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Abstract

Some inequalities for the dispersion of a random variable whose pdf is defined
on a finite interval and applications are given.
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1. Introduction
In this note we obtain some inequalities for the dispersion of a continuous ran-
dom variableX having the probability density function (p.d.f.)f defined on a
finite interval[a, b].

Tools used include: Korkine’s identity, which plays a central role in the proof
of Chebychev’s integral inequality for synchronous mappings [24], Hölder’s
weighted inequality for double integrals and an integral identity connecting the
varianceσ2 (X) and the expectationE (X). Perturbed results are also obtained
by using Grüss, Chebyshev and Lupaş inequalities. In Section 4, results from
an identity involving a double integral are obtained for a variety of norms.
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2. Some Inequalities for Dispersion
Let f : [a, b] ⊂ R → R+ be the p.d.f. of the random variableX and

E (X) :=

∫ b

a

tf (t) dt

its expectationand

σ (X) =

[∫ b

a

(t− E (X))2 f (t) dt

] 1
2

=

[∫ b

a

t2f (t) dt− [E (X)]2
] 1

2

its dispersionor standard deviation.
The following theorem holds.

Theorem 2.1.With the above assumptions, we have

(2.1) 0 ≤ σ (X) ≤



√
3(b−a)2

6
‖f‖∞ , provided f ∈ L∞, [a, b] ;

√
2(b−a)

1+1
q

2[(q+1)(2q+1)]
2
q
‖f‖p , provided f ∈ Lp [a, b]

and p > 1, 1
p

+ 1
q

= 1;
√

2(b−a)
2

.

Proof. Korkine’s identity [24], is

(2.2)
∫ b

a

p (t) dt

∫ b

a

p (t) g (t) h (t) dt−
∫ b

a

p (t) g (t) dt ·
∫ b

a

p (t) h (t) dt

=
1

2

∫ b

a

∫ b

a

p (t) p (s) (g (t)− g (s)) (h (t)− h (s)) dtds,
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which holds for the measurable mappingsp, g, h : [a, b] → R for which the
integrals involved in (2.2) exist and are finite. Choose in (2.2) p (t) = f (t),
g (t) = h (t) = t− E (X), t ∈ [a, b] to get

(2.3) σ2 (X) =
1

2

∫ b

a

∫ b

a

f (t) f (s) (t− s)2 dtds .

It is obvious that∫ b

a

∫ b

a

f (t) f (s) (t− s)2 dtds(2.4)

≤ sup
(t,s)∈[a,b]2

|f (t) f (s)|
∫ b

a

∫ b

a

(t− s)2 dtds

=
(b− a)4

6
‖f‖2

∞

and then, by (2.3), we obtain the first part of (2.1).
For the second part, we apply Hölder’s integral inequality for double inte-

grals to obtain∫ b

a

∫ b

a

f (t) f (s) (t− s)2 dtds

≤
(∫ b

a

∫ b

a

fp (t) fp (s) dtds

) 1
p
(∫ b

a

∫ b

a

(t− s)2q dtds

) 1
q

= ‖f‖2
p

[
(b− a)2q+2

(q + 1) (2q + 1)

] 1
q

,
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wherep > 1 and 1
p

+ 1
q

= 1, and the second inequality in (2.1) is proved.
For the last part, observe that∫ b

a

∫ b

a

f (t) f (s) (t− s)2 dtds ≤ sup
(t,s)∈[a,b]2

(t− s)2

∫ b

a

∫ b

a

f (t) f (s) dtds

= (b− a)2

as ∫ b

a

∫ b

a

f (t) f (s) dtds =

∫ b

a

f (t) dt

∫ b

a

f (s) ds = 1.

Using a finer argument, the last inequality in (2.1) can be improved as fol-
lows.

Theorem 2.2.Under the above assumptions, we have

(2.5) 0 ≤ σ (X) ≤ 1

2
(b− a) .

Proof. We use the following Grüss type inequality:

(2.6) 0 ≤
∫ b

a
p (t) g2 (t) dt∫ b

a
p (t) dt

−

(∫ b

a
p (t) g (t) dt∫ b

a
p (t) dt

)2

≤ 1

4
(M −m)2 ,

provided thatp, g are measurable on[a, b] and all the integrals in (2.6) exist and
are finite,

∫ b

a
p (t) dt > 0 andm ≤ g ≤ M a.e. on[a, b]. For a proof of this

inequality see [19].
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Choose in (2.6), p (t) = f (t), g (t) = t − E (X), t ∈ [a, b]. Observe that
in this casem = a − E (X), M = b − E (X) and then, by (2.6) we deduce
(2.5).

Remark2.1. The same conclusion can be obtained for the choicep (t) = f (t)
andg (t) = t, t ∈ [a, b].

The following result holds.

