Journal of Inequalities in Pure and Applied Mathematics

ON AN INEQUALITY OF GRONWALL

J.A. OGUNTUASE

Department of Mathematical Sciences,
University of Agriculture,
Abeokuta, NIGERIA.
EMail: adedayo@unaab.edu.ng
volume 2, issue 1, article 9, 2001.

Received 23 May, 2000; accepted 09 November 2000.

Communicated by: P. Cerone

Abstract
Contents
Home Page
Go Back
Quit

Abstract

In this paper, we obtain some new Gronwall-Bellman type integral inequalities, and we give an application of our results in the study of boundedness of the solutions of nonlinear integrodifferential equations.

2000 Mathematics Subject Classification: 26D10, 26D20, 34A40
Key words: Gronwall inequality, nonlinear integrodifferential equation, nondecreasing function, nonnegative continuous functions, partial derivatives, variational equation.

I wish to express my appreciation to the referee whose remarks and observations have led to an improvement of this paper.

Contents

1 Introduction
2 Statement of Results 4
3 Applications 12
References

On an Inequality of Gronwall
James Adedayo Oguntuase

Title Page
Contents

| $\mathbf{~ G o ~ B a c k ~}$ |
| :---: | :---: |
| Close |
| Quit |
| Page 2 of 15 |

J. Ineq. Pure and Appl. Math. 2(1) Art. 9, 2001
http://jipam.vu.edu.au

1. Introduction

Integral inequalities play a significant role in the study of differential and integral equations. In particular, there has been a continuous interest in the following inequality.

Lemma 1.1. Let $u(t)$ and $g(t)$ be nonnegative continuous functions on $I=$ $[0, \infty)$ for which the inequality

$$
u(t) \leq c+\int_{a}^{t} g(s) u(s) d s, \quad t \in I
$$

On an Inequality of Gronwall
James Adedayo Oguntuase

Title Page
Contents

J. Ineq. Pure and Appl. Math. 2(1) Art. 9, 2001
http://jipam.vu.edu.au

2. Statement of Results

Our main results are given in the following theorems:
Theorem 2.1. Let $u(t), f(t)$ be nonnegative continuous functions in a real interval $I=[a, b]$. Suppose that $k(t, s)$ and its partial derivatives $k_{t}(t, s)$ exist and are nonnegative continuous functions for almost every $t, s \in I$. If the inequality

$$
\begin{align*}
u(t) \leq c+ & \int_{a}^{t} f(s) u(s) d s \tag{2.1}\\
& +\int_{a}^{t} f(s)\left(\int_{a}^{s} k(s, \tau) u(\tau) d \tau\right) d s, \quad a \leq \tau \leq s \leq t \leq b
\end{align*}
$$

holds, where c is a nonnegative constant, then

$$
\begin{equation*}
u(t) \leq c\left[1+\int_{a}^{t} f(s) \exp \left(\int_{a}^{s}(f(\tau)+k(\tau, \tau)) d \tau\right) d s\right] \tag{2.2}
\end{equation*}
$$

Proof. Define a function $v(t)$ by the right hand side of (2.1). Then it follows that

$$
\begin{equation*}
u(t) \leq v(t) \tag{2.3}
\end{equation*}
$$

Therefore

$$
\begin{array}{rlrl}
v^{\prime}(t) & =f(t) u(t)+f(t) \int_{a}^{t} k(t, \tau) u(\tau) d \tau, \quad v(a)=c \\
& \leq f(t)\left(v(t)+\int_{a}^{t} k(t, \tau) v(\tau) d \tau\right) . & & (\text { by } \quad(2.3 \tag{2.3}
\end{array}
$$

