## Journal of Inequalities in Pure and

 Applied Mathematics http://jipam.vu.edu.au/Volume 2, Issue 1, Article 3, 2001

# ON MULTIPLICATIVELY PERFECT NUMBERS 

J. SÁNDOR<br>Babeş-Bolyai University, 3400 Cluj-Napoca, ROMANIA. jsandor@math.ubbcluj.ro

Received 7 January, 2000; accepted 18 August, 2000
Communicated by L. Toth


#### Abstract

We study multiplicatively perfect, superperfect and analogous numbers . Connection to various arithmetic functions is pointed out. New concepts, inequalities and asymptotic evaluations are introduced.


Key words and phrases: Perfect numbers, arithmetic functions, inequalities in Number theory.
2000 Mathematics Subject Classification. 11A25,11N56, 26D15.

## 1. Introduction

It is well-known that a number $n$ is said to be perfect if the sum of aliquot divisors of $n$ is equal to $n$. By introducing the function $\sigma$ (sum of divisors), this can be written equivalently as

$$
\begin{equation*}
\sigma(n)=2 n \tag{1.1}
\end{equation*}
$$

The Euclid-Euler theorem gives the form of even perfect numbers: $n=2^{k} p$, where $p=$ $2^{k+1}-1$ is prime ("Mersenne prime"). No odd perfect numbers are known. The number $n$ is said to be super-perfect if

$$
\begin{equation*}
\sigma(\sigma(n))=2 n \tag{1.2}
\end{equation*}
$$

The Suryanarayana-Kanold theorem [16], [4] gives the general form of even super-perfect numbers: $n=2^{k}$, where $2^{k+1}-1=p$ is a prime. No odd super-perfect numbers are known. For new proofs of these results, see [10], [11]. Many open problems are stated e.g. in [1], [10].

## 2. m-Perfect Numbers

Let $T(n)$ denote the product of all divisors of $n$. There are many numbers $n$ with the property $T(n)=n^{2}$, but none satisfying $T(T(n))=n^{2}$. Let us call the number $n>1$ multiplicatively perfect (or, for short, $m$-perfect) if

$$
\begin{equation*}
T(n)=n^{2} \tag{2.1}
\end{equation*}
$$

[^0]and multiplicatively super-perfect ( $m$-super-perfect), if
\[

$$
\begin{equation*}
T(T(n))=n^{2} . \tag{2.2}
\end{equation*}
$$

\]

To begin with, we prove the following little result:
Theorem 2.1. All m-perfect numbers $n$ have one of the following forms: $n=p_{1} p_{2}$ or $n=p_{1}^{3}$, where $p_{1}, p_{2}$ are arbitrary, distinct primes. There are no $m$-super-perfect numbers.

Proof. Firstly, we note that if $d_{1}, d_{2}, \ldots, d_{s}$ are all divisors of $n$, then

$$
\left\{d_{1}, d_{2}, \ldots, d_{s}\right\}=\left\{\frac{n}{d_{1}}, \frac{n}{d_{2}}, \ldots, \frac{n}{d_{s}}\right\}
$$

implying that

$$
d_{1} d_{2} \ldots d_{s}=\frac{n}{d_{1}} \cdot \frac{n}{d_{2}} \ldots \frac{n}{d_{s}},
$$

i.e.

$$
\begin{equation*}
T(n)=n^{s / 2} \tag{2.3}
\end{equation*}
$$

where $s=d(n)$ denotes the number of (distinct) divisors of $n$.
Let $n=p_{1}^{\alpha_{1}} \ldots p_{r}^{\alpha_{r}}$ be the prime factorisation of $n>1$. It is well-known that $d(n)=$ $\left(\alpha_{1}+1\right) \ldots\left(\alpha_{r}+1\right)$, so equation (2.1) combined with (2.3) gives

$$
\begin{equation*}
\left(\alpha_{1}+1\right) \ldots\left(\alpha_{r}+1\right)=4 . \tag{2.4}
\end{equation*}
$$

Since $\alpha_{i}+1>1$, for $r \geq 2$ we can have only $\alpha_{1}+1=2, \alpha_{2}+1=2$, implying $\alpha_{1}=\alpha_{2}=1$, i.e. $n=p_{1} p_{2}$. For $r=1$ we have $\alpha_{1}+1=4$, i.e. $\alpha_{1}=3$, giving $n=p^{3}$. There are no other solutions $n>1$ ( $n=1$ is a trivial solution) of equation (2.1).

