Journal of Inequalities in Pure and Applied Mathematics

SOME INEQUALITIES FOR THE DISPERSION OF A RANDOM VARI-ABLE WHOSE PDF IS DEFINED ON A FINITE INTERVAL

NEIL S. BARNETT, PIETRO CERONE, SEVER S. DRAGOMIR AND JOHN ROUMELIOTIS

School of Communications and Informatics Victoria University of Technology PO Box 14428, Melbourne City MC 8001 Victoria, Australia *EMail*: neil@matilda.vu.edu.au

EMail: pc@matilda.vu.edu.au

EMail: sever@matilda.vu.edu.au

EMail: johnr@matilda.vu.edu.au

©2000 School of Communications and Informatics, Victoria University of Technology ISSN (electronic): 1443-5756 020-99

volume 2, issue 1, article 1, 2001.

Received 7 January, 2000; accepted 16 June 2000.

Communicated by: C.E.M. Pearce

Abstract

Some inequalities for the dispersion of a random variable whose pdf is defined on a finite interval and applications are given.

2000 Mathematics Subject Classification: 60E15, 26D15

Key words: Random variable, Expectation, Variance, Dispersion, Grüss Inequality, Chebychev's Inequality, Lupaş Inequality.

Contents

1	Intro	luction	3	
2	Some Inequalities for Dispersion			
3	Pertu	rbed Results Using Grüss Type inequalities	12	
	3.1	Perturbed Results Using 'Premature' Inequalities	13	
	3.2	Alternate Grüss Type Results for Inequalities In-		
		volving the Variance	18	
4	Some Inequalities for Absolutely Continuous P.D.F's			
Refe	erences			

Some Inequalities for the Dispersion of a Random Variable whose PDF is Defined on a Finite Interval

J. Ineq. Pure and Appl. Math. 2(1) Art. 1, 2001 http://jipam.vu.edu.au

1. Introduction

In this note we obtain some inequalities for the dispersion of a continuous random variable X having the probability density function (p.d.f.) f defined on a finite interval [a, b].

Tools used include: Korkine's identity, which plays a central role in the proof of Chebychev's integral inequality for synchronous mappings [24], Hölder's weighted inequality for double integrals and an integral identity connecting the variance $\sigma^2(X)$ and the expectation E(X). Perturbed results are also obtained by using Grüss, Chebyshev and Lupaş inequalities. In Section 4, results from an identity involving a double integral are obtained for a variety of norms.

Some Inequalities for the Dispersion of a Random Variable whose PDF is Defined on a Finite Interval

J. Ineq. Pure and Appl. Math. 2(1) Art. 1, 2001 http://jipam.vu.edu.au

2. Some Inequalities for Dispersion

Let $f:[a,b] \subset \mathbb{R} \to \mathbb{R}_+$ be the p.d.f. of the random variable X and

$$E\left(X\right) := \int_{a}^{b} tf\left(t\right) dt$$

its expectation and

$$\sigma(X) = \left[\int_{a}^{b} (t - E(X))^{2} f(t) dt\right]^{\frac{1}{2}} = \left[\int_{a}^{b} t^{2} f(t) dt - [E(X)]^{2}\right]^{\frac{1}{2}}$$

its *dispersion* or *standard deviation*. The following theorem holds.

Theorem 2.1. With the above assumptions, we have

$$(2.1) \quad 0 \le \sigma(X) \le \begin{cases} \frac{\sqrt{3}(b-a)^2}{6} \|f\|_{\infty}, & \text{provided} \quad f \in L_{\infty}, [a, b]; \\ \frac{\sqrt{2}(b-a)^{1+\frac{1}{q}}}{2[(q+1)(2q+1)]^{\frac{2}{q}}} \|f\|_{p}, & \text{provided} \quad f \in L_{p}[a, b] \\ & \text{and} & p > 1, \frac{1}{p} + \frac{1}{q} = 1; \\ \frac{\sqrt{2}(b-a)}{2}. \end{cases}$$

Proof. Korkine's identity [24], is

(2.2)
$$\int_{a}^{b} p(t) dt \int_{a}^{b} p(t) g(t) h(t) dt - \int_{a}^{b} p(t) g(t) dt \cdot \int_{a}^{b} p(t) h(t) dt = \frac{1}{2} \int_{a}^{b} \int_{a}^{b} p(t) p(s) (g(t) - g(s)) (h(t) - h(s)) dt ds,$$

Some Inequalities for the Dispersion of a Random Variable whose PDF is Defined on a Finite Interval

J. Ineq. Pure and Appl. Math. 2(1) Art. 1, 2001 http://jipam.vu.edu.au

which holds for the measurable mappings $p, g, h : [a, b] \to \mathbb{R}$ for which the integrals involved in (2.2) exist and are finite. Choose in (2.2) p(t) = f(t), g(t) = h(t) = t - E(X), $t \in [a, b]$ to get

(2.3)
$$\sigma^{2}(X) = \frac{1}{2} \int_{a}^{b} \int_{a}^{b} f(t) f(s) (t-s)^{2} dt ds.$$

It is obvious that

(2.4)
$$\int_{a}^{b} \int_{a}^{b} f(t) f(s) (t-s)^{2} dt ds$$
$$\leq \sup_{(t,s)\in[a,b]^{2}} |f(t) f(s)| \int_{a}^{b} \int_{a}^{b} (t-s)^{2} dt ds$$
$$= \frac{(b-a)^{4}}{6} ||f||_{\infty}^{2}$$

and then, by (2.3), we obtain the first part of (2.1).

For the second part, we apply Hölder's integral inequality for double integrals to obtain

$$\begin{split} \int_{a}^{b} \int_{a}^{b} f(t) f(s) (t-s)^{2} dt ds \\ &\leq \left(\int_{a}^{b} \int_{a}^{b} f^{p}(t) f^{p}(s) dt ds \right)^{\frac{1}{p}} \left(\int_{a}^{b} \int_{a}^{b} (t-s)^{2q} dt ds \right)^{\frac{1}{q}} \\ &= \|f\|_{p}^{2} \left[\frac{(b-a)^{2q+2}}{(q+1)(2q+1)} \right]^{\frac{1}{q}}, \end{split}$$

Some Inequalities for the Dispersion of a Random Variable whose PDF is Defined on a Finite Interval

Title Page		
Contents		
44	••	
•	•	
Go Back		
Close		
Quit		
Page <mark>5</mark> of <mark>41</mark>		

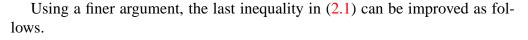
J. Ineq. Pure and Appl. Math. 2(1) Art. 1, 2001 http://jipam.vu.edu.au

where p > 1 and $\frac{1}{p} + \frac{1}{q} = 1$, and the second inequality in (2.1) is proved. For the last part, observe that

$$\int_{a}^{b} \int_{a}^{b} f(t) f(s) (t-s)^{2} dt ds \leq \sup_{(t,s) \in [a,b]^{2}} (t-s)^{2} \int_{a}^{b} \int_{a}^{b} f(t) f(s) dt ds$$
$$= (b-a)^{2}$$

as

$$\int_{a}^{b} \int_{a}^{b} f(t) f(s) dt ds = \int_{a}^{b} f(t) dt \int_{a}^{b} f(s) ds = 1.$$



Theorem 2.2. Under the above assumptions, we have

$$(2.5) 0 \le \sigma(X) \le \frac{1}{2}(b-a).$$

Proof. We use the following Grüss type inequality:

(2.6)
$$0 \le \frac{\int_{a}^{b} p(t) g^{2}(t) dt}{\int_{a}^{b} p(t) dt} - \left(\frac{\int_{a}^{b} p(t) g(t) dt}{\int_{a}^{b} p(t) dt}\right)^{2} \le \frac{1}{4} \left(M - m\right)^{2},$$

provided that p, g are measurable on [a, b] and all the integrals in (2.6) exist and are finite, $\int_a^b p(t) dt > 0$ and $m \le g \le M$ a.e. on [a, b]. For a proof of this inequality see [19].