On an Inequality of Gronwall
James Adedayo Oguntuase

Title Page

Contents
Go Back
Close
Quit
Page 4 of 15

If we put

$$
\begin{equation*}
m(t)=v(t)+\int_{a}^{t} k(t, \tau) v(\tau) d \tau \tag{2.5}
\end{equation*}
$$

then it is clear that

$$
\begin{equation*}
v(t) \leq m(t) \tag{2.6}
\end{equation*}
$$

Therefore
(2.7) $\quad m^{\prime}(t)=v^{\prime}(t)+k(t, t) v(t)+\int_{a}^{t} k_{t}(t, \tau) v(\tau) d \tau, \quad m(a)=v(a)=c$

$$
\begin{aligned}
& \leq v^{\prime}(t)+k(t, t) v(t), \\
& \leq f(t) m(t)+k(t, t) v(t), \quad(\text { by } \quad(2.4)) \\
& \leq(f(t)+k(t, t)) m(t) . \quad(\text { by } \quad(2.6))
\end{aligned}
$$

Integrate (2.7) from a to t, we obtain

$$
\begin{equation*}
m(t) \leq c \exp \left(\int_{a}^{t}(f(s)+k(s, s)) d s\right) \tag{2.8}
\end{equation*}
$$

Substitute (2.8) into (2.4), we have

$$
\begin{equation*}
v^{\prime}(t) \leq c f(t) \exp \left(\int_{a}^{t}(f(s)+k(s, s)) d s\right) \tag{2.9}
\end{equation*}
$$

Integrating both sides of (2.9) from a to t, we obtain

$$
v(t) \leq c\left[1+\int_{a}^{t} f(s) \exp \left(\int_{a}^{s}(f(\tau)+k(\tau, \tau)) d \tau\right) d s\right]
$$

By (2.3) we have the desired result.

On an Inequality of Gronwall
James Adedayo Oguntuase

Title Page
Contents

Go Back
Close
Quit
Page 5 of 15

Remark 2.1. If in Theorem 2.1 we set $k(t, s)=g(s)$, our estimate reduces to Theorem 1 obtained in [5].

Theorem 2.2. Let $u(t), f(t), h(t)$ and $g(t)$ be nonnegative continuous functions in a real interval $I=[a, b]$. Suppose that $h^{\prime}(t)$ exists and is a nonnegative continuous function. If the following inequality

$$
\begin{array}{rl}
u(t) \leq c+\int_{a}^{t} & f(s) u(s) d s \\
& +\int_{a}^{t} f(s) h(s)\left(\int_{a}^{s} g(\tau) u(\tau) d \tau\right) d s \quad a \leq \tau \leq s \leq t \leq b
\end{array}
$$

holds, where c is a nonnegative constant, then
$u(t) \leq c\left[1+\int_{a}^{t} f(s) \exp \left(\int_{a}^{s}\left(f(\tau)+g(\tau) h(\tau)+h^{\prime}(\tau) \int_{a}^{\tau} g(\sigma) d \sigma\right) d \tau\right) d s\right]$.
Proof. This follows by similar argument as in the proof of Theorem 2.1. We omit the details.

Remark 2.2. If in Theorem 2.2, we set $h(t)=1$, then our result reduces to Theorem 1 obtained in [5].
Remark 2.3. If in Theorem 2.2, $h^{\prime}(t)=0$ then our estimate is more general than Theorem 1 obtained by Pachpatte in [5].
Lemma 2.3. Let $v(t)$ be a positive differentiable function satisfying the inequality

$$
\begin{equation*}
v^{\prime}(t) \leq f(t) v(t)+g(t) v^{p}(t), \quad t \in I=[a, b] \tag{2.10}
\end{equation*}
$$

where the functions $f(t)$ and $g(t)$ are continuous in I, and $p \geq 0, p \neq 1$, is a constant. Then
(2.11) $v(t) \leq \exp \left(\int_{a}^{t} f(s) d s\right)$

$$
\times\left[v^{q}(a)+q \int_{a}^{t} g(s) \exp \left(-q \int_{a}^{s} f(\tau) d \tau\right) d s\right]^{\frac{1}{q}}
$$

for $t, s \in[a, \beta)$, where $q=1-p$ and β is chosen so that the expression

$$
\left[v^{q}(a)+q \int_{a}^{t} g(s) \exp \left(-q \int_{a}^{s} f(\tau) d \tau\right) d s\right]^{\frac{1}{q}}
$$

is positive in the subinterval $[a, \beta)$.
Proof. We reduce (2.10) to a simpler differential inequality by the following substitution. Let

$$
z(t)=\frac{v^{q}(t)}{q}
$$

Then

$$
\begin{align*}
z^{\prime}(t) & =v^{q-1}(t) \times v^{\prime}(t) \tag{2.12}\\
& \leq v^{q-1}(t)\left(f(t) v(t)+g(t) v^{p}(t)\right), \quad(\text { by } \quad(2.10)) \\
& =q f(t) z(t)+g(t) \quad(\text { since } q=1-p) .
\end{align*}
$$

