Journal of Inequalities in Pure and Applied Mathematics

http://jipam.vu.edu.au/
Volume 2, Issue 1, Article 9, 2001

ON AN INEQUALITY OF GRONWALL

JAMES ADEDAYO OGUNTUASE

Department of Mathematical Sciences, University of Agriculture, Abeokuta, Nigeria. adedayo@unaab.edu.ng

Received 23 May, 2000; accepted 09 November, 2000
Communicated by P. Cerone

Abstract

In this paper, we obtain some new Gronwall-Bellman type integral inequalities, and we give an application of our results in the study of boundedness of the solutions of nonlinear integrodifferential equations.

Key words and phrases: Gronwall inequality, nonlinear integrodifferential equation, nondecreasing function, nonnegative continuous functions, partial derivatives, variational equation.

1991 Mathematics Subject Classification. Primary 26D10, Secondary 26D20, 34A40.

1. Introduction

Integral inequalities play a significant role in the study of differential and integral equations. In particular, there has been a continuous interest in the following inequality.
Lemma 1.1. Let $u(t)$ and $g(t)$ be nonnegative continuous functions on $I=[0, \infty)$ for which the inequality

$$
u(t) \leq c+\int_{a}^{t} g(s) u(s) d s, t \in I
$$

holds, where c is a nonnegative constant. Then

$$
u(t) \leq c \exp \left(\int_{a}^{t} g(s) d s\right), t \in I
$$

Due to various motivations, several generalizations and applications of this lemma have been obtained and used extensively, see the references under [1, 3].

Pachpatte [5] obtained a useful general version of this lemma. The aim of this work is to establish some useful generalizations of the inequalities obtained in [5]. Some consequences of our results are also given.

[^0]
2. Statement of Results

Our main results are given in the following theorems:
Theorem 2.1. Let $u(t), f(t)$ be nonnegative continuous functions in a real interval $I=[a, b]$. Suppose that $k(t, s)$ and its partial derivatives $k_{t}(t, s)$ exist and are nonnegative continuous functions for almost every $t, s \in I$. If the inequality

$$
\begin{equation*}
u(t) \leq c+\int_{a}^{t} f(s) u(s) d s+\int_{a}^{t} f(s)\left(\int_{a}^{s} k(s, \tau) u(\tau) d \tau\right) d s, a \leq \tau \leq s \leq t \leq b \tag{2.1}
\end{equation*}
$$

holds, where c is a nonnegative constant, then

$$
\begin{equation*}
u(t) \leq c\left[1+\int_{a}^{t} f(s) \exp \left(\int_{a}^{s}(f(\tau)+k(\tau, \tau)) d \tau\right) d s\right] \tag{2.2}
\end{equation*}
$$

Proof. Define a function $v(t)$ by the right hand side of (2.1). Then it follows that

$$
\begin{equation*}
u(t) \leq v(t) \tag{2.3}
\end{equation*}
$$

Therefore

$$
\begin{align*}
v^{\prime}(t) & =f(t) u(t)+f(t) \int_{a}^{t} k(t, \tau) u(\tau) d \tau, \quad v(a)=c \tag{2.4}\\
& \leq f(t)\left(v(t)+\int_{a}^{t} k(t, \tau) v(\tau) d \tau\right) \cdot(\text { by } 2.3)
\end{align*}
$$

If we put

$$
\begin{equation*}
m(t)=v(t)+\int_{a}^{t} k(t, \tau) v(\tau) d \tau \tag{2.5}
\end{equation*}
$$

then it is clear that

$$
\begin{equation*}
v(t) \leq m(t) \tag{2.6}
\end{equation*}
$$

Therefore

$$
\begin{align*}
m^{\prime}(t) & =v^{\prime}(t)+k(t, t) v(t)+\int_{a}^{t} k_{t}(t, \tau) v(\tau) d \tau, \quad m(a)=v(a)=c \tag{2.7}\\
& \leq v^{\prime}(t)+k(t, t) v(t), \\
& \leq f(t) m(t)+k(t, t) v(t),(\text { by }(2.4)) \\
& \leq(f(t)+k(t, t)) m(t) .(\text { by }(2.6))
\end{align*}
$$