Some Inequalities for the Dispersion of a Random Variable whose PDF is Defined on a Finite Interval

J. Ineq. Pure and Appl. Math. 2(1) Art. 1, 2001 http://jipam.vu.edu.au

Choose in (2.6), p(t) = f(t), g(t) = t - E(X), $t \in [a, b]$. Observe that in this case m = a - E(X), M = b - E(X) and then, by (2.6) we deduce (2.5).

Remark 2.1. The same conclusion can be obtained for the choice p(t) = f(t) and $g(t) = t, t \in [a, b]$.

The following result holds.

Theorem 2.3. Let X be a random variable having the p.d.f. given by $f : [a, b] \subset \mathbb{R} \to \mathbb{R}_+$. Then for any $x \in [a, b]$ we have the inequality:

$$(2.7) \quad \sigma^{2} (X) + (x - E(X))^{2} \\ \leq \begin{cases} (b - a) \left[\frac{(b - a)^{2}}{12} + \left(x - \frac{a + b}{2} \right)^{2} \right] \|f\|_{\infty}, \quad \text{provided} \quad f \in L_{\infty} [a, b]; \\ \left[\frac{(b - x)^{2q + 1} + (x - a)^{2q + 1}}{2q + 1} \right]^{\frac{1}{q}} \|f\|_{p}, \qquad \text{provided} \quad f \in L_{p} [a, b], \, p > 1, \\ and \qquad \frac{1}{p} + \frac{1}{q} = 1; \\ \left(\frac{b - a}{2} + \left| x - \frac{a + b}{2} \right| \right)^{2}. \end{cases}$$

Proof. We observe that

(2.8)
$$\int_{a}^{b} (x-t)^{2} f(t) dt = \int_{a}^{b} (x^{2} - 2xt + t^{2}) f(t) dt$$
$$= x^{2} - 2xE(X) + \int_{a}^{b} t^{2} f(t) dt$$

Some Inequalities for the **Dispersion of a Random** Variable whose PDF is Defined on a Finite Interval Neil S. Barnett, Pietro Cerone, Sever S. Dragomir and John Roumeliotis **Title Page** Contents 44 Go Back Close Quit Page 7 of 41

J. Ineq. Pure and Appl. Math. 2(1) Art. 1, 2001 http://jipam.vu.edu.au

and as

(2.9)
$$\sigma^{2}(X) = \int_{a}^{b} t^{2} f(t) dt - [E(X)]^{2},$$

we get, by (2.8) and (2.9),

(2.10)
$$[x - E(X)]^2 + \sigma^2(X) = \int_a^b (x - t)^2 f(t) dt,$$

which is of interest in itself too.

We observe that

$$\begin{aligned} \int_{a}^{b} (x-t)^{2} f(t) dt &\leq ess \sup_{t \in [a,b]} |f(t)| \int_{a}^{b} (x-t)^{2} dt \\ &= \|f\|_{\infty} \frac{(b-x)^{3} + (x-a)^{3}}{3} \\ &= (b-a) \|f\|_{\infty} \left[\frac{(b-a)^{2}}{12} + \left(x - \frac{a+b}{2}\right)^{2} \right] \end{aligned}$$

and the first inequality in (2.7) is proved.

For the second inequality, observe that by Hölder's integral inequality,

$$\begin{split} \int_{a}^{b} (x-t)^{2} f(t) dt &\leq \left(\int_{a}^{b} f^{p}(t) dt \right)^{\frac{1}{p}} \left(\int_{a}^{b} (x-t)^{2q} dt \right)^{\frac{1}{q}} \\ &= \|f\|_{p} \left[\frac{(b-x)^{2q+1} + (x-a)^{2q+1}}{2q+1} \right]^{\frac{1}{q}}, \end{split}$$

Some Inequalities for the Dispersion of a Random Variable whose PDF is Defined on a Finite Interval

J. Ineq. Pure and Appl. Math. 2(1) Art. 1, 2001 http://jipam.vu.edu.au

and the second inequality in (2.7) is established. Finally, observe that,

$$\int_{a}^{b} (x-t)^{2} f(t) dt \leq \sup_{t \in [a,b]} (x-t)^{2} \int_{a}^{b} f(t) dt$$

= $\max \{ (x-a)^{2}, (b-x)^{2} \}$
= $(\max \{ x-a, b-x \})^{2}$
= $\left(\frac{b-a}{2} + \left| x - \frac{a+b}{2} \right| \right)^{2},$

and the theorem is proved.

The following corollaries are easily deduced.

Corollary 2.4. With the above assumptions, we have

$$(2.11) \quad 0 \leq \sigma(X) \\ \leq \begin{cases} (b-a)^{\frac{1}{2}} \left[\frac{(b-a)^2}{12} + \left(E(X) - \frac{a+b}{2}\right)^2\right]^{\frac{1}{2}} \|f\|_{\infty}^{\frac{1}{2}}, \\ provided \ f \in L_{\infty} [a,b]; \\ \left[\frac{(b-E(X))^{2q+1} + (E(X)-a)^{2q+1}}{2q+1}\right]^{\frac{1}{2}q} \|f\|_{p}^{\frac{1}{2}}, \\ if \ f \in L_{p} [a,b], \ p > 1 \ and \ \frac{1}{p} + \frac{1}{q} = 1; \\ \frac{b-a}{2} + \left|E(X) - \frac{a+b}{2}\right|. \end{cases}$$

Some Inequalities for the Dispersion of a Random Variable whose PDF is Defined on a Finite Interval

Neil S. Barnett, Pietro Cerone, Sever S. Dragomir and John Roumeliotis

,

J. Ineq. Pure and Appl. Math. 2(1) Art. 1, 2001 http://jipam.vu.edu.au

Remark 2.2. The last inequality in (2.12) is worse than the inequality (2.5), obtained by a technique based on Grüss' inequality.

The best inequality we can get from (2.7) is that one for which $x = \frac{a+b}{2}$, and this applies for all the bounds since

$$\min_{x \in [a,b]} \left[\frac{(b-a)^2}{12} + \left(x - \frac{a+b}{2} \right)^2 \right] = \frac{(b-a)^2}{12}, \\
\min_{x \in [a,b]} \frac{(b-x)^{2q+1} + (x-a)^{2q+1}}{2q+1} = \frac{(b-a)^{2q+1}}{2^{2q}(2q+1)},$$

and

$$\min_{x \in [a,b]} \left[\frac{b-a}{2} + \left| x - \frac{a+b}{2} \right| \right] = \frac{b-a}{2}.$$

Consequently, we can state the following corollary as well.

Corollary 2.5. With the above assumptions, we have the inequality:

$$(2.12) \quad 0 \leq \sigma^{2} (X) + \left[E(X) - \frac{a+b}{2} \right]^{2} \\ \leq \begin{cases} \frac{(b-a)^{3}}{12} \|f\|_{\infty}, \quad provided \quad f \in L_{\infty} [a,b]; \\ \frac{(b-a)^{2q+1}}{4(2q+1)^{\frac{1}{q}}} \|f\|_{p}, \quad if \qquad f \in L_{p} [a,b], \ p > 1, \\ and \qquad \frac{1}{p} + \frac{1}{q} = 1; \\ \frac{(b-a)^{2}}{4}. \end{cases}$$

Some Inequalities for the Dispersion of a Random Variable whose PDF is Defined on a Finite Interval

J. Ineq. Pure and Appl. Math. 2(1) Art. 1, 2001 http://jipam.vu.edu.au

Remark 2.3. From the last inequality in (2.12), we obtain

(2.13)
$$0 \le \sigma^2(X) \le (b - E(X))(E(X) - a) \le \frac{1}{4}(b - a)^2,$$

which is an improvement on (2.5).

Some Inequalities for the Dispersion of a Random Variable whose PDF is Defined on a Finite Interval

Neil S. Barnett, Pietro Cerone, Sever S. Dragomir and John Roumeliotis

J. Ineq. Pure and Appl. Math. 2(1) Art. 1, 2001 http://jipam.vu.edu.au

3. Perturbed Results Using Grüss Type inequalities

In 1935, G. Grüss (see for example [26]) proved the following integral inequality which gives an approximation for the integral of a product in terms of the product of the integrals.