By Lemma 1.1 [1], (2.12) gives

$$
z(t) \leq \frac{v^{q}(a)}{q} \exp \left(\int_{a}^{t} q f(s) d s\right)+\int_{a}^{t} g(s) \exp \left(\int_{s}^{t} q f(\tau) d \tau\right) d s
$$

That is

$$
v^{q}(t) \leq \exp \left(\int_{a}^{t} q f(s) d s\right)\left[v^{q}(a)+\int_{a}^{t} g(s) \exp \left(-\int_{a}^{s} q f(\tau) d \tau\right) d s\right]
$$

From this, it follows that

$$
v(t) \leq \exp \left(\int_{a}^{t} f(s) d s\right)\left[c^{q}+q \int_{a}^{t} g(s) \exp \left(-q \int_{a}^{s} f(\tau) d \tau\right) d s\right]^{\frac{1}{q}}
$$

James Adedayo Oguntuase

Title Page
Contents

J. Ineq. Pure and Appl. Math. 2(1) Art. 9, 2001
http://jipam.vu.edu.au

Proof. Define a function $v(t)$ by the right hand side of (2.13) from which it follows that

$$
\begin{equation*}
u(t) \leq v(t) \tag{2.15}
\end{equation*}
$$

Then

$$
\begin{array}{rlrl}
v^{\prime}(t) & =f(t) u(t)+f(t) \int_{a}^{t} k(t, \tau) u^{p}(\tau) d \tau, & v(a)=c \tag{2.16}\\
& \leq f(t)\left(v(t)+\int_{a}^{t} k(t, \tau) v^{p}(\tau) d \tau\right) . & & \text { (by (2.15)) }
\end{array}
$$

If we put

$$
\begin{equation*}
m(t)=v(t)+\int_{a}^{t} k(t, \tau) v^{p}(\tau) d \tau \tag{2.17}
\end{equation*}
$$

then it is clear that

$$
\begin{equation*}
v(t) \leq m(t) \tag{2.18}
\end{equation*}
$$

Hence

$$
\begin{align*}
m^{\prime}(t)= & v^{\prime}(t)+k(t, t) v^{p}(t) \tag{2.19}\\
& +\int_{a}^{t} k_{t}(t, \tau) v^{p}(\tau) d \tau, \quad m(a)=v(a)=c \\
\leq & v^{\prime}(t)+k(t, t) v^{p}(t) \\
\leq & \left.f(t) m(t)+k(t, t) v^{p}(t), \quad \text { (by } \quad(2.16)\right) \\
\leq & \left.f(t) m(t)+k(t, t) m^{p}(t) . \quad \text { (by } \quad(2.18)\right)
\end{align*}
$$

On an Inequality of Gronwall
James Adedayo Oguntuase

Title Page
Contents

$\mathbf{~ G ~}$	
Go Back	
Close	
Quit	
Page 9 of 15	

By Lemma 2.3 we have

$$
\begin{aligned}
\text { (2.20) } m(t) \leq \exp \left(\int_{a}^{t}\right. & (f(s) d s) \\
& \times\left[m^{q}+q \int_{a}^{s} k(s, s) \exp \left(-q \int_{a}^{s} f(\tau) d \tau\right) d s\right]^{\frac{1}{q}} .
\end{aligned}
$$

Substituting (2.21) into (2.16), we have
(2.21) $v^{\prime}(t) \leq f(t) \exp \left(\int_{a}^{t}(f(s) d s)\right.$

$$
\times\left[m^{q}+q \int_{a}^{s} k(s, s) \exp \left(-q \int_{a}^{s} f(\tau) d \tau\right) d s\right]^{\frac{1}{q}} .
$$

