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ABSTRACT. We prove the existence of a solution for the nonlinear boundary value problem

u(2m+4) = f
(
x, u, u′′, . . . , u(2m+2)

)
, x ∈ [0, 1],

u(2i)(0) = 0 = u(2i)(1), 0 ≤ i ≤ m + 1,

wheref : [0, 1] × Rm+2 → R is continuous. The technique used here is a monotone method
in the presence of upper and lower solutions. We introduce a new maximum principle which
generalizes one due to Bai which in turn was an improvement of a maximum principle by Ma.
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1. I NTRODUCTION

In this paper, we are concerned with the existence of solutions of the higher order boundary
value problem,

u(2m+4) = f
(
x, u, u′′, . . . , u(2m+2)

)
, x ∈ [0, 1],(1.1)

u(2i)(0) = 0 = u(2i)(1), 0 ≤ i ≤ m+ 1,(1.2)

wheref : [0, 1] × Rm+2 → R is continuous, andm is a given nonnegative integer. Our results
generalize those of Bai [2], whose own results were form = 0 and involved an application
of a new maximum principle for a fourth order two-parameter linear eigenvalue problem. The
maximum principle was used in the presence of upper and lower solutions in developing a
monotone method for obtaining solutions of the boundary value problem (1.1), (1.2).
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2 JOHN M. DAVIS AND JOHNNY HENDERSON

Whenm = 0, this boundary value problem arises from the study of static deflection of
an elastic bending beam whereu denotes the deflection of the beam andf(x, u, u′′) would
represent the loading force that may depend on the deflection and the curvature of the beam; for
example, see [1, 5, 9, 14, 15]. Some attention also has been given to (1.1), (1.2) in applications
whenm ≥ 1, such as Meirovitch [13] who used higher even order boundary value problems in
studying the open-loop control of a distributed structure, and Cabada [3] used upper and lower
solutions methods to study higher order problems such as (1.1), (1.2).

The method of upper and lower solutions is thoroughly developed for second order equa-
tions, and several authors have used the method for fourth order problems (i.e., whenm = 0);
see [1, 3, 4, 12, 18]. Kelly [10] and Klaasen [11] obtained early upper and lower solutions ap-
plications to higher order ordinary differential equations. Recently, Ehme, Eloe, and Henderson
[6] employed truncations analogous to those of [10] and [11] and have extended the applica-
tions of upper and lower solutions to2mth order ordinary differential equations, where there
was no dependency on odd order derivatives. Recently, Ehme, Eloe, and Henderson [7] gener-
alized those results to any2mth order ordinary differential equation satisfying fully nonlinear
boundary conditions using upper and lower solutions.

In their monotonicity method development, Ma, Zhang, and Fu [17] established results for
the fourth order version of (1.1), (1.2) by requiring thatf(x, u, v) be nondecreasing inu and
nonincreasing inv. Bai’s [2] results were improvements of [17] in that Bai weakened the mono-
tonicity constraints onf . This paper extends the methods and results of Bai. We obtain a
maximum principle for a higher order operator in the context of this paper, and we develop
a monotonicity method for appropriate higher order problems. The process yields extremal
solutions of (1.1), (1.2).

2. A M AXIMUM PRINCIPLE

In this section, we obtain a maximum principle which generalizes the one given by Bai [2].
First, define

F =
{
u ∈ C(2m+4)[0, 1]

∣∣∣ (−1)iu(2m+2−2i)(0) ≤ 0 and

(−1)iu(2m+2−2i)(1) ≤ 0 for 0 ≤ i ≤ m+ 1
}
,

and then define the operatorL : F → C[0, 1] by

Lu = u(2m+4) − au(2m+2) + bu(2m),

wherea, b ≥ 0, a2 − 4ab ≥ 0, andu ∈ F .
We will need the following result, which is a maximum principle that appears in Protter and

Weinberger [16].

Lemma 2.1. Supposeu(x) satisfies

u′′(x) + g(x)u′(x) + h(x)u(x) ≥ 0, x ∈ (a, b),

whereh(x) ≤ 0; g andh are bounded functions on any closed subset of(a, b); and there exists
a c ∈ (a, b) such that

M = u(c) = max
x∈(a,b)

u(x)

is a nonnegative maximum. Thenu(x) ≡M . Moreover, ifh(x) 6≡ 0, thenM = 0.