On the other hand, let us remark that for $n \geq 2$ one has $d(n) \geq 2$, so

$$
\begin{equation*}
T(n) \geq n \tag{2.5}
\end{equation*}
$$

with equality only for $n=$ prime. If $n \neq$ prime, then it is immediate that $d(n) \geq 3$, giving

$$
\begin{equation*}
T(n) \geq n^{3 / 2} \quad \text { for } \quad n \neq \text { prime } \tag{2.6}
\end{equation*}
$$

Now, relations (2.5) and (2.6) together give

$$
\begin{equation*}
T(T(n)) \geq n^{9 / 4}, \quad n \neq \text { prime } . \tag{2.7}
\end{equation*}
$$

Thus, by $9 / 4>2$, there are no non-trivial (i.e. $n \neq 1$ ) $m$-super-perfect numbers. In fact, we have found that the equation

$$
\begin{equation*}
T(T(n))=n^{a}, \quad a \in\left(1, \frac{9}{4}\right) \tag{2.8}
\end{equation*}
$$

has no nontrivial solutions.
Note. According to the referee the notion of " $m$-perfect numbers", as well as Theorem 2.1 appears in [3].
Corollary 2.2. $n=6$ is the only perfect number, which is also m-perfect.
Indeed, $n$ cannot be odd, since by a result of Sylvester, an odd perfect number must have at least five prime divisors. If $n$ is even, then $n=2^{k} p=p_{1} p_{2} \Leftrightarrow k=1$, when $2=p_{1}$ and $2^{2}-1=3$, when $3=p_{2}$. Thus $n=2 \cdot 3=6$.

## 3. $k$ - $m$-PERFECT NUMBERS

In a similar manner, one can define $k$-m-perfect numbers by

$$
\begin{equation*}
T(n)=n^{k} \tag{3.1}
\end{equation*}
$$

where $k \geq 2$ is given. Since the equation $\left(\alpha_{1}+1\right) \ldots\left(\alpha_{r}+1\right)=2 k$ has a finite number of solutions, the general form of $k$-multiply perfect numbers can be determined. We collect certain particular cases in the following.
Theorem 3.1. 1) All tri-m-perfect numbers have the forms $n=p_{1} p_{2}^{2}$ or $n=p_{1}^{5}$;
2) All 4-m-perfect numbers have the forms $n=p_{1} p_{2}^{3}$ or $n=p_{1} p_{2} p_{3}$ or $n=p_{1}^{7}$;
3) All 5-m-perfect numbers have the forms $n=p_{1} p_{2}^{4}$ or $n=p_{1}^{9}$;
4) All 6-m-perfect numbers have the forms $n=p_{1} p_{2} p_{3}^{2}, n=p_{1} p_{2}^{5}, n=p_{1}^{11}$;
5) All 7-m-perfect numbers have the forms $n=p_{1} p_{2}^{6}$, or $n=p_{1}^{13}$;
6) All 8-m-perfect numbers have the forms $n=p_{1} p_{2} p_{3} p_{4}$ or $n=p_{1} p_{2} p_{3}^{3}$ or $n=p_{1}^{3} p_{2}^{3}$, $n=p_{1}^{15}$
7) All 9-m-perfect numbers have the forms $n=p_{1} p_{2}^{2} p_{3}^{2}, n=p_{1} p_{2}^{8}, n=p_{1}^{17}$;
8) All 10-m-perfect numbers have the forms $n=p_{1} p_{2} p_{3}^{4}, n=p_{1} p_{2}^{9}, n=p_{1}^{19}$, etc.
(Here $p_{i}$ denote certain distinct primes.)
Proof. We prove only the case 6). By relation (2.3) we must solve the equation

$$
\begin{equation*}
\left(\alpha_{1}+1\right) \ldots\left(\alpha_{r}+1\right)=16 \tag{3.2}
\end{equation*}
$$

in $\alpha_{r}$ and $r$. It is easy to see that the following four cases are possible:
i) $\alpha_{1}+1=2, \alpha_{2}+1=2, \alpha_{3}+1=2, \alpha_{4}+1=2$;
ii) $\alpha_{1}+1=2, \alpha_{2}+1=2, \alpha_{3}+1=4, \alpha_{4}+1=4$;
iii) $\alpha_{1}+1=4, \alpha_{2}+1=4$;
iv) $\alpha_{1}+1=16$.