Theorem 3.1. Let $h, g : [a, b] \to \mathbb{R}$ be two integrable mappings such that $\phi \leq h(x) \leq \Phi$ and $\gamma \leq g(x) \leq \Gamma$ for all $x \in [a, b]$, where $\phi, \Phi, \gamma, \Gamma$ are real numbers. Then,

(3.1)
$$|T(h,g)| \leq \frac{1}{4} \left(\Phi - \phi \right) \left(\Gamma - \gamma \right),$$

where

(3.2)
$$T(h,g) = \frac{1}{b-a} \int_{a}^{b} h(x) g(x) dx$$

 $-\frac{1}{b-a} \int_{a}^{b} h(x) dx \cdot \frac{1}{b-a} \int_{a}^{b} g(x) dx$

and the inequality is sharp, in the sense that the constant $\frac{1}{4}$ cannot be replaced by a smaller one.

For a simple proof of this as well as for extensions, generalisations, discrete variants and other associated material, see [25], and [1]-[21] where further references are given.

A 'premature' Grüss inequality is embodied in the following theorem which was proved in [23]. It provides a sharper bound than the above Grüss inequality.

Some Inequalities for the Dispersion of a Random Variable whose PDF is Defined on a Finite Interval

Title Page		
Contents		
44	••	
•	•	
Go Back		
Close		
Quit		
Page 12 of 41		

J. Ineq. Pure and Appl. Math. 2(1) Art. 1, 2001 http://jipam.vu.edu.au

Theorem 3.2. Let h, g be integrable functions defined on [a, b] and let $d \leq g(t) \leq D$. Then

(3.3)
$$|T(h,g)| \le \frac{D-d}{2} |T(h,h)|^{\frac{1}{2}},$$

where T(h,g) is as defined in (3.2).

Theorem 3.2 will now be used to provide a perturbed rule involving the variance and mean of a p.d.f.

3.1. Perturbed Results Using 'Premature' Inequalities

In this subsection we develop some perturbed results.

Theorem 3.3. Let X be a random variable having the p.d.f. given by $f : [a, b] \subset \mathbb{R} \to \mathbb{R}_+$. Then for any $x \in [a, b]$ and $m \leq f(x) \leq M$ we have the inequality

3.4)
$$|P_V(x)|$$

 $:= \left| \sigma^2 (X) + (x - E(X))^2 - \frac{(b-a)^2}{12} - \left(x - \frac{a+b}{2}\right)^2 \right|$
 $\leq \frac{M-m}{2} \cdot \frac{(b-a)^2}{\sqrt{45}} \left[\left(\frac{b-a}{2}\right)^2 + 15\left(x - \frac{a+b}{2}\right) \right]^{\frac{1}{2}}$
 $\leq (M-m) \frac{(b-a)^3}{\sqrt{45}}.$

Some Inequalities for the Dispersion of a Random Variable whose PDF is Defined on a Finite Interval

J. Ineq. Pure and Appl. Math. 2(1) Art. 1, 2001 http://jipam.vu.edu.au

Proof. Applying the 'premature' Grüss result (3.3) by associating g(t) with f(t) and $h(t) = (x - t)^2$, gives, from (3.1)-(3.3)

(3.5)
$$\left| \int_{a}^{b} (x-t)^{2} f(t) dt - \frac{1}{b-a} \int_{a}^{b} (x-t)^{2} dt \cdot \int_{a}^{b} f(t) dt \right| \leq (b-a) \frac{M-m}{2} [T(h,h)]^{\frac{1}{2}},$$

where from (3.2)

(3.6)
$$T(h,h) = \frac{1}{b-a} \int_{a}^{b} (x-t)^{4} dt - \left[\frac{1}{b-a} \int_{a}^{b} (x-t)^{2} dt\right]^{2}.$$

Now,

(3.7)
$$\frac{1}{b-a} \int_{a}^{b} (x-t)^{2} dt = \frac{(x-a)^{3} + (b-x)^{3}}{3(b-a)}$$
$$= \frac{1}{3} \left(\frac{b-a}{2}\right)^{2} + \left(x - \frac{a+b}{2}\right)^{2}$$

and

$$\frac{1}{b-a} \int_{a}^{b} (x-t)^{4} dt = \frac{(x-a)^{5} + (b-x)^{5}}{5(b-a)}$$

giving, for (3.6),

(3.8)
$$45T(h,h) = 9\left[\frac{(x-a)^5 + (b-x)^5}{b-a}\right] - 5\left[\frac{(x-a)^3 + (b-x)^3}{b-a}\right]^2$$

Some Inequalities for the Dispersion of a Random Variable whose PDF is Defined on a Finite Interval

0

J. Ineq. Pure and Appl. Math. 2(1) Art. 1, 2001 http://jipam.vu.edu.au

Let A = x - a and B = b - x in (3.8) to give

$$45T(h,h) = 9\left(\frac{A^5 + B^5}{A + B}\right) - 5\left(\frac{A^3 + B^3}{A + B}\right)^2$$

= 9 [A⁴ - A³B + A²B² - AB³ + B⁴] - 5 [A² - AB + B²]²
= (4A² - 7AB + 4B²) (A + B)²
= [$\left(\frac{A + B}{2}\right)^2 + 15\left(\frac{A - B}{2}\right)^2$] (A + B)².

Using the facts that A + B = b - a and A - B = 2x - (a + b) gives

(3.9)
$$T(h,h) = \frac{(b-a)^2}{45} \left[\left(\frac{b-a}{2} \right)^2 + 15 \left(x - \frac{a+b}{2} \right)^2 \right]$$

and from (3.7)

$$\frac{1}{b-a} \int_{a}^{b} (x-t)^{2} dt = \frac{A^{3} + B^{3}}{3(A+B)}$$
$$= \frac{1}{3} \left[A^{2} - AB + B^{2} \right]$$
$$= \frac{1}{3} \left[\left(\frac{A+B}{2} \right)^{2} + 3 \left(\frac{A-B}{2} \right)^{2} \right],$$

giving

(3.10)
$$\frac{1}{b-a} \int_{a}^{b} (x-t)^{2} dt = \frac{(b-a)^{2}}{12} + \left(x - \frac{a+b}{2}\right)^{2}.$$

Some Inequalities for the Dispersion of a Random Variable whose PDF is Defined on a Finite Interval



J. Ineq. Pure and Appl. Math. 2(1) Art. 1, 2001 http://jipam.vu.edu.au

Hence, from (3.5), (3.9) (3.10) and (2.10), the first inequality in (3.4) results. The coarsest uniform bound is obtained by taking x at either end point. Thus the theorem is completely proved.

Remark 3.1. The best inequality obtainable from (3.4) is at $x = \frac{a+b}{2}$ giving

(3.11)
$$\left| \sigma^{2}(X) + \left[E(X) - \frac{a+b}{2} \right]^{2} - \frac{(b-a)^{2}}{12} \right| \leq \frac{M-m}{12} \frac{(b-a)^{3}}{\sqrt{5}}$$

The result (3.11) is a tighter bound than that obtained in the first inequality of (2.12) since $0 < M - m < 2 ||f||_{\infty}$.

For a symmetric p.d.f. $E(X) = \frac{a+b}{2}$ and so the above results would give bounds on the variance.

The following results hold if the p.d.f f(x) is differentiable, that is, for f(x) absolutely continuous.

Theorem 3.4. Let the conditions on Theorem 3.1 be satisfied. Further, suppose that f is differentiable and is such that

$$\left\|f'\right\|_{\infty} := \sup_{t \in [a,b]} \left|f'(t)\right| < \infty.$$

Then

(3.12)
$$|P_V(x)| \le \frac{b-a}{\sqrt{12}} \|f'\|_{\infty} \cdot I(x),$$

where $P_V(x)$ is given by the left hand side of (3.4) and,

(3.13)
$$I(x) = \frac{(b-a)^2}{\sqrt{45}} \left[\left(\frac{b-a}{2} \right)^2 + 15 \left(x - \frac{a+b}{2} \right)^2 \right]^{\frac{1}{2}}$$

Some Inequalities for the Dispersion of a Random Variable whose PDF is Defined on a Finite Interval

J. Ineq. Pure and Appl. Math. 2(1) Art. 1, 2001 http://jipam.vu.edu.au

Proof. Let $h, g : [a, b] \to \mathbb{R}$ be absolutely continuous and h', g' be bounded. Then Chebychev's inequality holds (see [23])

$$|T(h,g)| \le \frac{(b-a)^2}{12} \sup_{t\in[a,b]} |h'(t)| \cdot \sup_{t\in[a,b]} |g'(t)|.$$

Matić, Pečarić and Ujević [23] using a '*premature*' Grüss type argument proved that

(3.14)
$$|T(h,g)| \le \frac{(b-a)}{\sqrt{12}} \sup_{t \in [a,b]} |g'(t)| \sqrt{T(h,h)}.$$

Associating $f(\cdot)$ with $g(\cdot)$ and $(x - \cdot)^2$ with $h(\cdot)$ in (3.13) gives, from (3.5) and (3.9), $I(x) = (b-a) [T(h,h)]^{\frac{1}{2}}$, which simplifies to (3.13) and the theorem is proved.