Our next lemma extends maximum results from [2] and [17] in a manner useful for applica-
tion to our (1.1), (1.2).
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Lemma 2.2. If u ∈ F satisfiesLu ≥ 0, then

(2.1) (−1)iu(2m+2−2i)(x) ≤ 0, 1 ≤ i ≤ m+ 1.

Proof. LetAx = x′′. Then

Lu = u(2m+4) − au(2m+2) + bu(2m)

= (A− r1)(A− r2)u
(2m)

≥ 0

where

r1, r2 =
a±

√
a2 − 4b

2
≥ 0.

Let
y = (A− r2)u

(2m) = u(2m+2) − r2u
(2m).

Then(A− r1)y ≥ 0 and soy′′ ≥ r1y. On the other hand,r1, r2 ≥ 0 andu ∈ F imply

y(0) = u(2m+2)(0)− r2u
(2m)(0) ≤ 0,

y(1) = u(2m+2)(1)− r1u
(2m)(1) ≤ 0.

By Lemma 2.1, we can conclude thaty(x) ≤ 0 for x ∈ [0, 1]. Hence

u(2m+2)(x)− r2u
(2m)(x) ≤ 0, x ∈ [0, 1].

Using this, Lemma 2.1, and the fact that

u(2m)(0) ≥ 0 and u(2m)(1) ≥ 0,

we getu(2m)(x) ≥ 0 for all x ∈ [0, 1]. The boundary conditions (1.2) in turn imply (2.1). �

Lemma 2.3. [5] Given(a, b) ∈ R2, the boundary value problem

(2.2)
u(4) − au′′ + bu = 0,

u(0) = u′′(0) = 0 = u(1) = u′′(1),

has a nontrivial solution if and only if

(2.3)
a

(kπ)2
+

b

(kπ)4
+ 1 = 0

for somek ∈ N.

In developing a monotonicity method relative to (1.1), (1.2), we will apply an extension of
Lemma 2.3. This extension we can state as a corollary.

Corollary 2.4. Given(a, b) ∈ R2, the boundary value problem

(2.4)
u(2m+4) − au(2m+2) + bu(2m) = 0,

u(2i)(0) = 0 = u(2i)(1), 0 ≤ i ≤ m+ 1,

has a nontrivial solution if and only if(2.3)holds for somek ∈ N.

Proof. Supposeu is a solution of (2.4). Letv(x) = u(2m)(x). Then

0 = u(2m+4) − au(2m+2) + bu(2m)

=
(
u(2m)

)(4) − a
(
u(2m)

)′′
+ bu(2m)

= v(4) − av′′ + bv
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4 JOHN M. DAVIS AND JOHNNY HENDERSON

and
v(0) = 0 = v′′(0)

v(1) = 0 = v′′(1).

Hencev(x) is a solution of (2.2) and so (2.3) holds. Each step is reversible and therefore the
converse direction holds as well. �

3. THE M ONOTONE M ETHOD

In this section, we develop a monotone method which yields solutions of (1.1), (1.2).
Definition 3.1. Let α ∈ C(2m+4)[0, 1]. We sayα is anupper solutionof (1.1), (1.2) provided

α(2m+4)(x) ≥ f(x, α(x), α′′(x), . . . , α(2m+2)(x)), x ∈ [0, 1],

(−1)iα(2m+2−2i)(0) ≤ 0, 0 ≤ i ≤ m+ 1,

(−1)iα(2m+2−2i)(1) ≤ 0, 0 ≤ i ≤ m+ 1.

Definition 3.2. Let β ∈ C(2m+4)[0, 1]. We sayβ is a lower solutionof (1.1), (1.2) provided

β(2m+4)(x) ≤ f(x, β(x), β′′(x), . . . , β(2m+2)(x)), x ∈ [0, 1],

(−1)iβ(2m+2−2i)(0) ≤ 0, 0 ≤ i ≤ m+ 1,

(−1)iβ(2m+2−2i)(1) ≤ 0, 0 ≤ i ≤ m+ 1.

Definition 3.3. A functionv ∈ C(2m)[0, 1] is in theorder interval[β, α] if, for each0 ≤ i ≤ m,

(−1)iβ(2m−2i)(x) ≤ (−1)iv(2m−2i)(x) ≤ (−1)iα(2m−2i)(x), x ∈ [0, 1].

Fora, b ≥ 0 andf : [0, 1]× Rm+2 → R, define

f ∗(x, u0, u1, . . . , um+1) = f(x, u0, u1, . . . , um+1) + bum − aum+1.