This gives the general forms of all 8-m-perfect numbers, namely ( $\alpha_{1}=\alpha_{2}=\alpha_{3}=\alpha_{4}=1$ ) $n=p_{1} p_{2} p_{3} p_{4} ;\left(\alpha_{1}=1, \alpha_{2}=1, \alpha_{3}=3\right) n=p_{1} p_{2} p_{3}^{3} ;\left(\alpha_{1}=3, \alpha_{2}=3\right) n=p_{1}^{3} p_{2}^{3} ;\left(\alpha_{1}=15\right)$ $n=p_{1}^{15}$.

Corollary 3.2. 1) $n=28$ is the single perfect and tri-perfect number.
2) There are no perfect and 4-perfect numbers;
3) $n=496$ is the only perfect number which is 5-m-perfect;
4) There are no perfect numbers which are 6-m-perfect;
5) $n=8128$ is the only perfect number which is 7 -m-perfect.

In fact, we have:
Theorem 3.3. Let $p$ be a prime, with $2^{p}-1$ prime too (i.e. $2^{p}-1$ is a Mersenne prime). Then $2^{p-1}\left(2^{p}-1\right)$ is the only perfect number, which is $p$-m-perfect.

Proof. By writing $\left(\alpha_{1}+1\right) \ldots\left(\alpha_{r}+1\right)=2 p$ ( $p$ prime), the following cases are only possible:
i) $\alpha_{1}+1=2, \alpha_{2}+1=p$;
ii) $\alpha_{1}+1=2 p$.

Then $n=p_{1} p_{2}^{p-1}$ or $n=p_{1}^{2 p-1}$ are the general forms of $p$-m-perfect numbers. By the Euclid-Euler theorem $p_{1} p_{2}^{p-1}=2^{p-1}\left(2^{p}-1\right)$ iff $p_{2}=2$ and $p_{1}=2^{p}-1$ is prime.

Remark 3.4. For $p<10000$ the following Mersenne primes are known; namely for $p=2,3$, $5,7,13,17,19,31,61,89,107,127,521,607,1279,2203,2281,3217,4253,4423,9689$, 9941. It is an open problem to show the existence of infinitely many Mersenne primes ([1]).

## 4. Some Results for $k$ - $m$-Perfect Numbers

As we have seen, the equation 2.2 , i.e. $T(T(n))=n^{2}$ has no nontrivial solutions. A similar problem arises for the equation

$$
\begin{equation*}
T(T(n))=n^{k} ; \quad n>1 \tag{4.1}
\end{equation*}
$$

( $k \geq 2$, fixed). By (2.3) we can see that this is equivalent to

$$
\begin{equation*}
\frac{d(n) d(T(n))}{4}=k \tag{4.2}
\end{equation*}
$$

Let $n=p_{1}^{\alpha_{1}} \ldots p_{r}^{\alpha_{r}}>1$ be the canonical representation of $n$. By $d(n)=\left(\alpha_{1}+1\right) \ldots\left(\alpha_{r}+1\right)$, and (2.3) we have

$$
T(n)=p_{1}^{\alpha_{1}\left(\alpha_{1}+1\right) \ldots\left(\alpha_{r}+1\right) / 2} \ldots p_{r}^{\alpha_{r}\left(\alpha_{1}+1\right) \ldots\left(\alpha_{r}+1\right) / 2}
$$

so (4.2) becomes equivalent to

$$
\begin{equation*}
\left(\alpha_{1}+1\right) \ldots\left(\alpha_{r}+1\right)\left[\frac{\alpha_{1}\left(\alpha_{1}+1\right) \ldots\left(\alpha_{r}+1\right)}{2}+1\right] \ldots\left[\frac{\alpha_{r}\left(\alpha_{1}+1\right) \ldots\left(\alpha_{r}+1\right)}{2}+1\right]=4 k \tag{4.3}
\end{equation*}
$$

and this, clearly has at most a finite number of solutions.
Theorem 4.1. 1) Equation (4.1) is not solvable for $k=4,5,6$;
2) For $k=3$ the general solutions are $n=p_{1}^{2}$;
3) For $k=7$ the solutions are $n=p_{1}^{3}$;
4) For $k=9$ the solutions are: $n=p_{1} p_{2}$ ( $p_{1} \neq p_{2}$ primes $)$.