Theorem 2.3.LetX be a random variable having the p.d.f. given byf : [a, b] ⊂
R → R+. Then for anyx ∈ [a, b] we have the inequality:

(2.7) σ2 (X) + (x− E (X))2

≤



(b− a)
[

(b−a)2

12
+
(
x− a+b

2

)2] ‖f‖∞ , provided f ∈ L∞ [a, b] ;

[
(b−x)2q+1+(x−a)2q+1

2q+1

] 1
q ‖f‖p , provided f ∈ Lp [a, b] , p > 1,

and 1
p

+ 1
q

= 1;(
b−a
2

+
∣∣x− a+b

2

∣∣)2 .

Proof. We observe that∫ b

a

(x− t)2 f (t) dt =

∫ b

a

(
x2 − 2xt + t2

)
f (t) dt(2.8)

= x2 − 2xE (X) +

∫ b

a

t2f (t) dt

http://jipam.vu.edu.au/
mailto:neil@matilda.vu.edu.au
mailto:pc@matilda.vu.edu.au
mailto:sever@matilda.vu.edu.au
mailto:johnr@matilda.vu.edu.au
http://jipam.vu.edu.au/


Some Inequalities for the
Dispersion of a Random

Variable whose PDF is Defined
on a Finite Interval

Neil S. Barnett, Pietro Cerone,
Sever S. Dragomir and

John Roumeliotis

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 8 of 41

J. Ineq. Pure and Appl. Math. 2(1) Art. 1, 2001

http://jipam.vu.edu.au

and as

(2.9) σ2 (X) =

∫ b

a

t2f (t) dt− [E (X)]2 ,

we get, by (2.8) and (2.9),

(2.10) [x− E (X)]2 + σ2 (X) =

∫ b

a

(x− t)2 f (t) dt,

which is of interest in itself too.
We observe that∫ b

a

(x− t)2 f (t) dt ≤ ess sup
t∈[a,b]

|f (t)|
∫ b

a

(x− t)2 dt

= ‖f‖∞
(b− x)3 + (x− a)3

3

= (b− a) ‖f‖∞

[
(b− a)2

12
+

(
x− a + b

2

)2
]

and the first inequality in (2.7) is proved.
For the second inequality, observe that by Hölder’s integral inequality,∫ b

a

(x− t)2 f (t) dt ≤
(∫ b

a

fp (t) dt

) 1
p
(∫ b

a

(x− t)2q dt

) 1
q

= ‖f‖p

[
(b− x)2q+1 + (x− a)2q+1

2q + 1

] 1
q

,
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and the second inequality in (2.7) is established.
Finally, observe that,∫ b

a

(x− t)2 f (t) dt ≤ sup
t∈[a,b]

(x− t)2

∫ b

a

f (t) dt

= max
{
(x− a)2 , (b− x)2}

= (max {x− a, b− x})2

=

(
b− a

2
+

∣∣∣∣x− a + b

2

∣∣∣∣)2

,

and the theorem is proved.

The following corollaries are easily deduced.

Corollary 2.4. With the above assumptions, we have

0 ≤ σ (X)(2.11)

≤



(b− a)
1
2

[
(b−a)2

12
+
(
E (X)− a+b

2

)2] 1
2 ‖f‖

1
2
∞ ,

provided f ∈ L∞ [a, b] ;

[
(b−E(X))2q+1+(E(X)−a)2q+1

2q+1

] 1
2q ‖f‖

1
2
p ,

if f ∈ Lp [a, b] , p > 1 and 1
p

+ 1
q

= 1;

b−a
2

+
∣∣E (X)− a+b

2

∣∣ .
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Remark2.2. The last inequality in (2.12) is worse than the inequality (2.5),
obtained by a technique based on Grüss’ inequality.

The best inequality we can get from (2.7) is that one for whichx = a+b
2

, and
this applies for all the bounds since

min
x∈[a,b]

[
(b− a)2

12
+

(
x− a + b

2

)2
]

=
(b− a)2

12
,

min
x∈[a,b]

(b− x)2q+1 + (x− a)2q+1

2q + 1
=

(b− a)2q+1

22q (2q + 1)
,

and

min
x∈[a,b]

[
b− a

2
+

∣∣∣∣x− a + b

2

∣∣∣∣] =
b− a

2
.

Consequently, we can state the following corollary as well.

Corollary 2.5. With the above assumptions, we have the inequality:

0 ≤ σ2 (X) +

[
E (X)− a + b

2

]2

(2.12)

≤



(b−a)3

12
‖f‖∞ , provided f ∈ L∞ [a, b] ;

(b−a)2q+1

4(2q+1)
1
q
‖f‖p , if f ∈ Lp [a, b] , p > 1,

and 1
p

+ 1
q

= 1;
(b−a)2

4
.
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Remark2.3. From the last inequality in (2.12), we obtain

(2.13) 0 ≤ σ2 (X) ≤ (b− E (X)) (E (X)− a) ≤ 1

4
(b− a)2 ,

which is an improvement on (2.5).
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3. Perturbed Results Using Grüss Type inequali-
ties

In 1935, G. Grüss (see for example [26]) proved the following integral inequal-
ity which gives an approximation for the integral of a product in terms of the
product of the integrals.