Then (1.1) is equivalent to

(3.1) Lu = u(2m+4) − au(2m+2) + bu(2m) = f ∗(x, u, u′′, . . . , u(2m+2)).

Therefore, ifα is an upper solution of (1.1), (1.2), thenα is an upper solution for (3.1), (1.2).
The same is true for the lower solution,β.

Our main goal now is to obtain solutions of (3.1), (1.2).
Theorem 3.1. Let α andβ be upper and lower solutions, respectively, for(1.1), (1.2) which
satisfy

β(2m)(x) ≤ α(2m)(x) and β(2m+2)(x) + r(α− β)(2m)(x) ≥ α(2m+2)(x),

for x ∈ [0, 1] and wheref : [0, 1]× Rm+2 → R is continuous. Leta, b ≥ 0, a2 − 4b ≥ 0, and

r1, r2 =
a±

√
a2 − 4b

2
.

Suppose
f(x, u0, u1, . . . , s, um+1)− f(x, u0, u1, . . . , t, um+1) ≥ −b (s− t) ,

for
β(2m)(x) ≤ t ≤ s ≤ α(2m)(x),

whereu0, u1, . . . , um−1, um+1 ∈ R andx ∈ [0, 1]. Suppose also that

f(x, u0, u1, . . . , um, ρ)− f(x, u0, u1, . . . , um, σ) ≤ a (ρ− σ) ,

for
α(2m+2)(x)− r(α− β)(2m)(x) ≤ σ ≤ ρ+ r(α− β)(2m)(x)
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with
ρ ≤ β(2m+2)(x) + r(α− β)(2m)(x),

whereu0, u1, . . . , um ∈ R andx ∈ [0, 1]. Then there exist sequences{αn}∞n=0 and{βn}∞n=0 in
C(2m+4) such that

α0 = α and β0 = β,

which converge inC(2m+4) to extremal solutions of(1.1), (1.2) in the order interval[β, α].
Furthermore, ifm is even, these sequences satisfy the montonicity conditions{

α(2i)
n

}∞
n=0

is nonincreasing fori even,{
α(2i)

n

}∞
n=0

is nondecreasing fori odd,{
β(2i)

n

}∞
n=0

is nondecreasing fori even,{
β(2i)

n

}∞
n=0

is nonincreasing fori odd.

If m is odd, the sequences satisfy the montonicity conditions{
α(2i)

n

}∞
n=0

is nondecreasing fori even,{
α(2i)

n

}∞
n=0

is nonincreasing fori odd,{
β(2i)

n

}∞
n=0

is nonincreasing fori even,{
β(2i)

n

}∞
n=0

is nondecreasing fori odd.

Proof. Consider the associated problem

(3.2) u(2m+4)(x)− au(2m+2)(x) + bu(2m)(x) = f
(
x, ϕ, ϕ′′, . . . , ϕ(2m+2)

)
,

satisfying (1.2), whereϕ ∈ C(2m+2)[0, 1]. Sincea, b ≥ 0, (a, b) is not an eigenvalue pair of
(2.2). By Lemma 2.3 and the Fredholm Alternative [8], the problem (3.2), (1.2) has a unique
solution,u. Based on this, we can define the operator

T : C(2m+2)[0, 1] → C(2m+4)[0, 1]

by T ϕ = u. Next, let

C =
{
ϕ ∈ C(2m+2)[0, 1]

∣∣∣ (−1)iα(2i) ≤ (−1)iϕ(2i) ≤ (−1)iβ(2i), 0 ≤ i ≤ m,

andα(2m+2) − r(α− β)(2m) ≤ ϕ(2m+2) ≤ β(2m+2) + r(α− β)(2m)
}
.

C is a nonempty, closed, bounded subset ofC(2m+2)[0, 1]. Forψ ∈ C, setω = T ψ. Then, for
x ∈ [0, 1],

L(α− ω)(x) = (α− ω)(2m+4)(x)− a(α− ω)(2m+2)(x) + b(α− ω)(2m)(x)

≥ f ∗
(
x, α(x), . . . , α(2m+2)(x)

)
− f ∗

(
x, ψ(x), . . . , ψ(2m+2)(x)

)
= f

(
x, α(x), . . . , α(2m+2)(x)

)
− f

(
x, ψ(x), . . . , ψ(2m+2)(x)

)
− a(α− ψ)(2m+2)(x) + b(α− ψ)(2m)(x)

≥ 0,

and by the definition ofα,

(−1)i(α− ω)(2m+2−2i)(0) ≤ 0, 0 ≤ i ≤ m+ 1,

(−1)i(α− ω)(2m+2−2i)(1) ≤ 0, 0 ≤ i ≤ m+ 1.