Integrate (2.7) from a to t, we obtain

$$
\begin{equation*}
m(t) \leq c \exp \left(\int_{a}^{t}(f(s)+k(s, s)) d s\right) \tag{2.8}
\end{equation*}
$$

Substitute (2.8) into (2.4), we have

$$
\begin{equation*}
v^{\prime}(t) \leq c f(t) \exp \left(\int_{a}^{t}(f(s)+k(s, s)) d s\right) \tag{2.9}
\end{equation*}
$$

Integrating both sides of (2.9) from a to t, we obtain

$$
v(t) \leq c\left[1+\int_{a}^{t} f(s) \exp \left(\int_{a}^{s}(f(\tau)+k(\tau, \tau)) d \tau\right) d s\right] .
$$

By (2.3) we have the desired result.

Remark 2.2. If in Theorem 2.1 we set $k(t, s)=g(s)$, our estimate reduces to Theorem 1 obtained in [5].
Theorem 2.3. Let $u(t), f(t), h(t)$ and $g(t)$ be nonnegative continuous functions in a real interval $I=[a, b]$. Suppose that $h^{\prime}(t)$ exists and is a nonnegative continuous function. If the following inequality

$$
u(t) \leq c+\int_{a}^{t} f(s) u(s) d s+\int_{a}^{t} f(s) h(s)\left(\int_{a}^{s} g(\tau) u(\tau) d \tau\right) d s a \leq \tau \leq s \leq t \leq b
$$

holds, where c is a nonnegative constant, then

$$
u(t) \leq c\left[1+\int_{a}^{t} f(s) \exp \left(\int_{a}^{s}\left(f(\tau)+g(\tau) h(\tau)+h^{\prime}(\tau) \int_{a}^{\tau} g(\sigma) d \sigma\right) d \tau\right) d s\right] .
$$

Proof. This follows by similar argument as in the proof of Theorem 2.1. We omit the details.

Remark 2.4. If in Theorem 2.3, we set $h(t)=1$, then our result reduces to Theorem 1 obtained in [5].
Remark 2.5. If in Theorem 2.3, $h^{\prime}(t)=0$ then our estimate is more general than Theorem 1 obtained by Pachpatte in [5].
Lemma 2.6. Let $v(t)$ be a positive differentiable function satisfying the inequality

$$
\begin{equation*}
v^{\prime}(t) \leq f(t) v(t)+g(t) v^{p}(t), t \in I=[a, b], \tag{2.10}
\end{equation*}
$$

where the functions $f(t)$ and $g(t)$ are continuous in I, and $p \geq 0, p \neq 1$, is a constant. Then

$$
\begin{equation*}
v(t) \leq \exp \left(\int_{a}^{t} f(s) d s\right)\left[v^{q}(a)+q \int_{a}^{t} g(s) \exp \left(-q \int_{a}^{s} f(\tau) d \tau\right) d s\right]^{\frac{1}{q}} \tag{2.11}
\end{equation*}
$$

for $t, s \in[a, \beta)$, where $q=1-p$ and β is chosen so that the expression

$$
\left[v^{q}(a)+q \int_{a}^{t} g(s) \exp \left(-q \int_{a}^{s} f(\tau) d \tau\right) d s\right]^{\frac{1}{q}}
$$

is positive in the subinterval $[a, \beta)$.
Proof. We reduce (2.10) to a simpler differential inequality by the following substitution. Let

$$
z(t)=\frac{v^{q}(t)}{q} .
$$

Then

$$
\begin{align*}
z^{\prime}(t) & =v^{q-1}(t) \times v^{\prime}(t) \tag{2.12}\\
& \leq v^{q-1}(t)\left(f(t) v(t)+g(t) v^{p}(t)\right), \quad(\text { by }(2.10)) \\
& =q f(t) z(t)+g(t)(\text { since } q=1-p) .
\end{align*}
$$

By Lemma 1.1 [1], (2.12) gives

$$
z(t) \leq \frac{v^{q}(a)}{q} \exp \left(\int_{a}^{t} q f(s) d s\right)+\int_{a}^{t} g(s) \exp \left(\int_{s}^{t} q f(\tau) d \tau\right) d s
$$