Theorem 3.1. Let h, g : [a, b] → R be two integrable mappings such that
φ ≤ h (x) ≤ Φ andγ ≤ g (x) ≤ Γ for all x ∈ [a, b], whereφ, Φ, γ, Γ are real
numbers. Then,

(3.1) |T (h, g)| ≤ 1

4
(Φ− φ) (Γ− γ) ,

where

T (h, g) =
1

b− a

∫ b

a

h (x) g (x) dx(3.2)

− 1

b− a

∫ b

a

h (x) dx · 1

b− a

∫ b

a

g (x) dx

and the inequality is sharp, in the sense that the constant1
4

cannot be replaced
by a smaller one.

For a simple proof of this as well as for extensions, generalisations, discrete
variants and other associated material, see [25], and [1]-[21] where further ref-
erences are given.

A ‘premature’ Grüss inequality is embodied in the following theorem which
was proved in [23]. It provides a sharper bound than the above Grüss inequality.
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Theorem 3.2. Let h, g be integrable functions defined on[a, b] and let d ≤
g (t) ≤ D. Then

(3.3) |T (h, g)| ≤ D − d

2
|T (h, h)|

1
2 ,

whereT (h, g) is as defined in (3.2).

Theorem3.2will now be used to provide a perturbed rule involving the vari-
ance and mean of a p.d.f.

3.1. Perturbed Results Using ‘Premature’ Inequalities

In this subsection we develop some perturbed results.

Theorem 3.3.LetX be a random variable having the p.d.f. given byf : [a, b] ⊂
R → R+. Then for anyx ∈ [a, b] andm ≤ f (x) ≤ M we have the inequality

|PV (x)|(3.4)

:=

∣∣∣∣∣σ2 (X) + (x− E (X))2 − (b− a)2

12
−
(

x− a + b

2

)2
∣∣∣∣∣

≤ M −m

2
· (b− a)2

√
45

[(
b− a

2

)2

+ 15

(
x− a + b

2

)] 1
2

≤ (M −m)
(b− a)3

√
45

.
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Proof. Applying the ‘premature’ Grüss result (3.3) by associatingg (t) with
f (t) andh (t) = (x− t)2 , gives, from (3.1)-(3.3)

(3.5)

∣∣∣∣∫ b

a

(x− t)2 f (t) dt− 1

b− a

∫ b

a

(x− t)2 dt ·
∫ b

a

f (t) dt

∣∣∣∣
≤ (b− a)

M −m

2
[T (h, h)]

1
2 ,

where from (3.2)

(3.6) T (h, h) =
1

b− a

∫ b

a

(x− t)4 dt−
[

1

b− a

∫ b

a

(x− t)2 dt

]2

.

Now,

1

b− a

∫ b

a

(x− t)2 dt =
(x− a)3 + (b− x)3

3 (b− a)
(3.7)

=
1

3

(
b− a

2

)2

+

(
x− a + b

2

)2

and
1

b− a

∫ b

a

(x− t)4 dt =
(x− a)5 + (b− x)5

5 (b− a)

giving, for (3.6),

(3.8) 45T (h, h) = 9

[
(x− a)5 + (b− x)5

b− a

]
− 5

[
(x− a)3 + (b− x)3

b− a

]2

.

http://jipam.vu.edu.au/
mailto:neil@matilda.vu.edu.au
mailto:pc@matilda.vu.edu.au
mailto:sever@matilda.vu.edu.au
mailto:johnr@matilda.vu.edu.au
http://jipam.vu.edu.au/


Some Inequalities for the
Dispersion of a Random

Variable whose PDF is Defined
on a Finite Interval

Neil S. Barnett, Pietro Cerone,
Sever S. Dragomir and

John Roumeliotis

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 15 of 41

J. Ineq. Pure and Appl. Math. 2(1) Art. 1, 2001

http://jipam.vu.edu.au

Let A = x− a andB = b− x in (3.8) to give

45T (h, h) = 9

(
A5 + B5

A + B

)
− 5

(
A3 + B3

A + B

)2

= 9
[
A4 − A3B + A2B2 − AB3 + B4

]
− 5

[
A2 − AB + B2

]2
=

(
4A2 − 7AB + 4B2

)
(A + B)2

=

[(
A + B

2

)2

+ 15

(
A−B

2

)2
]

(A + B)2 .