Theorem 3.5. Let the conditions of Theorem 3.3 be satisfied. Further, suppose that f is locally absolutely continuous on (a, b) and let $f' \in L_2(a, b)$. Then

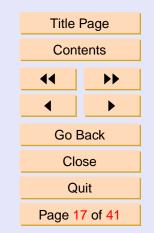
(3.15)
$$|P_V(x)| \le \frac{b-a}{\pi} \|f'\|_2 \cdot I(x),$$

where $P_V(x)$ is the left hand side of (3.4) and I(x) is as given in (3.13).

Proof. The following result was obtained by Lupaş (see [23]). For $h, g : (a, b) \rightarrow \mathbb{R}$ locally absolutely continuous on (a, b) and $h', g' \in L_2(a, b)$, then

$$|T(h,g)| \le \frac{(b-a)^2}{\pi^2} ||h'||_2^{\dagger} ||g'||_2^{\dagger}$$

Some Inequalities for the Dispersion of a Random Variable whose PDF is Defined on a Finite Interval



J. Ineq. Pure and Appl. Math. 2(1) Art. 1, 2001 http://jipam.vu.edu.au

where

$$||k||_{2}^{\dagger} := \left(\frac{1}{b-a} \int_{a}^{b} |k(t)|^{2}\right)^{\frac{1}{2}} \text{ for } k \in L_{2}(a,b).$$

Matić, Pečarić and Ujević [23] further show that

(3.16)
$$|T(h,g)| \le \frac{b-a}{\pi} \|g'\|_2^{\dagger} \sqrt{T(h,h)}.$$

Associating $f(\cdot)$ with $g(\cdot)$ and $(x - \cdot)^2$ with h in (3.16) gives (3.15), where I(x) is as found in (3.13), since from (3.5) and (3.9), $I(x) = (b - a) [T(h, h)]^{\frac{1}{2}}$.

3.2. Alternate Grüss Type Results for Inequalities Involving the Variance

Let

$$(3.17) S(h(x)) = h(x) - \mathcal{M}(h)$$

where

(3.18)
$$\mathcal{M}(h) = \frac{1}{b-a} \int_{a}^{b} h(u) \, du.$$

Then from (3.2),

(3.19) $T(h,g) = \mathcal{M}(hg) - \mathcal{M}(h) \mathcal{M}(g).$

Some Inequalities for the Dispersion of a Random Variable whose PDF is Defined on a Finite Interval

J. Ineq. Pure and Appl. Math. 2(1) Art. 1, 2001 http://jipam.vu.edu.au

Dragomir and McAndrew [19] have shown, that

(3.20)
$$T(h,g) = T(S(h), S(g))$$

and proceeded to obtain bounds for a trapezoidal rule. Identity (3.20) is now applied to obtain bounds for the variance.

Theorem 3.6. Let X be a random variable having the p.d.f. $f : [a,b] \subset \mathbb{R} \to \mathbb{R}_+$. Then for any $x \in [a,b]$ the following inequality holds, namely,

(3.21)
$$|P_V(x)| \le \frac{8}{3}\nu^3(x) \left\| f(\cdot) - \frac{1}{b-a} \right\|_{\infty} \text{ if } f \in L_{\infty}[a,b],$$

where $P_V(x)$ is as defined by the left hand side of (3.4), and $\nu = \nu(x) = \frac{1}{3} \left(\frac{b-a}{2}\right)^2 + \left(x - \frac{a+b}{2}\right)^2$.

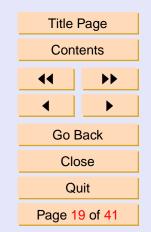
Proof. Using identity (3.20), associate with $h(\cdot)$, $(x - \cdot)^2$ and $f(\cdot)$ with $g(\cdot)$. Then

(3.22)
$$\int_{a}^{b} (x-t)^{2} f(t) dt - \mathcal{M} \left((x-\cdot)^{2} \right) \\ = \int_{a}^{b} \left[(x-t)^{2} - \mathcal{M} \left((x-\cdot)^{2} \right) \right] \left[f(t) - \frac{1}{b-a} \right] dt,$$

where from (3.18),

$$\mathcal{M}\left((x-\cdot)^2\right) = \frac{1}{b-a} \int_a^b (x-t)^2 dt = \frac{1}{3(b-a)} \left[(x-a)^3 + (b-x)^3 \right]$$

Some Inequalities for the Dispersion of a Random Variable whose PDF is Defined on a Finite Interval



J. Ineq. Pure and Appl. Math. 2(1) Art. 1, 2001 http://jipam.vu.edu.au

and so

(3.23)
$$3\mathcal{M}\left((x-\cdot)^2\right) = \left(\frac{b-a}{2}\right)^2 + 3\left(x-\frac{a+b}{2}\right)^2.$$

Further, from (3.17),

$$S\left((x-\cdot)^2\right) = (x-t)^2 - \mathcal{M}\left((x-\cdot)^2\right)$$

and so, on using (3.23)

(3.24)
$$S\left((x-\cdot)^2\right) = (x-t)^2 - \frac{1}{3}\left(\frac{b-a}{2}\right)^2 - \left(x-\frac{a+b}{2}\right)^2.$$

Now, from (3.22) and using (2.10), (3.23) and (3.24), the following identity is obtained

(3.25)
$$\sigma^{2}(X) + [x - E(X)]^{2} - \frac{1}{3} \left[\left(\frac{b - a}{2} \right)^{2} + 3 \left(x - \frac{a + b}{2} \right)^{2} \right]$$
$$= \int_{a}^{b} S\left((x - t)^{2} \right) \left(f(t) - \frac{1}{b - a} \right) dt,$$

where $S\left(\cdot\right)$ is as given by (3.24). Taking the modulus of (3.25) gives

(3.26)
$$|P_V(x)| = \left| \int_a^b S\left((x-t)^2 \right) \left(f(t) - \frac{1}{b-a} \right) dt \right|$$

Observe that under different assumptions with regard to the norms of the p.d.f. f(x) we may obtain a variety of bounds.

Some Inequalities for the Dispersion of a Random Variable whose PDF is Defined on a Finite Interval

J. Ineq. Pure and Appl. Math. 2(1) Art. 1, 2001 http://jipam.vu.edu.au

For $f \in L_{\infty}[a, b]$ then

(3.27)
$$|P_V(x)| \le \left\| f(\cdot) - \frac{1}{b-a} \right\|_{\infty} \int_a^b \left| S\left((x-t)^2 \right) \right| dt.$$

Now, let

(3.28)
$$S((x-t)^{2}) = (t-x)^{2} - \nu^{2} = (t-X_{-})(t-X_{+}),$$

where

(3.29)

$$\nu^{2} = \mathcal{M}\left((x-\cdot)^{2}\right)$$

= $\frac{(x-a)^{3}+(b-x)^{3}}{3(b-a)}$
= $\frac{1}{3}\left(\frac{b-a}{2}\right)^{2}+\left(x-\frac{a+b}{2}\right)^{2},$

and

(3.30)
$$X_{-} = x - \nu, \quad X_{+} = x + \nu.$$

Then,

(3.31)
$$H(t) = \int S((x-t)^{2}) dt$$
$$= \int [(t-x)^{2} - \nu^{2}] dt$$
$$= \frac{(t-x)^{3}}{3} - \nu^{2}t + k$$