That is

$$
v^{q}(t) \leq \exp \left(\int_{a}^{t} q f(s) d s\right)\left[v^{q}(a)+\int_{a}^{t} g(s) \exp \left(-\int_{a}^{s} q f(\tau) d \tau\right) d s\right] .
$$

From this, it follows that

$$
v(t) \leq \exp \left(\int_{a}^{t} f(s) d s\right)\left[c^{q}+q \int_{a}^{t} g(s) \exp \left(-q \int_{a}^{s} f(\tau) d \tau\right) d s\right]^{\frac{1}{q}} .
$$

Theorem 2.7. Let $u(t), f(t)$ be nonnegative continuous functions in a real interval $I=[a, b]$. Suppose that the partial derivatives $k_{t}(t, s)$ exist and are nonnegative continuous functions for almost every $t, s \in I$. If the the inequality

$$
\begin{align*}
u(t) \leq c+\int_{a}^{t} f(s) u(s) d & \tag{2.13}\\
& +\int_{a}^{t} f(s)\left(\int_{a}^{s} k(s, \tau) u^{p}(\tau) d \tau\right) d s, \quad a \leq \tau \leq s \leq t \leq b
\end{align*}
$$

holds, where $0 \leq p<1, q=1-p$ and $c>0$ are constants.
Then

$$
\begin{array}{rl}
u(t) \leq c+\int_{a}^{t} & f(s) \exp \left(\int_{a}^{s} f(\tau) d \tau\right) \tag{2.14}\\
& \times\left[c^{1-p}+(1-p) \int_{a}^{s} k(\tau, \tau) \exp \left(-(1-p) \int_{a}^{\tau} f(\sigma) d \sigma\right) d \tau\right]^{\frac{1}{1-p}} d s
\end{array}
$$

Proof. Define a function $v(t)$ by the right hand side of 2.13 from which it follows that

$$
\begin{equation*}
u(t) \leq v(t) \tag{2.15}
\end{equation*}
$$

Then

$$
\begin{align*}
v^{\prime}(t) & =f(t) u(t)+f(t) \int_{a}^{t} k(t, \tau) u^{p}(\tau) d \tau, \quad v(a)=c \tag{2.16}\\
& \leq f(t)\left(v(t)+\int_{a}^{t} k(t, \tau) v^{p}(\tau) d \tau\right) \cdot(\text { by } 2.15)
\end{align*}
$$

If we put

$$
\begin{equation*}
m(t)=v(t)+\int_{a}^{t} k(t, \tau) v^{p}(\tau) d \tau \tag{2.17}
\end{equation*}
$$

then it is clear that

$$
\begin{equation*}
v(t) \leq m(t) \tag{2.18}
\end{equation*}
$$

Hence

$$
\begin{align*}
m^{\prime}(t) & =v^{\prime}(t)+k(t, t) v^{p}(t)+\int_{a}^{t} k_{t}(t, \tau) v^{p}(\tau) d \tau, \quad m(a)=v(a)=c \tag{2.19}\\
& \leq v^{\prime}(t)+k(t, t) v^{p}(t), \\
& \leq f(t) m(t)+k(t, t) v^{p}(t),(\text { by } 2.16) \\
& \left.\leq f(t) m(t)+k(t, t) m^{p}(t) .(\text { by } 2.18)\right)
\end{align*}
$$

By Lemma 2.6 we have

$$
\begin{equation*}
m(t) \leq \exp \left(\int_{a}^{t}(f(s) d s)\left[m^{q}+q \int_{a}^{s} k(s, s) \exp \left(-q \int_{a}^{s} f(\tau) d \tau\right) d s\right]^{\frac{1}{q}}\right. \tag{2.20}
\end{equation*}
$$

Substituting (2.20) into (2.16), we have

$$
\begin{equation*}
v^{\prime}(t) \leq f(t) \exp \left(\int_{a}^{t}(f(s) d s)\left[m^{q}+q \int_{a}^{s} k(s, s) \exp \left(-q \int_{a}^{s} f(\tau) d \tau\right) d s\right]^{\frac{1}{q}}\right. \tag{2.21}
\end{equation*}
$$