Integrate both sides of (2.22) from a to t and using (2.15), we obtain

$$
\begin{aligned}
u(t) \leq c+ & \int_{a}^{t} f(s) \exp \left(\int_{a}^{s} f(\tau) d \tau\right)\left[c^{1-p}\right. \\
& \left.+(1-p) \int_{a}^{s} k(\tau, \tau) \exp \left(-(1-p) \int_{a}^{\tau} f(\sigma) d \sigma\right) d \tau\right]^{\frac{1}{1-p}} d s
\end{aligned}
$$

This completes the proof of the theorem

On an Inequality of Gronwall
James Adedayo Oguntuase

Title Page
Contents

Go Back
Close
Quit
Page 10 of 15

Remark 2.4. If in Theorem 2.4, we put $k(t, s)=g(s)$, then our result reduces to Theorem 2 obtained in [5].

Theorem 2.5. Let $u(t), f(t), h(t)$ and $g(t)$ be nonnegative continuous functions in a real interval $I=[a, b]$. Suppose that $h^{\prime}(t)$ exists and is a nonnegative continuous function. If the following inequality

$$
\begin{align*}
u(t) \leq c & +\int_{a}^{t} f(s) u(s) d s \tag{2.22}\\
& +\int_{a}^{t} f(s) h(s)\left(\int_{a}^{s} g(\tau) u^{p}(\tau) d \tau\right) d s \quad a \leq \tau \leq s \leq t \leq b
\end{align*}
$$

holds, where $0 \leq p<1, q=1-p$ and $c>0$ are nonnegative constant. Then

$$
\begin{align*}
u(t) \leq & c+\int_{a}^{t} f(s) \exp \left(\int_{a}^{s} f(\tau) d \tau\right)\left[c^{1-p}+(1-p) \int_{a}^{s}(h(\tau) f(\tau)\right. \tag{2.23}\\
& \left.\left.+h^{\prime}(\tau) \int_{a}^{\tau} f(\sigma) d \sigma\right) \exp \left(-(1-p) \int_{a}^{\tau} f(\sigma) d \sigma\right) d \tau\right]^{\frac{1}{1-p}} d s
\end{align*}
$$

Proof. This follows by similar argument as in the proof of Theorem 2.4. We also omit the details.

Remark 2.5. If in Theorem 2.5, we set $h(t)=1$ then our result reduces to the estimate in Theorem 2 obtained by Pachpatte in [5].

Remark 2.6. If in Theorem 2.5, $h^{\prime}(t)=0$ then our result is more general than Theorem 2 obtained in [5].

3. Applications

There are many applications of the inequalities obtained in Section 2. Here we shall give an application which is just sufficient to convey the importance of our results. We shall consider the nonlinear integrodifferential equation

$$
\begin{equation*}
x^{\prime}(t)=f(t, u(t))+\int_{t_{0}}^{t} g(t, s, x(s)) d s \tag{3.1}
\end{equation*}
$$

and the corresponding perturbed equation

$$
\begin{equation*}
u^{\prime}(t)=f(t, u(t))+\int_{t_{0}}^{t} g(t, s, u(s)) d s+h\left(t, u(t), \int_{t_{0}}^{t} k(t, s, u(s)) d s\right) \tag{3.2}
\end{equation*}
$$

for all $t_{0}, t \in \mathbb{R}^{+}$and $x, u, f, g, h \in \mathbb{R}^{n}$.
If we let $x(t)=x\left(t ; t_{0}, x_{0}\right)$ and $u(t)=u\left(t ; t_{0}, x_{0}\right)$ be the solutions of (3.1) and (3.2) respectively with $x\left(t_{0}\right)=u\left(t_{0}\right)=x_{0}$ and $f: \mathbb{R}^{+} \times \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}, f_{x}$: $\mathbb{R}^{+} \times \mathbb{R}^{n} \rightarrow \mathbb{R}^{n \times n}, g, k: \mathbb{R}^{+} \times \mathbb{R}^{+} \times \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}, g_{x}: \mathbb{R}^{+} \times \mathbb{R}^{+} \times \mathbb{R}^{n} \rightarrow \mathbb{R}^{n \times n}$ and $h: \mathbb{R}^{+} \times \mathbb{R}^{+} \times \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ are continuous functions in their respective domains. Then we have by [2] that $\frac{\partial x}{\partial x_{0}}\left(t, t_{0}, x_{0}\right)=\Phi\left(t, t_{0}, x_{0}\right)$ exists and satisfies the variational equation