Proof. For $k=4,5,6$, from (4.3) we must solve the corresponding equations for $16,20,24$. It is a simple exercise to verify these impossibilities. For $k=3$ we have the single equality $12=3 \cdot 4$, when $\alpha_{1}=2, \frac{\alpha_{1}\left(\alpha_{1}+1\right)}{2}+1=4$. For $k=7, \alpha_{1}=3$ by $\frac{3 \cdot 4}{2}+1=7$ and $4 \cdot 7=28$. For $k=9$ we have $2 \cdot 2 \cdot 3 \cdot 3=36$ and $\alpha_{1}=\alpha_{2}=1$.

Corollary 4.2. $n=6$ is the single perfect number which is also 9 -super-m-perfect.
Indeed, $p_{1} p_{2}=2 \cdot\left(2^{2}-1\right)=2 \cdot 3=6$ by Theorem 4.1 and the Euclid-Euler theorem.
Remark 4.3. By relation (2.6), by consecutive iteration we can deduce

$$
\underbrace{T(T(\ldots T(n) \ldots))}_{k} \geq n^{3^{k} / 2^{k}}
$$

for $n \neq$ prime. Since $3^{k}>2^{k} \cdot k$ for all $k \geq 1$ (induction: $3^{k+1}=3 \cdot 3^{k}>3 \cdot 2^{k} \cdot k>$ $2 \cdot 2^{k}(k+1)=2^{k+1}(k+1)$ ) we can obtain the following generalization of equation 2.2):

$$
\underbrace{T(T(\ldots T(n) \ldots))}_{k}=n^{k}
$$

has no nontrivial solutions.

## 5. Other Results

By relation (2.3) we have

$$
\begin{equation*}
\frac{\log T(n)}{\log n}=\frac{d(n)}{2} \tag{5.1}
\end{equation*}
$$

Clearly, this implies

$$
\lim _{n \rightarrow \infty} \inf \frac{\log T(n)}{\log n}=1, \quad \lim _{n \rightarrow \infty} \sup \frac{\log T(n)}{\log n}=+\infty
$$

(take e.g. $n=p$ (prime); $n=2^{k}(k \in \mathbb{N})$ ). Since $2 \leq d(n) \leq 2 \sqrt{n}$ (see e.g. [13]) for $n \geq 2$ we get

$$
1 \leq \frac{\log T(n)}{\log n} \leq \sqrt{n}
$$

By $2^{\omega(n)} \leq d(n) \leq 2^{\Omega(n)}$ (see e.g. [12]) we can deduce:

$$
2^{\omega(n)-1} \leq \frac{\log T(n)}{\log n} \leq 2^{\Omega(n)-1} \quad(n \geq 2)
$$

Since it is known by a theorem of Hardy and Ramanujan [2] that the normal order of magnitude of $\omega(n)$ and $\Omega(n)$ is $\log \log n$, the above double inequality implies that:
the normal order of magnitude of

$$
\begin{equation*}
\log \log T(n)-\log \log n i s(\log 2)(\log \log n-1) \tag{5.2}
\end{equation*}
$$

By a theorem of Wiegert ([17]) we have

$$
\lim _{n \rightarrow \infty} \sup \frac{\log d(n) \log \log n}{\log n}=\log 2
$$

so by (5.1) we get:

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \sup \frac{(\log \log T(n))(\log \log n)}{\log n}=\log 2 \tag{5.3}
\end{equation*}
$$

In fact, by a result of Nicolas and Robin ([7]), for $n \geq 3$ one has

$$
\frac{\log d(n)}{\log 2} \leq c \frac{\log n}{\log \log n} \quad(c \approx 1,5379 \ldots)
$$

we can obtain the following inequality:

$$
\begin{equation*}
\log \log T(n) \leq \log \log n+\frac{k \log n}{\log \log n}-\log 2 \tag{5.4}
\end{equation*}
$$

where $k=c \log 2$ and $n \geq 3$. This gives

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{\log \log T(n)}{f(n)}=0 \tag{5.5}
\end{equation*}
$$

for any positive function with $\frac{\log n}{f(n) \log \log n} \rightarrow 0(n \rightarrow \infty)$.
By $\varphi(n) d(n) \geq n$ (see [14]) and $\varphi(n) d^{2}(n) \leq n^{2}$ for $n \neq 4$ (see [8]) we get

$$
\frac{n}{\varphi(n)} \leq d(n) \leq \frac{n}{\sqrt{\varphi(n)}} \quad \text { for } \quad n>4
$$

and this, by (5.1) yields

$$
\begin{equation*}
\frac{n}{2 \varphi(n)} \leq \frac{\log T(n)}{\log n} \leq \frac{n}{2 \sqrt{\varphi(n)}} \tag{5.6}
\end{equation*}
$$