Some Inequalities for the Dispersion of a Random Variable whose PDF is Defined on a Finite Interval

J. Ineq. Pure and Appl. Math. 2(1) Art. 1, 2001 http://jipam.vu.edu.au

and so from (3.31) and using (3.28) - (3.29) gives,

$$(3.32) \int_{a}^{b} \left| S\left((x-t)^{2} \right) \right| dt$$

$$= H\left(X_{-} \right) - H\left(a \right) - \left[H\left(X_{+} \right) - H\left(X_{-} \right) \right] + \left[H\left(b \right) - H\left(X_{+} \right) \right]$$

$$= 2\left[H\left(X_{-} \right) - H\left(X_{+} \right) \right] + H\left(b \right) - H\left(a \right)$$

$$= 2\left\{ -\frac{\nu^{3}}{3} - \nu^{2} X_{-} - \frac{\nu^{3}}{3} + \nu^{2} X_{+} \right\}$$

$$+ \frac{\left(b - x \right)^{3}}{3} - \nu^{2} b + \frac{\left(x - a \right)^{3}}{3} + \nu^{2} a$$

$$= 2\left[2\nu^{3} - \frac{2}{3}\nu^{3} \right] + \frac{\left(b - x \right)^{3} + \left(x - a \right)^{3}}{3} - \nu^{2} \left(b - a \right)$$

$$= \frac{8}{3}\nu^{3}.$$

Thus, substituting into (3.27), (3.26) and using (3.29) readily produces the result (3.21) and the theorem is proved.

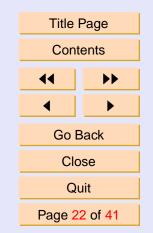
Remark 3.2. Other bounds may be obtained for $f \in L_p[a, b]$, $p \ge 1$ however obtaining explicit expressions for these bounds is somewhat intricate and will not be considered further here. They involve the calculation of

$$\sup_{t \in [a,b]} \left| (t-x)^2 - \nu^2 \right| = \max\left\{ \left| (x-a)^2 - \nu^2 \right|, \nu^2, \left| (b-x)^2 - \nu^2 \right| \right\}$$

for $f \in L_1[a, b]$ and

$$\left(\int_{a}^{b} \left|\left(t-x\right)^{2}-\nu^{2}\right|^{q} dt\right)^{\frac{1}{q}}$$

Some Inequalities for the Dispersion of a Random Variable whose PDF is Defined on a Finite Interval



J. Ineq. Pure and Appl. Math. 2(1) Art. 1, 2001 http://jipam.vu.edu.au

for $f \in L_p[a, b], \frac{1}{p} + \frac{1}{q} = 1, p > 1$, where ν^2 is given by (3.29).

Some Inequalities for the Dispersion of a Random Variable whose PDF is Defined on a Finite Interval

Neil S. Barnett, Pietro Cerone, Sever S. Dragomir and John Roumeliotis

J. Ineq. Pure and Appl. Math. 2(1) Art. 1, 2001 http://jipam.vu.edu.au

4. Some Inequalities for Absolutely Continuous P.D.F's

We start with the following lemma which is interesting in itself.

Lemma 4.1. Let X be a random variable whose probability density function $f : [a, b] \rightarrow \mathbb{R}_+$ is absolutely continuous on [a, b]. Then we have the identity

(4.1)
$$\sigma^{2}(X) + [E(X) - x]^{2} = \frac{(b-a)^{2}}{12} + \left(x - \frac{a+b}{2}\right)^{2} + \frac{1}{b-a} \int_{a}^{b} \int_{a}^{b} (t-x)^{2} p(t,s) f'(s) \, ds dt,$$

where the kernel $p: [a, b]^2 \to \mathbb{R}$ is given by

$$p(t,s) := \begin{cases} s-a, & \text{if } a \le s \le t \le b, \\ s-b, & \text{if } a \le t < s \le b, \end{cases}$$

for all $x \in [a, b]$.

Proof. We use the identity (see (2.10))

(4.2)
$$\sigma^{2}(X) + [E(X) - x]^{2} = \int_{a}^{b} (x - t)^{2} f(t) dt$$

for all $x \in [a, b]$.

Some Inequalities for the Dispersion of a Random Variable whose PDF is Defined on a Finite Interval

J. Ineq. Pure and Appl. Math. 2(1) Art. 1, 2001 http://jipam.vu.edu.au

On the other hand, we know that (see for example [22] for a simple proof using integration by parts)

(4.3)
$$f(t) = \frac{1}{b-a} \int_{a}^{b} f(s) \, ds + \frac{1}{b-a} \int_{a}^{b} p(t,s) \, f'(s) \, ds$$

for all $t \in [a, b]$.

Substituting (4.3) in (4.2) we obtain

$$(4.4) \ \sigma^{2} (X) + [E (X) - x]^{2} \\= \int_{a}^{b} (t - x)^{2} \left[\frac{1}{b - a} \int_{a}^{b} f(s) \, ds + \frac{1}{b - a} \int_{a}^{b} p(t, s) \, f'(s) \, ds \right] dt \\= \frac{1}{b - a} \cdot \frac{1}{3} \left[(x - a)^{3} + (b - x)^{3} \right] \\+ \frac{1}{b - a} \int_{a}^{b} \int_{a}^{b} (t - x)^{2} p(t, s) \, f'(s) \, ds dt.$$

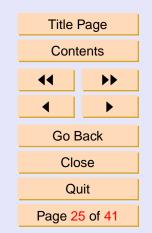
Taking into account the fact that

$$\frac{1}{3}\left[(x-a)^3 + (b-x)^3\right] = \frac{(b-a)^2}{12} + \left(x - \frac{a+b}{2}\right)^2, \ x \in [a,b],$$

then, by (4.4) we deduce the desired result (4.1).

The following inequality for P.D.F.s which are absolutely continuous and have the derivatives essentially bounded holds.

Some Inequalities for the Dispersion of a Random Variable whose PDF is Defined on a Finite Interval



J. Ineq. Pure and Appl. Math. 2(1) Art. 1, 2001 http://jipam.vu.edu.au

Theorem 4.2. If $f : [a, b] \to \mathbb{R}_+$ is absolutely continuous on [a, b] and $f' \in L_{\infty}[a, b]$, i.e., $||f'||_{\infty} := ess \sup_{t \in [a, b]} |f'(t)| < \infty$, then we have the inequality:

(4.5)
$$\left| \sigma^{2} \left(X \right) + \left[E \left(X \right) - x \right]^{2} - \frac{\left(b - a \right)^{2}}{12} - \left(x - \frac{a + b}{2} \right)^{2} \right|$$

$$\leq \frac{(b-a)^2}{3} \left[\frac{(b-a)^2}{10} + \left(x - \frac{a+b}{2} \right)^2 \right] \|f'\|_{\infty}$$

for all $x \in [a, b]$.

Proof. Using Lemma 4.1, we have

$$\begin{aligned} \left| \sigma^2 \left(X \right) + \left[E \left(X \right) - x \right]^2 - \frac{\left(b - a \right)^2}{12} - \left(x - \frac{a + b}{2} \right)^2 \right| \\ &= \frac{1}{b - a} \left| \int_a^b \int_a^b \left(t - x \right)^2 p\left(t, s \right) f'\left(s \right) ds dt \right| \\ &\leq \frac{1}{b - a} \int_a^b \int_a^b \left(t - x \right)^2 \left| p\left(t, s \right) \right| \left| f'\left(s \right) \right| ds dt \\ &\leq \frac{\left\| f' \right\|_{\infty}}{b - a} \int_a^b \int_a^b \left(t - x \right)^2 \left| p\left(t, s \right) \right| ds dt. \end{aligned}$$

Some Inequalities for the Dispersion of a Random Variable whose PDF is Defined on a Finite Interval

J. Ineq. Pure and Appl. Math. 2(1) Art. 1, 2001 http://jipam.vu.edu.au

We have

$$I := \int_{a}^{b} \int_{a}^{b} (t-x)^{2} |p(t,s)| \, ds dt$$

= $\int_{a}^{b} (t-x)^{2} \left[\int_{a}^{t} (s-a) \, ds + \int_{t}^{b} (b-s) \, ds \right] dt$
= $\int_{a}^{b} (t-x)^{2} \left[\frac{(t-a)^{2} + (b-t)^{2}}{2} \right] dt$