Using the facts thatA + B = b− a andA−B = 2x− (a + b) gives

(3.9) T (h, h) =
(b− a)2

45

[(
b− a

2

)2

+ 15

(
x− a + b

2

)2
]

and from (3.7)

1

b− a

∫ b

a

(x− t)2 dt =
A3 + B3

3 (A + B)

=
1

3

[
A2 − AB + B2

]
=

1

3

[(
A + B

2

)2

+ 3

(
A−B

2

)2
]

,

giving

(3.10)
1

b− a

∫ b

a

(x− t)2 dt =
(b− a)

12

2

+

(
x− a + b

2

)2

.
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Hence, from (3.5), (3.9) (3.10) and (2.10), the first inequality in (3.4) results.
The coarsest uniform bound is obtained by takingx at either end point. Thus
the theorem is completely proved.

Remark3.1. The best inequality obtainable from (3.4) is atx = a+b
2

giving

(3.11)

∣∣∣∣∣σ2 (X) +

[
E (X)− a + b

2

]2

− (b− a)2

12

∣∣∣∣∣ ≤ M −m

12

(b− a)3

√
5

.

The result (3.11) is a tighter bound than that obtained in the first inequality
of (2.12) since0 < M −m < 2 ‖f‖∞.

For a symmetric p.d.f.E (X) = a+b
2

and so the above results would give
bounds on the variance.

The following results hold if the p.d.ff (x) is differentiable, that is, forf (x)
absolutely continuous.

Theorem 3.4.Let the conditions on Theorem3.1be satisfied. Further, suppose
thatf is differentiable and is such that

‖f ′‖∞ := sup
t∈[a,b]

|f ′ (t)| < ∞.

Then

(3.12) |PV (x)| ≤ b− a√
12
‖f ′‖∞ · I (x) ,

wherePV (x) is given by the left hand side of (3.4) and,

(3.13) I (x) =
(b− a)2

√
45

[(
b− a

2

)2

+ 15

(
x− a + b

2

)2
] 1

2

.
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Proof. Let h, g : [a, b] → R be absolutely continuous andh′, g′ be bounded.
Then Chebychev’s inequality holds (see [23])

|T (h, g) | ≤ (b− a)2

12
sup

t∈[a,b]

|h′ (t)| · sup
t∈[a,b]

|g′ (t)| .

Matić, Pěcaríc and Ujevíc [23] using a ‘premature’ Grüss type argument proved
that

(3.14) |T (h, g) | ≤ (b− a)√
12

sup
t∈[a,b]

|g′ (t)|
√

T (h, h).

Associatingf (·) with g (·) and(x− ·)2 with h (·) in (3.13) gives, from (3.5) and

(3.9), I (x) = (b− a) [T (h, h)]
1
2 , which simplifies to (3.13) and the theorem is

proved.

Theorem 3.5. Let the conditions of Theorem3.3be satisfied. Further, suppose
thatf is locally absolutely continuous on(a, b) and letf ′ ∈ L2 (a, b). Then

(3.15) |PV (x)| ≤ b− a

π
‖f ′‖2 · I (x) ,

wherePV (x) is the left hand side of (3.4) andI (x) is as given in (3.13).

Proof. The following result was obtained by Lupaş (see [23]). Forh, g : (a, b) →
R locally absolutely continuous on(a, b) andh′, g′ ∈ L2 (a, b) , then

|T (h, g)| ≤ (b− a)2

π2
‖h′‖†2 ‖g

′‖†2 ,
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where

‖k‖†2 :=

(
1

b− a

∫ b

a

|k (t)|2
) 1

2

for k ∈ L2 (a, b) .

Matić, Pěcaríc and Ujevíc [23] further show that

(3.16) |T (h, g)| ≤ b− a

π
‖g′‖†2

√
T (h, h).

Associatingf (·) with g (·) and (x− ·)2 with h in (3.16) gives (3.15), where

I (x) is as found in (3.13), since from (3.5) and (3.9), I (x) = (b− a) [T (h, h)]
1
2 .

3.2. Alternate Grüss Type Results for Inequalities Involving
the Variance

Let

(3.17) S (h (x)) = h (x)−M (h)

where

(3.18) M (h) =
1

b− a

∫ b

a

h (u) du.

Then from (3.2),

(3.19) T (h, g) = M (hg)−M (h)M (g) .
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Dragomir and McAndrew [19] have shown, that

(3.20) T (h, g) = T (S (h) , S (g))

and proceeded to obtain bounds for a trapezoidal rule. Identity (3.20) is now
applied to obtain bounds for the variance.