Here $\varphi$ is the usual Euler totient function.
Hence, the arithmetic function $T$ is connected to the other classical arithmetic functions.
By $\sqrt{n} \leq \frac{\sigma(n)}{d(n)} \leq \frac{n+1}{2}$ (see [14], [5], [6]), we get

$$
\begin{equation*}
\frac{\sigma(n)}{n+1} \leq \frac{\log T(n)}{\log n} \leq \frac{\sigma(n)}{2 \sqrt{n}} \tag{5.7}
\end{equation*}
$$

For infinitely many primes $p$ we have

$$
d(p-1)>\exp \left(c \frac{\log p}{\log \log p}\right)
$$

( $c>0$, constant, see [9]), so we have:

$$
\begin{equation*}
\log \log T(p-1)>\log \log (p-1)+\frac{c \log p}{\log \log p}-\log 2 \tag{5.8}
\end{equation*}
$$

for infinitely many primes $p$, implying, e.g.

$$
\begin{equation*}
\lim _{\substack{p \rightarrow \infty \\ p \text { prime }}} \sup \frac{\log \log T(p-1)}{\log \log p}=+\infty \tag{5.9}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \inf \frac{(\log \log T(n))(\log \log n)}{\log n}>0 \tag{5.10}
\end{equation*}
$$

## References

[1] R.K. GUY, Unsolved Problems in Number Theory, Springer Verlag, $2^{\text {nd }}$ Ed., 1994.
[2] G.H. HARDY AND S. RAMANUJAN, The normal number of prime factors of a number $n$, Quart. J. Math., 48 (1920), 76-92.
[3] K. IRELAND AND M. ROSEN, A Classical Introduction to Modern Number Theory, Springer, 1982, Chapter 2.
[4] H.J. HANOLD, Über super-perfect numbers, Elem. Math., 24 (1969), 61-62.
[5] E.S. LANGFORD, See D.S. Mitrinović and M.S. Popadić, Inequalities in Number Theory, Niš, 1978 (p. 44).
[6] D.S. MITRINOVIĆ AND J. SÁNDOR (in coop. with B. CRSTICI), Handbook of Number Theory, Kluwer Acad. Publ. 1995.
[7] J.L. NICOLAS AND G. ROBIN, Majorantions explicites pour le nombre de diviseurs de $n$, Canad. Math. Bull., 26 (1983), 485-492.
[8] S. PORUBSKY, Problem E2351, Amer. Math. Monthly, 79 (1972), 394.
[9] K. PRACHER, Primzahlverteilung, Berlin, Göttingen, Heidelberg, 1957 (p. 370).
[10] J. SÁNDOR, On the composition of some arithmetic functions, Studia Univ. Babeş-Bolyai, Math., 34(1) (1989), 7-14.
[11] J. SÁNDOR, On perfect and super-perfect numbers (Romanian), Lucr. Semin. Didactica Mat., 8 (1992), 167-168.
[12] J. SÁNDOR, On certain inequalities for arithmetic functions, Notes Numb. Th. Discr. Math., 1 (1995), 27-32.
[13] W. SIERPINSKI, Elementary theory of numbers, Warsawa, 1964.
[14] R. SIVARAMAKRISHNAN AND C.S. VENKATARAMAN, Problem 5326, Amer. Math. Monthly, 72 (1965), 915.
[15] R. SIVARAMAKRISHNAN, Problem E1962, Amer. Math. Monthly, 74 (1967), 198.
[16] D. SURYANARAYANA, Super-perfect numbers, Elem. Math., 24 (1969), 16-17.
[17] S. WIEGERT, Sur l'ordre de grandeur du nombre des diviseurs d'une entière, Arkiv. für Math., 3 (1907), 1-9.


[^0]:    ISSN (electronic): 1443-5756
    (c) 2001 Victoria University. All rights reserved.

    019-99