Integrate both sides of (2.21) from a to t and using (2.15), we obtain

$$
\left.\begin{array}{rl}
u(t) \leq c+\int_{a}^{t} f(s) \exp (& \left.\int_{a}^{s} f(\tau) d \tau\right)
\end{array}\right]\left[c^{1-p}, ~+(1-p) \int_{a}^{s} k(\tau, \tau) \exp \left(-(1-p) \int_{a}^{\tau} f(\sigma) d \sigma\right) d \tau\right]^{\frac{1}{1-p}} d s .
$$

This completes the proof of the theorem
Remark 2.8. If in Theorem 2.7, we put $k(t, s)=g(s)$, then our result reduces to Theorem 2 obtained in [5].
Theorem 2.9. Let $u(t), f(t), h(t)$ and $g(t)$ be nonnegative continuous functions in a real interval $I=[a, b]$. Suppose that $h^{\prime}(t)$ exists and is a nonnegative continuous function. If the following inequality
(2.22) $u(t) \leq c+\int_{a}^{t} f(s) u(s) d s+\int_{a}^{t} f(s) h(s)\left(\int_{a}^{s} g(\tau) u^{p}(\tau) d \tau\right) d s a \leq \tau \leq s \leq t \leq b$,
holds, where $0 \leq p<1, q=1-p$ and $c>0$ are nonnegative constant. Then

$$
\begin{align*}
u(t) \leq c+\int_{a}^{t} f(s) \exp & \left(\int_{a}^{s} f(\tau) d \tau\right)\left[c^{1-p}+(1-p) \int_{a}^{s}(h(\tau) f(\tau)\right. \tag{2.23}\\
& \left.\left.+h^{\prime}(\tau) \int_{a}^{\tau} f(\sigma) d \sigma\right) \exp \left(-(1-p) \int_{a}^{\tau} f(\sigma) d \sigma\right) d \tau\right]^{\frac{1}{1-p}} d s
\end{align*}
$$

Proof. This follows by similar argument as in the proof of Theorem 2.7. We also omit the details.

Remark 2.10. If in Theorem 2.9, we set $h(t)=1$ then our result reduces to the estimate in Theorem 2 obtained by Pachpatte in [5].
Remark 2.11. If in Theorem 2.9, $h^{\prime}(t)=0$ then our result is more general than Theorem 2 obtained in [5].

3. Applications

There are many applications of the inequalities obtained in Section 2 . Here we shall give an application which is just sufficient to convey the importance of our results. We shall consider the nonlinear integrodifferential equation

$$
\begin{equation*}
x^{\prime}(t)=f(t, u(t))+\int_{t_{0}}^{t} g(t, s, x(s)) d s \tag{3.1}
\end{equation*}
$$

and the corresponding perturbed equation

$$
\begin{equation*}
u^{\prime}(t)=f(t, u(t))+\int_{t_{0}}^{t} g(t, s, u(s)) d s+h\left(t, u(t), \int_{t_{0}}^{t} k(t, s, u(s)) d s\right) \tag{3.2}
\end{equation*}
$$

for all $t_{0}, t \in \mathbb{R}^{+}$and $x, u, f, g, h \in \mathbb{R}^{n}$.
If we let $x(t)=x\left(t ; t_{0}, x_{0}\right)$ and $u(t)=u\left(t ; t_{0}, x_{0}\right)$ be the solutions of $\sqrt{3.1}$) and (3.2) respectively with $x\left(t_{0}\right)=u\left(t_{0}\right)=x_{0}$ and $f: \mathbb{R}^{+} \times \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}, f_{x}: \mathbb{R}^{+} \times \mathbb{R}^{n} \rightarrow \mathbb{R}^{n \times n}$,
$g, k: \mathbb{R}^{+} \times \mathbb{R}^{+} \times \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}, g_{x}: \mathbb{R}^{+} \times \mathbb{R}^{+} \times \mathbb{R}^{n} \rightarrow \mathbb{R}^{n \times n}$ and $h: \mathbb{R}^{+} \times \mathbb{R}^{+} \times \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ are continuous functions in their respective domains. Then we have by [2] that $\frac{\partial x}{\partial x_{0}}\left(t, t_{0}, x_{0}\right)=\Phi\left(t, t_{0}, x_{0}\right)$ exists and satisfies the variational equation