Theorem 3.6. Let X be a random variable having the p.d.f.f : [a, b] ⊂
R → R+. Then for anyx ∈ [a, b] the following inequality holds, namely,

(3.21) |PV (x)| ≤ 8

3
ν3 (x)

∥∥∥∥f (·)− 1

b− a

∥∥∥∥
∞

if f ∈ L∞ [a, b] ,

wherePV (x) is as defined by the left hand side of (3.4), and ν = ν (x) =
1
3

(
b−a
2

)2
+
(
x− a+b

2

)2
.

Proof. Using identity (3.20), associate withh (·), (x− ·)2 andf (·) with g (·).
Then

(3.22)
∫ b

a

(x− t)2 f (t) dt−M
(
(x− ·)2)

=

∫ b

a

[
(x− t)2 −M

(
(x− ·)2)] [f (t)− 1

b− a

]
dt,

where from (3.18),

M
(
(x− ·)2) =

1

b− a

∫ b

a

(x− t)2 dt =
1

3 (b− a)

[
(x− a)3 + (b− x)3]
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and so

(3.23) 3M
(
(x− ·)2) =

(
b− a

2

)2

+ 3

(
x− a + b

2

)2

.

Further, from (3.17),

S
(
(x− ·)2) = (x− t)2 −M

(
(x− ·)2)

and so, on using (3.23)

(3.24) S
(
(x− ·)2) = (x− t)2 − 1

3

(
b− a

2

)2

−
(

x− a + b

2

)2

.

Now, from (3.22) and using (2.10), (3.23) and (3.24), the following identity is
obtained

(3.25) σ2 (X) + [x− E (X)]2 − 1

3

[(
b− a

2

)2

+ 3

(
x− a + b

2

)2
]

=

∫ b

a

S
(
(x− t)2)(f (t)− 1

b− a

)
dt,

whereS (·) is as given by (3.24). Taking the modulus of (3.25) gives

(3.26) |PV (x)| =
∣∣∣∣∫ b

a

S
(
(x− t)2)(f (t)− 1

b− a

)
dt

∣∣∣∣ .
Observe that under different assumptions with regard to the norms of the p.d.f.
f (x) we may obtain a variety of bounds.

http://jipam.vu.edu.au/
mailto:neil@matilda.vu.edu.au
mailto:pc@matilda.vu.edu.au
mailto:sever@matilda.vu.edu.au
mailto:johnr@matilda.vu.edu.au
http://jipam.vu.edu.au/


Some Inequalities for the
Dispersion of a Random

Variable whose PDF is Defined
on a Finite Interval

Neil S. Barnett, Pietro Cerone,
Sever S. Dragomir and

John Roumeliotis

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 21 of 41

J. Ineq. Pure and Appl. Math. 2(1) Art. 1, 2001

http://jipam.vu.edu.au

Forf ∈ L∞ [a, b] then

(3.27) |PV (x)| ≤
∥∥∥∥f (·)− 1

b− a

∥∥∥∥
∞

∫ b

a

∣∣S ((x− t)2)∣∣ dt.

Now, let

(3.28) S
(
(x− t)2) = (t− x)2 − ν2 = (t−X−) (t−X+) ,

where

ν2 = M
(
(x− ·)2)(3.29)

=
(x− a)3 + (b− x)3

3 (b− a)

=
1

3

(
b− a

2

)2

+

(
x− a + b

2

)2

,

and

(3.30) X− = x− ν, X+ = x + ν.

Then,

H (t) =

∫
S
(
(x− t)2) dt(3.31)

=

∫ [
(t− x)2 − ν2

]
dt

=
(t− x)3

3
− ν2t + k
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and so from (3.31) and using (3.28) - (3.29) gives,∫ b

a

∣∣S ((x− t)2)∣∣ dt(3.32)

= H (X−)−H (a)− [H (X+)−H (X−)] + [H (b)−H (X+)]

= 2 [H (X−)−H (X+)] + H (b)−H (a)

= 2

{
−ν3

3
− ν2X− −

ν3

3
+ ν2X+

}
+

(b− x)3

3
− ν2b +

(x− a)3

3
+ ν2a

= 2

[
2ν3 − 2

3
ν3

]
+

(b− x)3 + (x− a)3

3
− ν2 (b− a)

=
8

3
ν3.

Thus, substituting into (3.27), (3.26) and using (3.29) readily produces the result
(3.21) and the theorem is proved.

Remark3.2. Other bounds may be obtained forf ∈ Lp [a, b], p ≥ 1 however
obtaining explicit expressions for these bounds is somewhat intricate and will
not be considered further here. They involve the calculation of

sup
t∈[a,b]

∣∣(t− x)2 − ν2
∣∣ = max

{∣∣(x− a)2 − ν2
∣∣ , ν2,

∣∣(b− x)2 − ν2
∣∣}

for f ∈ L1 [a, b] and (∫ b

a

∣∣(t− x)2 − ν2
∣∣q dt

) 1
q
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for f ∈ Lp [a, b], 1
p

+ 1
q

= 1, p > 1, whereν2 is given by (3.29).
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4. Some Inequalities for Absolutely Continuous
P.D.F’s

We start with the following lemma which is interesting in itself.

