 ≤ p < 1, q = 1− p andc > 0 are constants.
Then

(2.14) u(t) ≤ c +

∫ t

a

f(s) exp

(∫ s

a

f(τ)dτ

)
×

[
c1−p + (1− p)

∫ s

a

k(τ, τ) exp

(
−(1− p)

∫ τ

a

f(σ)dσ

)
dτ

] 1
1−p

ds.

Proof. Define a functionv(t) by the right hand side of (2.13) from which it follows that

(2.15) u(t) ≤ v(t).

Then

v′(t) = f(t)u(t) + f(t)

∫ t

a

k(t, τ)up(τ)dτ, v(a) = c(2.16)

≤ f(t)

(
v(t) +

∫ t

a

k(t, τ)vp(τ)dτ

)
. (by (2.15))

If we put

(2.17) m(t) = v(t) +

∫ t

a

k(t, τ)vp(τ)dτ,

then it is clear that

(2.18) v(t) ≤ m(t).

Hence

m′(t) = v′(t) + k(t, t)vp(t) +

∫ t

a

kt(t, τ)vp(τ)dτ, m(a) = v(a) = c(2.19)

≤ v′(t) + k(t, t)vp(t),

≤ f(t)m(t) + k(t, t)vp(t), (by (2.16))

≤ f(t)m(t) + k(t, t)mp(t). (by (2.18))

By Lemma 2.6 we have

(2.20) m(t) ≤ exp

(∫ t

a

(f(s)ds

) [
mq + q

∫ s

a

k(s, s) exp

(
−q

∫ s

a

f(τ)dτ

)
ds

] 1
q

.

J. Inequal. Pure and Appl. Math., 2(1) Art. 9, 2001 http://jipam.vu.edu.au/

http://jipam.vu.edu.au/


ON AN INEQUALITY OF GRONWALL 5

Substituting (2.20) into (2.16), we have

(2.21) v′(t) ≤ f(t) exp

(∫ t

a

(f(s)ds

) [
mq + q

∫ s

a

k(s, s) exp

(
−q

∫ s

a

f(τ)dτ

)
ds

] 1
q

.

Integrate both sides of (2.21) froma to t and using (2.15), we obtain

u(t) ≤ c +

∫ t

a

f(s) exp

(∫ s

a

f(τ)dτ

) [
c1−p

+ (1− p)

∫ s

a

k(τ, τ) exp

(
−(1− p)

∫ τ

a

f(σ)dσ

)
dτ

] 1
1−p

ds.

This completes the proof of the theorem �

Remark 2.8. If in Theorem 2.7, we putk(t, s) = g(s), then our result reduces to Theorem 2
obtained in [5].

Theorem 2.9. Let u(t), f(t), h(t) andg(t) be nonnegative continuous functions in a real in-
terval I = [a, b]. Suppose thath′(t) exists and is a nonnegative continuous function. If the
following inequality

(2.22) u(t) ≤ c +

∫ t

a

f(s)u(s)ds +

∫ t

a

f(s)h(s)

(∫ s

a

g(τ)up(τ)dτ

)
ds a ≤ τ ≤ s ≤ t ≤ b,

holds, where0 ≤ p < 1, q = 1− p andc > 0 are nonnegative constant. Then

(2.23) u(t) ≤ c +

∫ t

a

f(s) exp

(∫ s

a

f(τ)dτ

) [
c1−p + (1− p)

∫ s

a

(h(τ)f(τ)

+ h′(τ)

∫ τ

a

f(σ)dσ

)
exp

(
−(1− p)

∫ τ

a

f(σ)dσ

)
dτ

] 1
1−p

ds.

Proof. This follows by similar argument as in the proof of Theorem 2.7. We also omit the
details. �

Remark 2.10. If in Theorem 2.9, we seth(t) = 1 then our result reduces to the estimate in
Theorem 2 obtained by Pachpatte in [5].

Remark 2.11. If in Theorem 2.9,h′(t) = 0 then our result is more general than Theorem 2
obtained in [5].

3. APPLICATIONS

There are many applications of the inequalities obtained in Section 2. Here we shall give an
application which is just sufficient to convey the importance of our results. We shall consider
the nonlinear integrodifferential equation

(3.1) x′(t) = f(t, u(t)) +

∫ t

t0

g (t, s, x(s)) ds,

and the corresponding perturbed equation

(3.2) u′(t) = f(t, u(t)) +

∫ t

t0

g (t, s, u(s)) ds + h

(
t, u(t),

∫ t

t0

k(t, s, u(s))ds

)
for all t0, t ∈ R+ andx, u, f, g, h ∈ Rn.

If we let x(t) = x(t; t0, x0) andu(t) = u(t; t0, x0) be the solutions of (3.1) and (3.2) respec-
tively with x(t0) = u(t0) = x0 andf : R+ × Rn → Rn, fx : R+ × Rn → Rn×n,
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g, k : R+×R+×Rn → Rn, gx : R+×R+×Rn → Rn×n andh : R+×R+×Rn → Rn are contin-
uous functions in their respective domains. Then we have by [2] that∂x

∂x0
(t, t0, x0) = Φ(t, t0, x0)

exists and satisfies the variational equation

(3.3) x′(t) = fx(t, x(t; t0, x0))z(t) +

∫ t

t0

gx (t, s, x(s; t0, x0)) z(s)ds, z(t0) = I

and

(3.4)
∂x

∂t0
(t; t0, x0) + Φ(t, t0, x0)f(t0, x0)

∫ t

t0

Φ(t, s, x0)g(s, t0, x0)ds = 0.

Thus the solutionsx(t) andu(t) are related by

(3.5) u(t) = x(t)

∫ t

t0

Φ(t, s, u(s))h

(
s, u(s),

∫ t

t0

k(s, τ, u(τ))dτ

)
ds.

Theorem 3.1. Let f , fx, g, gx, k, h, as earlier defined, be nonnegative continuous functions.
Suppose that the following inequalities hold:

|Φ(t, s, u)| ≤ Me−α(t−s),(3.6)

|Φ(t, s, u)h(s, u, z)| ≤ p(s) (|u|+ |z|) ,(3.7)

|k(t, s, u)| ≤ q(s, s) |y|(3.8)

for 0 ≤ s ≤ t, u, z ∈ Rn, M ≥ 1 andα > 0 are constants. Ifp(t) andq(t, t) are continuous
and nonnegative and

(3.9)
∫ ∞

p(s)ds < ∞,

∫ ∞
q(s, s)ds < ∞.

Then for any bounded solutionx(t; t0, x0) of (3.1) inR+, then the corresponding solutions of
(3.2) is bounded inR+.

Proof. We have from (3.6)– (3.8) that equation (3.2) gives

|u(t)| ≤ M |x0|+
∫ t

t0

p(s) |u(s)| ds +

∫ t

t0

p(s)

(∫ t

t0

q(τ, τ) |u(τ)| dτ

)
ds.

Hence by Theorem 2.1, we have

|u(t)| ≤ M |x0|
[
1 +

∫ t

t0

p(s) exp

(∫ s

s0

(p(τ) + q(τ, τ))dτ

)
ds

]
.

Hence by (3.9), we easily see that|u(t)| is bounded and the proof is complete. �
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