Employing Lemma 2.2, we have

(−1)i(α− ω)(2m+2−2i)(x) ≤ 0, 1 ≤ i ≤ m+ 1, x ∈ [0, 1].
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By a similar argument, we see that

(−1)i(ω − β)(2m+2−2i)(x) ≤ 0, 1 ≤ i ≤ m+ 1, x ∈ [0, 1].

Hence

(−1)iα(2m+2−2i) ≤ (−1)iω(2m+2−2i) ≤ (−1)iβ(2m+2−2i), 1 ≤ i ≤ m+ 1.

Note
(α− ω)(2m+2)(x)− r(α− ω)(2m)(x) ≤ 0, x ∈ [0, 1],

or

(3.3) ω(2m+2)(x) + r(α− ω)(2m)(x) ≥ α(2m+2)(x), x ∈ [0, 1].

Using (3.3) we have

ω(2m+2)(x) + r(α− β)(2m)(x) ≥ ω(2m+2)(x) + r(α− ω)(2m)(x)

≥ α(2m+2)(x)

or
α(2m+2)(x)− r(α− β)(2m)(x) ≤ ω(2m+2)(x), x ∈ [0, 1].

By a similar argument, we can conclude

ω(2m+2)(x) ≤ β(2m+2)(x) + r(α− β)(2m)(x), x ∈ [0, 1].

Therefore,T : C → C.
Next, letu1 = T ϕ1 andu2 = T ϕ2 whereϕ1, ϕ2 ∈ C with

(−1)iϕ
(2i)
2 ≤ (−1)iϕ

(2i)
1 , 0 ≤ i ≤ m,

ϕ
(2m+2)
1 + r(α− β)(2m) ≥ ϕ

(2m+2)
2 .

We claim that the analogous inequalities hold in terms ofu1, u2. That is,

(3.4)
(−1)iu

(2i)
2 ≤ (−1)iu

(2i)
1 , 0 ≤ i ≤ m,

u
(2m+2)
1 + r(α− β)(2m) ≥ u

(2m+2)
2 .

To verify the claim, note first that

L(u2 − u1)(x) = f
(
x, ϕ2, ϕ

′′
2, . . . , ϕ

(2m+2)
2

)
− f

(
x, ϕ1, ϕ

′′
1, . . . , ϕ

(2m+2)
1

)
≥ 0

and
(u2 − u1)

(2i)(0) = 0 = (u2 − u1)
(2i)(1), 0 ≤ i ≤ m.

By Lemma 2.2, we have

(−1)i(u2 − u1)
(2m+2−2i)(x) ≤ 0, 1 ≤ i ≤ m+ 1, x ∈ [0, 1],

or
(−1)iu

(2m+2−2i)
2 (x) ≤ (−1)iu

(2m+2−2i)
1 (x), 1 ≤ i ≤ m+ 1, x ∈ [0, 1].

By the same reasoning used to showT : C → C, we deduce

u
(2m+2)
1 + r(α− β)(2m) ≥ u

(2m+2)
2 .

Therefore (3.4) holds.
Finally, we construct our sequences. Define

α0 = α, αn = T αn−1, n ≥ 1,

β0 = β, βn = T βn−1, n ≥ 1.
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Then{αn}∞n=0, {βn}∞n=0 ⊂ C(2m+4). But, in particular, from the earlier portion of the proof,
{αn}∞n=0, {βn}∞n=0 ⊂ C and

(−1)iα
(2m+2−2i)
0 ≤ (−1)iβ

(2m+2−2i)
0 , 1 ≤ i ≤ m+ 1,

α
(2m+2)
0 ≤ β

(2m+2)
0 + r(α0 − β0)

(2m).

We can argue as before that

(3.5)
(−1)iα

(2m+2−2i)
0 ≥ (−1)iα

(2m+2−2i)
1

≥ · · · ≥ (−1)iβ
(2m+2−2i)
1 ≥ (−1)iβ

(2m+2−2i)
0 , 1 ≤ i ≤ m+ 1,

and

(3.6)

β(2m+2) = β
(2m+2)
0 , α(2m+2) = α

(2m+2)
0 ,

α
(2m+2)
0 − r(α0 − β0)

(2m) ≤ α(2m+2)
n ,

β(2m+2)
n ≤ β

(2m+2)
0 + r(α0 − β0)

(2m).