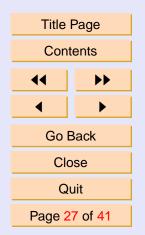
$$= \frac{1}{2} \left[\int_{a}^{b} (t-x)^{2} (t-a)^{2} dt + \int_{a}^{b} (t-x)^{2} (b-t)^{2} dt \right]$$
$$= \frac{I_{a} + I_{b}}{2}.$$

Let A = x - a, B = b - x then

$$I_{a} = \int_{a}^{b} (t-x)^{2} (t-a)^{2} dt$$

= $\int_{0}^{b-a} (u^{2} - 2Au + A^{2}) u^{2} du$
= $\frac{(b-a)^{3}}{3} \left[A^{2} - \frac{3}{2}A(b-a) + \frac{3}{5}(b-a)^{2} \right]$

Some Inequalities for the Dispersion of a Random Variable whose PDF is Defined on a Finite Interval



J. Ineq. Pure and Appl. Math. 2(1) Art. 1, 2001 http://jipam.vu.edu.au

and

$$I_{b} = \int_{a}^{b} (t-x)^{2} (b-t)^{2} dt$$

= $\int_{0}^{b-a} (u^{2} - 2Bu + B^{2}) u^{2} du$
= $\frac{(b-a)^{3}}{3} \left[B^{2} - \frac{3}{2}B(b-a) + \frac{3}{5}(b-a)^{2} \right]$

Now,

Ι

$$\frac{a+I_b}{2} = \frac{(b-a)^3}{3} \left[\frac{A^2+B^2}{2} - \frac{3}{4} (A+B) (b-a) + \frac{3}{5} (b-a)^2 \right]$$
$$= \frac{(b-a)^3}{3} \left[\left(\frac{b-a}{2}\right)^2 + \left(x - \frac{a+b}{2}\right)^2 - 3\frac{(b-a)^2}{20} \right]$$
$$= \frac{(b-a)^3}{3} \left[\frac{(b-a)^2}{10} + \left(x - \frac{a+b}{2}\right)^2 \right]$$

and the theorem is proved.

The best inequality we can get from (4.5) is embodied in the following corollary.

Corollary 4.3. If f is as in Theorem 4.2, then we have

(4.6)
$$\left| \sigma^2(X) + \left[E(X) - \frac{a+b}{2} \right]^2 - \frac{(b-a)^2}{12} \right| \le \frac{(b-a)^4}{30} \, \|f'\|_{\infty} \, .$$

Some Inequalities for the Dispersion of a Random Variable whose PDF is Defined on a Finite Interval

J. Ineq. Pure and Appl. Math. 2(1) Art. 1, 2001 http://jipam.vu.edu.au

We now analyze the case where f' is a Lebesgue p-integrable mapping with $p \in (1, \infty)$.

Remark 4.1. The results of Theorem 4.2 may be compared with those of Theorem 3.4. It may be shown that both bounds are convex and symmetric about $x = \frac{a+b}{2}$. Further, the bound given by the 'premature' Chebychev approach, namely from (3.12)-(3.13) is tighter than that obtained by the current approach (4.5) which may be shown from the following. Let these bounds be described by B_p and B_c so that, neglecting the common terms

$$B_p = \frac{b-a}{2\sqrt{15}} \left[\left(\frac{b-a}{2}\right)^2 + 15Y \right]^{\frac{1}{2}}$$

and

$$B_c = \frac{(b-a)^2}{100} + Y,$$

where

$$Y = \left(x - \frac{a+b}{2}\right)^2$$

It may be shown through some straightforward algebra that $B_c^2 - B_p^2 > 0$ for all $x \in [a, b]$ so that $B_c > B_p$.

The current development does however have the advantage that the identity (4.1) is satisfied, thus allowing bounds for $L_p[a, b]$, $p \ge 1$ rather than the infinity norm.

Some Inequalities for the Dispersion of a Random Variable whose PDF is Defined on a Finite Interval

Title David			
Inte	Title Page		
Contents			
••	••		
◀	•		
Go Back			
Close			
Quit			
Page 29 of 41			

J. Ineq. Pure and Appl. Math. 2(1) Art. 1, 2001 http://jipam.vu.edu.au

Theorem 4.4. If $f : [a, b] \to \mathbb{R}_+$ is absolutely continuous on [a, b] and $f' \in L_p$, *i.e.*,

$$||f'||_p := \left(\int_a^b |f'(t)|^p dt\right)^{\frac{1}{p}} < \infty, \ p \in (1,\infty)$$

then we have the inequality

$$(4.7) \quad \left| \sigma^{2} \left(X \right) + \left[E \left(X \right) - x \right]^{2} - \frac{\left(b - a \right)^{2}}{12} - \left(x - \frac{a + b}{2} \right)^{2} \right| \\ \leq \frac{\|f'\|_{p}}{\left(b - a \right)^{\frac{1}{p}} \left(q + 1 \right)^{\frac{1}{q}}} \left[\left(x - a \right)^{3q+2} \tilde{B} \left(\frac{b - a}{x - a}, 2q + 1, q + 2 \right) \right. \\ \left. + \left(b - x \right)^{3q+2} \tilde{B} \left(\frac{b - a}{b - x}, 2q + 1, q + 2 \right) \right]$$

for all $x \in [a, b]$, when $\frac{1}{p} + \frac{1}{q} = 1$ and $\tilde{B}(\cdot, \cdot, \cdot)$ is the quasi incomplete Euler's Beta mapping:

$$\tilde{B}(z;\alpha,\beta) := \int_0^z (u-1)^{\alpha-1} u^{\beta-1} du, \ \alpha,\beta > 0, \ z \ge 1.$$

Proof. Using Lemma 4.1, we have, as in Theorem 4.2, that

(4.8)
$$\left| \sigma^{2}(X) + \left[E(X) - x \right]^{2} - \frac{(b-a)^{2}}{12} - \left(x - \frac{a+b}{2} \right)^{2} \right|$$

$$\leq \frac{1}{b-a} \int_{a}^{b} \int_{a}^{b} (t-x)^{2} \left| p(t,s) \right| \left| f'(s) \right| ds dt.$$

Some Inequalities for the Dispersion of a Random Variable whose PDF is Defined on a Finite Interval

J. Ineq. Pure and Appl. Math. 2(1) Art. 1, 2001 http://jipam.vu.edu.au

Using Hölder's integral inequality for double integrals, we have

$$(4.9) \quad \int_{a}^{b} \int_{a}^{b} (t-x)^{2} |p(t,s)| |f'(s)| \, ds dt$$

$$\leq \left(\int_{a}^{b} \int_{a}^{b} |f'(s)|^{p} \, ds dt \right)^{\frac{1}{p}} \left(\int_{a}^{b} \int_{a}^{b} (t-x)^{2q} |p(t,s)|^{q} \, ds dt \right)^{\frac{1}{q}}$$

$$= (b-a)^{\frac{1}{p}} \|f'\|_{p} \left(\int_{a}^{b} \int_{a}^{b} (t-x)^{2q} |p(t,s)|^{q} \, ds dt \right)^{\frac{1}{q}},$$

where p > 1, $\frac{1}{p} + \frac{1}{q} = 1$.