$$
\begin{align*}
& x^{\prime}(t)=f_{x}\left(t, x\left(t ; t_{0}, x_{0}\right)\right) z(t) \tag{3.3}\\
&+\int_{t_{0}}^{t} g_{x}\left(t, s, x\left(s ; t_{0}, x_{0}\right)\right) z(s) d s, \quad z\left(t_{0}\right)=I
\end{align*}
$$

On an Inequality of Gronwall

James Adedayo Oguntuase

Title Page
Contents

J. Ineq. Pure and Appl. Math. 2(1) Art. 9, 2001
http://jipam.vu.edu.au

Thus the solutions $x(t)$ and $u(t)$ are related by

$$
\begin{equation*}
u(t)=x(t) \int_{t_{0}}^{t} \Phi(t, s, u(s)) h\left(s, u(s), \int_{t_{0}}^{t} k(s, \tau, u(\tau)) d \tau\right) d s \tag{3.5}
\end{equation*}
$$

Theorem 3.1. Let f, f_{x}, g, g_{x}, k, h, as earlier defined, be nonnegative continuous functions. Suppose that the following inequalities hold:

$$
\begin{align*}
|\Phi(t, s, u)| & \leq M e^{-\alpha(t-s)} \tag{3.6}\\
|\Phi(t, s, u) h(s, u, z)| & \leq p(s)(|u|+|z|), \tag{3.7}\\
|k(t, s, u)| & \leq q(s, s)|y| \tag{3.8}
\end{align*}
$$

for $0 \leq s \leq t, u, z \in \mathbb{R}^{n}, M \geq 1$ and $\alpha>0$ are constants. If $p(t)$ and $q(t, t)$ are continuous and nonnegative and

$$
\begin{equation*}
\int^{\infty} p(s) d s<\infty, \quad \int^{\infty} q(s, s) d s<\infty \tag{3.9}
\end{equation*}
$$

Then for any bounded solution $x\left(t ; t_{0}, x_{0}\right)$ of (3.1) in \mathbb{R}^{+}, then the corresponding solutions of (3.2) is bounded in \mathbb{R}^{+}.

Proof. We have from (3.6)- (3.8) that equation (3.2) gives

$$
|u(t)| \leq M\left|x_{0}\right|+\int_{t_{0}}^{t} p(s)|u(s)| d s+\int_{t_{0}}^{t} p(s)\left(\int_{t_{0}}^{t} q(\tau, \tau)|u(\tau)| d \tau\right) d s
$$

Hence by Theorem 2.1, we have

$$
|u(t)| \leq M\left|x_{0}\right|\left[1+\int_{t_{0}}^{t} p(s) \exp \left(\int_{s_{0}}^{s}(p(\tau)+q(\tau, \tau)) d \tau\right) d s\right]
$$

Hence by (3.9), we easily see that $|u(t)|$ is bounded and the proof is complete.

References

[1] D. BAINOV AND P. SIMEONOV, Integral inequalities and Applications, Academic Publishers, Dordrecht, 1992.
[2] F. BRAUER, A nonlinear variation of constants formula for Volterra equations, Mat. Systems Th., 6 (1972), 226 - 234.
[3] J. CHANDRA AND B.A. FLEISHMAN, On a generalization of GronwallBellman lemma in partially ordered Banach spaces, J. Math. Anal. Appl., 31 (1970), 668 - 681.
[4] J.A. OGUNTUASE, Remarks on Gronwall type inequalities, An. Stiint. Univ. "Al. I. Cuza", t. 45 (1999), in press
[5] B.G. PACHPATTE, A note on Gronwall-Bellman inequality, J. Math. Anal. Appl., 44 (1973), 758- 762.

On an Inequality of Gronwall
James Adedayo Oguntuase

Title Page
Contents

Go Back
Close
Quit
Page 15 of 15