Lemma 4.1. Let X be a random variable whose probability density function
f : [a, b] → R+ is absolutely continuous on[a, b]. Then we have the identity

(4.1) σ2 (X) + [E (X)− x]2 =
(b− a)2

12
+

(
x− a + b

2

)2

+
1

b− a

∫ b

a

∫ b

a

(t− x)2 p (t, s) f ′ (s) dsdt,

where the kernelp : [a, b]2 → R is given by

p (t, s) :=


s− a, if a ≤ s ≤ t ≤ b,

s− b, if a ≤ t < s ≤ b,

for all x ∈ [a, b].

Proof. We use the identity (see (2.10))

(4.2) σ2 (X) + [E (X)− x]2 =

∫ b

a

(x− t)2 f (t) dt

for all x ∈ [a, b].
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On the other hand, we know that (see for example [22] for a simple proof
using integration by parts)

(4.3) f (t) =
1

b− a

∫ b

a

f (s) ds +
1

b− a

∫ b

a

p (t, s) f ′ (s) ds

for all t ∈ [a, b].
Substituting (4.3) in (4.2) we obtain

σ2 (X) + [E (X)− x]2(4.4)

=

∫ b

a

(t− x)2

[
1

b− a

∫ b

a

f (s) ds +
1

b− a

∫ b

a

p (t, s) f ′ (s) ds

]
dt

=
1

b− a
· 1

3

[
(x− a)3 + (b− x)3]

+
1

b− a

∫ b

a

∫ b

a

(t− x)2 p (t, s) f ′ (s) dsdt.

Taking into account the fact that

1

3

[
(x− a)3 + (b− x)3] =

(b− a)2

12
+

(
x− a + b

2

)2

, x ∈ [a, b] ,

then, by (4.4) we deduce the desired result (4.1).

The following inequality for P.D.F.s which are absolutely continuous and
have the derivatives essentially bounded holds.
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Theorem 4.2. If f : [a, b] → R+ is absolutely continuous on[a, b] and f ′ ∈
L∞ [a, b], i.e.,‖f ′‖∞ := ess sup

t∈[a,b]

|f ′ (t)| < ∞, then we have the inequality:

(4.5)

∣∣∣∣∣σ2 (X) + [E (X)− x]2 − (b− a)2

12
−
(

x− a + b

2

)2
∣∣∣∣∣

≤ (b− a)2

3

[
(b− a)2

10
+

(
x− a + b

2

)2
]
‖f ′‖∞

for all x ∈ [a, b].

Proof. Using Lemma4.1, we have∣∣∣∣∣σ2 (X) + [E (X)− x]2 − (b− a)2

12
−
(

x− a + b

2

)2
∣∣∣∣∣

=
1

b− a

∣∣∣∣∫ b

a

∫ b

a

(t− x)2 p (t, s) f ′ (s) dsdt

∣∣∣∣
≤ 1

b− a

∫ b

a

∫ b

a

(t− x)2 |p (t, s)| |f ′ (s)| dsdt

≤ ‖f ′‖∞
b− a

∫ b

a

∫ b

a

(t− x)2 |p (t, s)| dsdt.
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We have

I :=

∫ b

a

∫ b

a

(t− x)2 |p (t, s)| dsdt

=

∫ b

a

(t− x)2

[∫ t

a

(s− a) ds +

∫ b

t

(b− s) ds

]
dt

=

∫ b

a

(t− x)2

[
(t− a)2 + (b− t)2

2

]
dt

=
1

2

[∫ b

a

(t− x)2 (t− a)2 dt +

∫ b

a

(t− x)2 (b− t)2 dt

]
=

Ia + Ib

2
.

Let A = x− a, B = b− x then

Ia =

∫ b

a

(t− x)2 (t− a)2 dt

=

∫ b−a

0

(
u2 − 2Au + A2

)
u2du

=
(b− a)3

3

[
A2 − 3

2
A (b− a) +

3

5
(b− a)2

]
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and

Ib =

∫ b

a

(t− x)2 (b− t)2 dt

=

∫ b−a

0

(
u2 − 2Bu + B2

)
u2du

=
(b− a)3

3

[
B2 − 3

2
B (b− a) +

3

5
(b− a)2

]
Now,

Ia + Ib

2
=

(b− a)3

3

[
A2 + B2

2
− 3

4
(A + B) (b− a) +

3

5
(b− a)2

]

=
(b− a)3

3

[(
b− a

2

)2

+

(
x− a + b

2

)2

− 3
(b− a)2

20

]

=
(b− a)3

3

[
(b− a)2

10
+

(
x− a + b

2

)2
]

and the theorem is proved.