We have to compute the integral

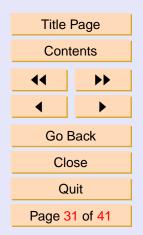
$$(4.10) \quad D := \int_{a}^{b} \int_{a}^{b} (t-x)^{2q} |p(t,s)|^{q} ds dt$$

$$= \int_{a}^{b} (t-x)^{2q} \left[\int_{a}^{t} (s-a)^{q} ds + \int_{t}^{b} (b-s)^{q} ds \right] dt$$

$$= \int_{a}^{b} (t-x)^{2q} \left[\frac{(t-a)^{q+1} + (b-t)^{q+1}}{q+1} \right] dt$$

$$= \frac{1}{q+1} \left[\int_{a}^{b} (t-x)^{2q} (t-a)^{q+1} dt + \int_{a}^{b} (t-x)^{2q} (b-t)^{q+1} dt \right].$$

Some Inequalities for the Dispersion of a Random Variable whose PDF is Defined on a Finite Interval



J. Ineq. Pure and Appl. Math. 2(1) Art. 1, 2001 http://jipam.vu.edu.au

Define

(4.11)
$$E := \int_{a}^{b} (t-x)^{2q} (t-a)^{q+1} dt.$$

If we consider the change of variable t = (1 - u) a + ux, we have t = a implies u = 0 and t = b implies $u = \frac{b-a}{x-a}$, dt = (x - a) du and then

(4.12)
$$E = \int_0^{\frac{b-a}{x-a}} \left[(1-u) a + ux - x \right]^{2q} \left[(1-u) a + ux - a \right] (x-a) du$$

$$= (x-a)^{3q+2} \int_0^{\frac{b-a}{x-a}} (u-1)^{2q} u^{q+1} du$$

= $(x-a)^{3q+2} \tilde{B}\left(\frac{b-a}{x-a}, 2q+1, q+2\right).$

Define

(4.13)
$$F := \int_{a}^{b} (t-x)^{2q} (b-t)^{q+1} dt.$$

If we consider the change of variable t = (1 - v) b + vx, we have t = b implies

Some Inequalities for the Dispersion of a Random Variable whose PDF is Defined on a Finite Interval

Title Page		
Contents		
44	••	
•	•	
Go Back		
Close		
Quit		
Page 32 of 41		

J. Ineq. Pure and Appl. Math. 2(1) Art. 1, 2001 http://jipam.vu.edu.au

$$v = 0$$
, and $t = a$ implies $v = \frac{b-a}{b-x}$, $dt = (x - b) dv$ and then

(4.14)
$$F = \int_{\frac{b-a}{b-x}}^{0} \left[(1-v) b + vx - x \right]^{2q} \\ \times \left[b - (1-v) b - vx \right]^{q+1} (x-b) dv \\ = (b-x)^{3q+2} \int_{0}^{\frac{b-a}{b-x}} (v-1)^{2q} v^{q+1} dv \\ = (b-x)^{3q+2} \tilde{B} \left(\frac{b-a}{b-x}, 2q+1, q+2 \right).$$

Now, using the inequalities (4.8)-(4.9) and the relations (4.10)-(4.14), since $D = \frac{1}{q+1} (E+F)$, we deduce the desired estimate (4.7).

The following corollary is natural to be considered.

Corollary 4.5. *Let f be as in Theorem* **4.4***. Then, we have the inequality:*

(4.15)
$$\left| \sigma^{2} \left(X \right) + \left[E \left(X \right) - \frac{a+b}{2} \right]^{2} - \frac{(b-a)^{2}}{12} \right|$$
$$\leq \frac{\left\| f' \right\|_{p} \left(b-a \right)^{2+\frac{3}{q}}}{\left(q+1\right)^{\frac{1}{q}} 2^{3+\frac{2}{q}}} \left[B \left(2q+1,q+1 \right) + \Psi \left(2q+1,q+2 \right) \right]^{\frac{1}{q}},$$

where $\frac{1}{p} + \frac{1}{q} = 1$, p > 1 and $B(\cdot, \cdot)$ is Euler's Beta mapping and $\Psi(\alpha, \beta) := \int_0^1 u^{\alpha-1} (u+1)^{\beta-1} du, \alpha, \beta > 0.$

Some Inequalities for the Dispersion of a Random Variable whose PDF is Defined on a Finite Interval

J. Ineq. Pure and Appl. Math. 2(1) Art. 1, 2001 http://jipam.vu.edu.au

Proof. In (4.7) put $x = \frac{a+b}{2}$. The left side is clear. Now

$$\tilde{B}(2,2q+1,q+2) = \int_0^2 (u-1)^{2q} u^{q+1} du$$

= $\int_0^1 (u-1)^{2q} u^{q+1} du + \int_1^2 (u-1)^{2q} u^{q+1} du$
= $B(2q+1,q+2) + \Psi(2q+1,q+2).$

The right hand side of (4.7) is thus:

$$\frac{\|f'\|_{p} \left(\frac{b-a}{2}\right)^{\frac{3q+2}{q}}}{(b-a)^{\frac{1}{p}} (q+1)^{\frac{1}{q}}} \left[2B \left(2q+1,q+2\right) + 2\Psi \left(2q+1,q+2\right)\right]^{\frac{1}{q}} \\ = \frac{\|f'\|_{p} (b-a)^{2+\frac{3}{q}}}{(q+1)^{\frac{1}{q}} 2^{3+\frac{2}{q}}} \left[B \left(2q+1,q+2\right) + \Psi \left(2q+1,q+2\right)\right]^{\frac{1}{q}}$$

and the corollary is proved.

Finally, if f is absolutely continuous, $f' \in L_1[a, b]$ and $||f'||_1 = \int_a^b |f'(t)| dt$, then we can state the following theorem.

Theorem 4.6. If the p.d.f., $f : [a, b] \to \mathbb{R}_+$ is absolutely continuous on [a, b], then

(4.16)
$$\left| \sigma^{2}(X) + [E(X) - x]^{2} - \frac{(b - a)^{2}}{12} - \left(x - \frac{a + b}{2}\right)^{2} \right|$$

 $\leq \|f'\|_{1}(b - a) \left[\frac{1}{2}(b - a) + \left|x - \frac{a + b}{2}\right|\right]^{2}$

Some Inequalities for the Dispersion of a Random Variable whose PDF is Defined on a Finite Interval

J. Ineq. Pure and Appl. Math. 2(1) Art. 1, 2001 http://jipam.vu.edu.au

for all $x \in [a, b]$.

Proof. As above, we can state that

$$\begin{split} \left| \sigma^{2} \left(X \right) + \left[E \left(X \right) - x \right]^{2} - \frac{\left(b - a \right)^{2}}{12} - \left(x - \frac{a + b}{2} \right)^{2} \right| \\ & \leq \frac{1}{b - a} \int_{a}^{b} \int_{a}^{b} \left(t - x \right)^{2} \left| p \left(t, s \right) \right| \left| f' \left(s \right) \right| \, ds dt \\ & \leq \sup_{(t,s) \in [a,b]^{2}} \left[\left(t - x \right)^{2} \left| p \left(t, s \right) \right| \right] \frac{1}{b - a} \int_{a}^{b} \int_{a}^{b} \left| f' \left(s \right) \right| \, ds dt \\ & = \| f' \|_{1} \, G \end{split}$$

where

$$G := \sup_{(t,s)\in[a,b]^2} \left[(t-x)^2 |p(t,s)| \right]$$

$$\leq (b-a) \sup_{t \in [a,b]} (t-x)^{2} = (b-a) \left[\max (x-a,b-x) \right]^{2} = (b-a) \left[\frac{1}{2} (b-a) + \left| x - \frac{a+b}{2} \right| \right]^{2},$$

and the theorem is proved.

It is clear that the best inequality we can get from (4.16) is the one when $x = \frac{a+b}{2}$, giving the following corollary.