$$
\begin{equation*}
x^{\prime}(t)=f_{x}\left(t, x\left(t ; t_{0}, x_{0}\right)\right) z(t)+\int_{t_{0}}^{t} g_{x}\left(t, s, x\left(s ; t_{0}, x_{0}\right)\right) z(s) d s, \quad z\left(t_{0}\right)=I \tag{3.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\partial x}{\partial t_{0}}\left(t ; t_{0}, x_{0}\right)+\Phi\left(t, t_{0}, x_{0}\right) f\left(t_{0}, x_{0}\right) \int_{t_{0}}^{t} \Phi\left(t, s, x_{0}\right) g\left(s, t_{0}, x_{0}\right) d s=0 \tag{3.4}
\end{equation*}
$$

Thus the solutions $x(t)$ and $u(t)$ are related by

$$
\begin{equation*}
u(t)=x(t) \int_{t_{0}}^{t} \Phi(t, s, u(s)) h\left(s, u(s), \int_{t_{0}}^{t} k(s, \tau, u(\tau)) d \tau\right) d s \tag{3.5}
\end{equation*}
$$

Theorem 3.1. Let f, f_{x}, g, g_{x}, k, h, as earlier defined, be nonnegative continuous functions. Suppose that the following inequalities hold:

$$
\begin{align*}
|\Phi(t, s, u)| & \leq M e^{-\alpha(t-s)} \tag{3.6}\\
|\Phi(t, s, u) h(s, u, z)| & \leq p(s)(|u|+|z|) \tag{3.7}\\
|k(t, s, u)| & \leq q(s, s)|y| \tag{3.8}
\end{align*}
$$

for $0 \leq s \leq t, u, z \in \mathbb{R}^{n}, M \geq 1$ and $\alpha>0$ are constants. If $p(t)$ and $q(t, t)$ are continuous and nonnegative and

$$
\begin{equation*}
\int^{\infty} p(s) d s<\infty, \int^{\infty} q(s, s) d s<\infty \tag{3.9}
\end{equation*}
$$

Then for any bounded solution $x\left(t ; t_{0}, x_{0}\right)$ of (3.1) in \mathbb{R}^{+}, then the corresponding solutions of (3.2) is bounded in \mathbb{R}^{+}.

Proof. We have from (3.6)- (3.8) that equation (3.2) gives

$$
|u(t)| \leq M\left|x_{0}\right|+\int_{t_{0}}^{t} p(s)|u(s)| d s+\int_{t_{0}}^{t} p(s)\left(\int_{t_{0}}^{t} q(\tau, \tau)|u(\tau)| d \tau\right) d s
$$

Hence by Theorem 2.1, we have

$$
|u(t)| \leq M\left|x_{0}\right|\left[1+\int_{t_{0}}^{t} p(s) \exp \left(\int_{s_{0}}^{s}(p(\tau)+q(\tau, \tau)) d \tau\right) d s\right] .
$$

Hence by $\sqrt{3.9}$, we easily see that $|u(t)|$ is bounded and the proof is complete.

References

[1] D. BAINOV AND P. SIMEONOV, Integral inequalities and Applications, Academic Publishers, Dordrecht, 1992.
[2] F. BRAUER, A nonlinear variation of constants formula for Volterra equations, Mat. Systems Th., 6 (1972), 226 - 234.
[3] J. CHANDRA and B.A. FLEISHMAN, On a generalization of Gronwall-Bellman lemma in partially ordered Banach spaces, J. Math. Anal. Appl., 31 (1970), 668 - 681.
[4] J.A. OGUNTUASE, Remarks on Gronwall type inequalities, An. Stiint. Univ. "Al. I. Cuza", t. 45 (1999), in press
[5] B.G. PACHPATTE, A note on Gronwall-Bellman inequality, J. Math. Anal. Appl., 44 (1973), 758762.

[^0]: ISSN (electronic): 1443-5756
 (C) 2001 Victoria University. All rights reserved.

 I wish to express my appreciation to the referee whose remarks and observations have led to an improvement of this paper.
 013-00