The best inequality we can get from (4.5) is embodied in the following corol-
lary.

Corollary 4.3. If f is as in Theorem4.2, then we have

(4.6)

∣∣∣∣∣σ2 (X) +

[
E (X)− a + b

2

]2

− (b− a)2

12

∣∣∣∣∣ ≤ (b− a)4

30
‖f ′‖∞ .
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We now analyze the case wheref ′ is a Lebesguep−integrable mapping with
p ∈ (1,∞).

Remark4.1. The results of Theorem4.2 may be compared with those of The-
orem3.4. It may be shown that both bounds are convex and symmetric about
x = a+b

2
. Further, the bound given by the ‘premature’ Chebychev approach,

namely from (3.12)-(3.13) is tighter than that obtained by the current approach
(4.5) which may be shown from the following. Let these bounds be described
by Bp andBc so that, neglecting the common terms

Bp =
b− a

2
√

15

[(
b− a

2

)2

+ 15Y

] 1
2

and

Bc =
(b− a)2

100
+ Y,

where

Y =

(
x− a + b

2

)2

.

It may be shown through some straightforward algebra thatB2
c −B2

p > 0 for all
x ∈ [a, b] so thatBc > Bp.
The current development does however have the advantage that the identity (4.1)
is satisfied, thus allowing bounds forLp [a, b], p ≥ 1 rather than the infinity
norm.
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Theorem 4.4. If f : [a, b] → R+ is absolutely continuous on[a, b] andf ′ ∈ Lp,
i.e.,

‖f ′‖p :=

(∫ b

a

|f ′ (t)|p dt

) 1
p

< ∞, p ∈ (1,∞)

then we have the inequality

(4.7)

∣∣∣∣∣σ2 (X) + [E (X)− x]2 − (b− a)2

12
−
(

x− a + b

2

)2
∣∣∣∣∣

≤
‖f ′‖p

(b− a)
1
p (q + 1)

1
q

[
(x− a)3q+2 B̃

(
b− a

x− a
, 2q + 1, q + 2

)
+ (b− x)3q+2 B̃

(
b− a

b− x
, 2q + 1, q + 2

)]
for all x ∈ [a, b], when1

p
+ 1

q
= 1 andB̃ (·, ·, ·) is the quasi incomplete Euler’s

Beta mapping:

B̃ (z; α, β) :=

∫ z

0

(u− 1)α−1 uβ−1du, α, β > 0, z ≥ 1.

Proof. Using Lemma4.1, we have, as in Theorem4.2, that

(4.8)

∣∣∣∣∣σ2 (X) + [E (X)− x]2 − (b− a)2

12
−
(

x− a + b

2

)2
∣∣∣∣∣

≤ 1

b− a

∫ b

a

∫ b

a

(t− x)2 |p (t, s)| |f ′ (s)| dsdt.
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Using Hölder’s integral inequality for double integrals, we have∫ b

a

∫ b

a

(t− x)2 |p (t, s)| |f ′ (s)| dsdt(4.9)

≤
(∫ b

a

∫ b

a

|f ′ (s)|p dsdt

) 1
p
(∫ b

a

∫ b

a

(t− x)2q |p (t, s)|q dsdt

) 1
q

= (b− a)
1
p ‖f ′‖p

(∫ b

a

∫ b

a

(t− x)2q |p (t, s)|q dsdt

) 1
q

,

wherep > 1, 1
p

+ 1
q

= 1.
We have to compute the integral

D :=

∫ b

a

∫ b

a

(t− x)2q |p (t, s)|q dsdt(4.10)

=

∫ b

a

(t− x)2q

[∫ t

a

(s− a)q ds +

∫ b

t

(b− s)q ds

]
dt

=

∫ b

a

(t− x)2q

[
(t− a)q+1 + (b− t)q+1

q + 1

]
dt

=
1

q + 1

[∫ b

a

(t− x)2q (t− a)q+1 dt

+

∫ b

a

(t− x)2q (b− t)q+1 dt

]
.
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Define

(4.11) E :=

∫ b

a

(t− x)2q (t− a)q+1 dt.

If we consider the change of variablet = (1− u) a+ux, we havet = a implies
u = 0 andt = b impliesu = b−a

x−a
, dt = (x− a) du and then

(4.12) E =

∫ b−a
x−a

0

[(1− u) a + ux− x]2q [(1− u) a + ux− a] (x− a) du

= (x− a)3q+2

∫ b−a
x−a

0

(u− 1)2q uq+1du

= (x− a)3q+2 B̃

(
b− a

x− a
, 2q + 1, q + 2

)
.

Define

(4.13) F :=

∫ b

a

(t− x)2q (b− t)q+1 dt.