Some Inequalities for the Dispersion of a Random Variable whose PDF is Defined on a Finite Interval

Neil S. Barnett, Pietro Cerone, Sever S. Dragomir and John Roumeliotis

J. Ineq. Pure and Appl. Math. 2(1) Art. 1, 2001 http://jipam.vu.edu.au

Π

Corollary 4.7. With the assumptions of Theorem 4.6, we have:

(4.17)
$$\left| \sigma^2(X) + \left[E(X) - \frac{a+b}{2} \right]^2 - \frac{(b-a)^2}{12} \right| \le \frac{(b-a)^3}{4} \|f'\|_1.$$

Some Inequalities for the Dispersion of a Random Variable whose PDF is Defined on a Finite Interval

Neil S. Barnett, Pietro Cerone, Sever S. Dragomir and John Roumeliotis

J. Ineq. Pure and Appl. Math. 2(1) Art. 1, 2001 http://jipam.vu.edu.au

References

- [1] P. CERONE AND S.S. DRAGOMIR, Three point quadrature rules involving, at most, a first derivative, submitted, RGMIA Res. Rep. Coll., 2(4) (1999), Article 8. [ONLINE] http://rgmia.vu.edu.au/v2n4.html.
- [2] P. CERONE AND S.S. DRAGOMIR, Trapezoidal type rules from an inequalities point of view, Accepted for publication in *Analytic-Computational Methods in Applied Mathematics*, G.A. Anastassiou (Ed), CRC Press, New York (2000), 65–134.
- [3] P. CERONE AND S.S. DRAGOMIR, Midpoint type rules from an inequalities point of view, Accepted for publication in *Analytic-Computational Methods in Applied Mathematics*, G.A. Anastassiou (Ed), CRC Press, New York (2000), 135–200.
- [4] P. CERONE, S.S. DRAGOMIR AND J. ROUMELIOTIS, An inequality of Ostrowski type for mappings whose second derivatives are bounded and applications, *East Asian Math. J.*, **15**(1) (1999), 1–9. *Preprint. RGMIA Res. Rep Coll.*, **1**(1) (1998), Article 4, 1998. [ONLINE] http://rgmia.vu.edu.au/vln1.html.
- [5] P. CERONE, S.S. DRAGOMIR AND J. ROUMELIOTIS, An inequality of Ostrowski-Grüss type for twice differentiable mappings and applications, *Kyungpook Math. J.*, **39**(2) (1999), 331–341. *Preprint. RGMIA Res. Rep Coll.*, **1**(2) (1998), Article 8, 1998. [ONLINE] http://rgmia.vu.edu.au/vln2.html.

Some Inequalities for the Dispersion of a Random Variable whose PDF is Defined on a Finite Interval

Neil S. Barnett, Pietro Cerone, Sever S. Dragomir and John Roumeliotis



J. Ineq. Pure and Appl. Math. 2(1) Art. 1, 2001 http://jipam.vu.edu.au

- [6] P. CERONE, S.S. DRAGOMIR AND J. ROUMELIOTIS, An Ostrowski type inequality for mappings whose second derivatives belong to $L_p(a, b)$ and applications, *Preprint. RGMIA Res. Rep Coll.*, **1**(1) (1998), Article 5. [ONLINE] http://rgmia.vu.edu.au/vln1.html.
- [7] P. CERONE, S.S. DRAGOMIR AND J. ROUMELIOTIS, On Ostrowski type for mappings whose second derivatives belong to $L_1(a, b)$ and applications, *Honam Math. J.*, **21**(1) (1999), 127–137. *Preprint. RGMIA Res. Rep Coll.*, **1**(2) (1998), Article 7. [ONLINE] http://rgmia.vu.edu.au/vln2.html.
- [8] P. CERONE, S.S. DRAGOMIR AND J. ROUMELIOTIS, Some Ostrowski type inequalities for *n*-time differentiable mappings and applications, *Demonstratio Math.*, **32**(2) (1999), 697–712. *Preprint. RGMIA Res. Rep Coll.*, **1**(2) (1998), 51–66. [ONLINE] http://rgmia.vu.edu.au/vln2.html
- [9] P. CERONE, S.S. DRAGOMIR, J. ROUMELIOTIS AND J. SUNDE, A new generalization of the trapezoid formula for *n*-time differentiable mappings and applications, *Demonstratio Math.*, 33(4) (2000), 719–736. *RGMIA Res. Rep. Coll.*, 2(5) (1999), Article 7. [ONLINE] http://rgmia.vu.edu.au/v2n5.html.
- [10] S.S. DRAGOMIR, Grüss type integral inequality for mappings of r-Hölder's type and applications for trapezoid formula, *Tamkang J. Math.*, **31**(1) (2000), 43–47.
- [11] S.S. DRAGOMIR, A Taylor like formula and application in numerical integration, *submitted*.

J. Ineq. Pure and Appl. Math. 2(1) Art. 1, 2001 http://jipam.vu.edu.au

- [12] S.S. DRAGOMIR, Grüss inequality in inner product spaces, Austral. Math. Soc. Gaz., 26(2) (1999), 66–70.
- [13] S.S. DRAGOMIR, New estimation of the remainder in Taylor's formula using Grüss' type inequalities and applications, *Math. Inequal. Appl.*, 2(2) (1999), 183–194.
- [14] S.S. DRAGOMIR, Some integral inequalities of Grüss type, *Indian J. of Pure and Appl. Math.*, **31**(4) (2000), 397–415.
- [15] S.S. DRAGOMIR AND N. S. BARNETT, An Ostrowski type inequality for mappings whose second derivatives are bounded and applications, J. Indian Math. Soc., 66(1-4) (1999), 237-245. Preprint. RGMIA Res. Rep Coll., 1(2) (1998), Article 9. [ONLINE] http://rgmia.vu.edu.au/v1n2.html
- [16] S.S. DRAGOMIR, P. CERONE AND A. SOFO, Some remarks on the midpoint rule in numerical integration, *Studia Math. "Babeş-Bolyai" Univ.*, (in press).
- [17] S.S. DRAGOMIR, P. CERONE AND A. SOFO, Some remarks on the trapezoid rule in numerical integration, *Indian J. Pure Appl. Math.*, **31**(5) (2000), 475–494. *Preprint: RGMIA Res. Rep. Coll.*, **2**(5) (1999), Article 1. [ONLINE] http://rgmia.vu.edu.au/v2n5.html.
- [18] S.S. DRAGOMIR, Y.J. CHO AND S.S. KIM, Some remarks on the Milovanović-Pečarić Inequality and in Applications for special means and numerical integration, *Tamkang J. Math.*, **30**(3) (1999), 203–211.

J. Ineq. Pure and Appl. Math. 2(1) Art. 1, 2001 http://jipam.vu.edu.au

- [19] S.S. DRAGOMIR AND A. MCANDREW, On Trapezoid inequality via a Grüss type result and applications, *Tamkang J. Math.*, **31**(3) (2000), 193–201. *RGMIA Res. Rep. Coll.*, **2**(2) (1999), Article 6. [ONLINE] http://rgmia.vu.edu.au/v2n2.html.
- [20] S.S. DRAGOMIR, J.E. PEČARIĆ AND S. WANG, The unified treatment of trapezoid, Simpson and Ostrowski type inequality for monotonic mappings and applications, *Math. and Comp. Modelling*, **31** (2000), 61–70. *Preprint: RGMIA Res. Rep. Coll.*, **2**(4) (1999), Article 3. [ONLINE] http://rgmia.vu.edu.au/v2n4.html.
- [21] S.S. DRAGOMIR AND A. SOFO, An integral inequality for twice differentiable mappings and applications, *Preprint*: *RGMIA Res. Rep. Coll.*, 2(2) (1999), Article 9. [ONLINE] http://rgmia.vu.edu.au/v2n2.html.
- [22] S.S. DRAGOMIR AND S. WANG, An inequality of Ostrowski-Grüss type and its applications to the estimation of error bounds for some special means and for some numerical quadrature rules, *Comput. Math. Appl.*, 33 (1997), 15–22.
- [23] M. MATIĆ, J.E. PEČARIĆ AND N. UJEVIĆ, On New estimation of the remainder in Generalised Taylor's Formula, *Math. Inequal. Appl.*, 2(3) (1999), 343–361.
- [24] D.S. MITRINOVIĆ, J.E. PEČARIĆ AND A.M. FINK, *Classical and New Inequalities in Analysis*, Kluwer Academic Publishers, 1993.

J. Ineq. Pure and Appl. Math. 2(1) Art. 1, 2001 http://jipam.vu.edu.au

- [25] D.S. MITRINOVIĆ, J.E. PEČARIĆ AND A.M. FINK, *Inequalities for Functions and Their Integrals and Derivatives*, Kluwer Academic Publishers, 1994.
- [26] J.E. PEČARIĆ, F. PROSCHAN AND Y.L. TONG, *Convex Functions, Partial Orderings, and Statistical Applications*, Academic Press, 1992.

Neil S. Barnett, Pietro Cerone, Sever S. Dragomir and John Roumeliotis

J. Ineq. Pure and Appl. Math. 2(1) Art. 1, 2001 http://jipam.vu.edu.au