From the definition ofT ,

Lαn(x) = α(2m+4)
n (x)− aα(2m+2)

n (x) + bα(2m)
n (x)

= f ∗
(
x, αn−1(x), . . . , α

(2m+2)
n−1 (x)

)
and

α(2i)
n (0) = 0 = α(2i)

n (1), 0 ≤ i ≤ m+ 1.

This in turn yields

(3.7)

α(2m+4)
n (x) = f ∗

(
x, αn−1(x), . . . , α

(2m+2)
n−1 (x)

)
+ aα(2m+2)

n (x)− bα(2m)
n (x)

≤ f ∗
(
x, αn−1(x), . . . , α

(2m+2)
n−1 (x)

)
+ a

[
β(2m+2) + r(α− β)(2m)

]
(x)− bβ(2m)(x)

and

(3.8) α(2i)
n (0) = 0 = α(2i)

n (1), 0 ≤ i ≤ m+ 1.

Analogously,

β(2m+4)
n (x) ≤ f ∗

(
x, βn−1(x), . . . , β

(2m+2)
n−1 (x)

)
+ a

[
β(2m+2) + r(α− β)(2m)

]
(x)− bβ(2m)(x),

β(2i)
n (0) = 0 = β(2i)

n (1), 0 ≤ i ≤ m+ 1.

By (3.5)–(3.7), there exists a constantMα,β > 0 (independent ofn andx) such that

(3.9)
∣∣α(2m+4)

n (x)
∣∣ ≤Mα,β for all x ∈ [0, 1].

By (3.8), for eachn ∈ N, there exists atn ∈ (0, 1) such thatα(2m+3)
n (tn) = 0. Using this and

(3.9), we obtain

(3.10)
∣∣α(2m+3)

n (x)
∣∣ =

∣∣∣∣α(2m+3)
n (tn) +

∫ x

tn

α(2m+4)
n (s) ds

∣∣∣∣ ≤Mα,β.

Combining (3.6) and (3.8) and arguing as above, we know that there is a constantNα,β > 0
(independent ofn andx) such that

(3.11)
∣∣α(i)

n (x)
∣∣ ≤ Nα,β, 1 ≤ i ≤ 2m+ 2, x ∈ [0, 1].
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By (3.5), (3.10), and (3.11), we have{αn}∞n=0 is bounded inC(2m+4)-norm. Similarly,{βn}∞n=0

is bounded inC(2m+4)-norm as well.
Appropriate equicontinuity conditions are satisfied as well, and then by standard convergence

theorems as well as the monotonicity of
{
α

(2i)
n

}∞
n=0

and
{
β

(2i)
n

}∞
n=0

, 0 ≤ i ≤ m, it follows that

{αn}∞n=0 and{bn}∞n=0 converge to the extremal solutions of (3.1), (1.2) and hence to the extremal
solutions of (1.1), (1.2). �

4. EXAMPLES

We conclude the paper with two examples which illustrate the usefulness of Theorem 3.1
above.

Example 4.1.Consider the boundary value problem

(4.1)

u(6) = −u′′(x)− 1

π2
u(4) + sin πx, x ∈ [0, 1],

u(0) = u′′(0) = u(4)(0) = 0,

u(1) = u′′(1) = u(4)(1) = 0.

One can easily verify that the conditions of Theorem 3.1 are satisfied if we takeα(x) =
− 1

π2 sin πx as an upper solution andβ(x) ≡ 0 as a lower solution of (4.1). We then conclude
that there exists a solution,u(x), of (4.1) such that− 1

π2 sin πx ≤ u(x) ≤ 0 for x ∈ [0, 1].

Example 4.2.Consider the boundary value problem

(4.2)

u(6) = −u′′(x) +
1

π4

(
u(4)

)2
+ sin πx, x ∈ [0, 1],

u(0) = u′′(0) = u(4)(0) = 0,

u(1) = u′′(1) = u(4)(1) = 0.

Again, the hypotheses of Theorem 3.1 hold for the upper solutionα(x) = − 1
π

cos πx and the
lower solutionβ(x) ≡ 0. Hence, there exists a solution,u(x), of (4.2) satisfying− 1

π
cos πx ≤

u(x) ≤ 0 for x ∈ [0, 1].
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