If we consider the change of variablet = (1− v) b + vx, we havet = b implies

http://jipam.vu.edu.au/
mailto:neil@matilda.vu.edu.au
mailto:pc@matilda.vu.edu.au
mailto:sever@matilda.vu.edu.au
mailto:johnr@matilda.vu.edu.au
http://jipam.vu.edu.au/


Some Inequalities for the
Dispersion of a Random

Variable whose PDF is Defined
on a Finite Interval

Neil S. Barnett, Pietro Cerone,
Sever S. Dragomir and

John Roumeliotis

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 33 of 41

J. Ineq. Pure and Appl. Math. 2(1) Art. 1, 2001

http://jipam.vu.edu.au

v = 0, andt = a impliesv = b−a
b−x

, dt = (x− b) dv and then

F =

∫ 0

b−a
b−x

[(1− v) b + vx− x]2q(4.14)

× [b− (1− v) b− vx]q+1 (x− b) dv

= (b− x)3q+2

∫ b−a
b−x

0

(v − 1)2q vq+1dv

= (b− x)3q+2 B̃

(
b− a

b− x
, 2q + 1, q + 2

)
.

Now, using the inequalities (4.8)-(4.9) and the relations (4.10)-(4.14), since
D = 1

q+1
(E + F ) , we deduce the desired estimate (4.7).

The following corollary is natural to be considered.

Corollary 4.5. Letf be as in Theorem4.4. Then, we have the inequality:

(4.15)

∣∣∣∣∣σ2 (X) +

[
E (X)− a + b

2

]2

− (b− a)2

12

∣∣∣∣∣
≤
‖f ′‖p (b− a)2+ 3

q

(q + 1)
1
q 23+ 2

q

[B (2q + 1, q + 1) + Ψ (2q + 1, q + 2)]
1
q ,

where 1
p

+ 1
q

= 1, p > 1 andB (·, ·) is Euler’s Beta mapping andΨ (α, β) :=∫ 1

0
uα−1 (u + 1)β−1 du, α, β > 0.
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Proof. In (4.7) putx = a+b
2

. The left side is clear. Now

B̃ (2, 2q + 1, q + 2) =

∫ 2

0

(u− 1)2q uq+1du

=

∫ 1

0

(u− 1)2q uq+1du +

∫ 2

1

(u− 1)2q uq+1du

= B (2q + 1, q + 2) + Ψ (2q + 1, q + 2) .

The right hand side of (4.7) is thus:

‖f ′‖p

(
b−a
2

) 3q+2
q

(b− a)
1
p (q + 1)

1
q

[2B (2q + 1, q + 2) + 2Ψ (2q + 1, q + 2)]
1
q

=
‖f ′‖p (b− a)2+ 3

q

(q + 1)
1
q 23+ 2

q

[B (2q + 1, q + 2) + Ψ (2q + 1, q + 2)]
1
q

and the corollary is proved.

Finally, if f is absolutely continuous,f ′ ∈ L1 [a, b] and‖f ′‖1 =
∫ b

a
|f ′ (t)| dt,

then we can state the following theorem.

Theorem 4.6. If the p.d.f.,f : [a, b] → R+ is absolutely continuous on[a, b],
then

(4.16)

∣∣∣∣∣σ2 (X) + [E (X)− x]2 − (b− a)2

12
−
(

x− a + b

2

)2
∣∣∣∣∣

≤ ‖f ′‖1 (b− a)

[
1

2
(b− a) +

∣∣∣∣x− a + b

2

∣∣∣∣]2
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for all x ∈ [a, b].

Proof. As above, we can state that∣∣∣∣∣σ2 (X) + [E (X)− x]2 − (b− a)2

12
−
(

x− a + b

2

)2
∣∣∣∣∣

≤ 1

b− a

∫ b

a

∫ b

a

(t− x)2 |p (t, s)| |f ′ (s)| dsdt

≤ sup
(t,s)∈[a,b]2

[
(t− x)2 |p (t, s)|

] 1

b− a

∫ b

a

∫ b

a

|f ′ (s)| dsdt

= ‖f ′‖1 G

where
G := sup

(t,s)∈[a,b]2

[
(t− x)2 |p (t, s)|

]
≤ (b− a) sup

t∈[a,b]

(t− x)2

= (b− a) [max (x− a, b− x)]2

= (b− a)

[
1

2
(b− a) +

∣∣∣∣x− a + b

2

∣∣∣∣]2

,

and the theorem is proved.

It is clear that the best inequality we can get from (4.16) is the one when
x = a+b

2
, giving the following corollary.
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Corollary 4.7. With the assumptions of Theorem4.6, we have:

(4.17)

∣∣∣∣∣σ2 (X) +

[
E (X)− a + b

2

]2

− (b− a)2

12

∣∣∣∣∣ ≤ (b− a)3

4
‖f ′‖1 .
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