Journal of Inequalities in Pure and Applied Mathematics

A PRIORI ESTIMATE FOR A SYSTEM OF DIFFERENTIAL OPERATORS

CHIKH BOUZAR

Département de Mathématiques.
Université d'Oran-Essenia.Algérie.
EMail: bouzarchikh@hotmail.com

Abstract
Contents
Home Page
Close
Quit

Abstract

We characterize in algebraic terms an inequality in Sobolev spaces for a system of differential operators with constant coefficients.

2000 Mathematics Subject Classification: 35B45.
Key words: Differential operators, a priori estimate

Contents

1 Introduction 3
2 The Results 5
References References

A Priori Estimate for a System of Differential Operators

Chikh Bouzar

Title Page
Contents
Go Back
Close
Quit

J. Ineq. Pure and Appl. Math. 2(2) Art. 17, 200
http://jipam.vu.edu.au

1. Introduction

We are interested in the following inequality

$$
\begin{equation*}
\exists C>0,\|R(D) u\| \leq C \sum_{j=1}^{k}\left\|P_{j}(D) u\right\|, \forall u \in C_{0}^{\infty}(\Omega), \tag{1.1}
\end{equation*}
$$

where $S=\left\{P_{j}(D) ; j=1, \ldots, k\right\}, R(D)$ are linear differential operators of order $\leq m$ with constant complex coefficients and $C_{0}^{\infty}(\Omega)$ is the space of infinitely differentiable functions with compact supports in a bounded open set Ω of the Euclidian space \mathbb{R}^{n}. By $\|$.$\| we denote the norm of the Hilbert space$ $L^{2}(\Omega)$ of square integrable functions.

Each differential operator $P_{j}(D)$ has a complete symbol $P_{j}(\xi)$ such that

$$
\begin{equation*}
P_{j}(\xi)=p_{j}(\xi)+q_{j}(\xi)+r_{j}(\xi)+\ldots, \tag{1.2}
\end{equation*}
$$

where $p_{j}(\xi), q_{j}(\xi)$ and $r_{j}(\xi)$ are the homogeneous polynomial parts of $P_{j}(\xi)$ in $\xi \in \mathbb{R}^{n}$ of orders, respectively, $m, m-1$ and $m-2$.

It is well-known that the system S satisfies the inequality (1.1) for all differential operators $R(D)$ of order $\leq m$ if and only if it is elliptic, i.e.

$$
\begin{equation*}
\sum_{j=1}^{k}\left|p_{j}(\xi)\right| \neq 0, \forall \xi \in \mathbb{R}^{n} \backslash 0 \tag{1.3}
\end{equation*}
$$

A Priori Estimate for a System of Differential Operators

Chikh Bouzar

Title Page
Contents

$\mathbf{4}$	
Go Back	
Close	
Quit	
Page 3 of 10	

The estimate (1.1) has been used in our work [1], without proof, in the study of local estimates for certain classes of pseudodifferential operators.

A Priori Estimate for a System of Differential Operators

Chikh Bouzar
Title Page

2. The Results

To prove the main theorem we need some lemmas. The first one gives an algebraic characterization of the inequality (1.1) based on a well-known result of Hörmander [3].

Recall the Hörmander function

$$
\begin{equation*}
\widetilde{P}_{j}(\xi)=\left(\sum_{\alpha}\left|P_{j}^{(\alpha)}(\xi)\right|^{2}\right)^{\frac{1}{2}} \tag{2.1}
\end{equation*}
$$

where $P_{j}^{(\alpha)}(\xi)=\frac{\partial^{|\alpha|}}{\partial \xi_{1}^{\alpha_{1}} \ldots \partial \xi_{n}^{\alpha_{n}}} P_{j}(\xi)$, (see [3]).
Lemma 2.1. The inequality (1.1) holds for every $R(D)$ of order $\leq m-1$ if and only if

$$
\begin{equation*}
\exists C>0, \quad|\xi|^{m-1} \leq C \sum_{j=1}^{k} \widetilde{P}_{j}(\xi), \forall \xi \in \mathbb{R}^{n} \tag{2.2}
\end{equation*}
$$

Proof. The proof of this lemma follows essentially from the classical one in the case of $k=1$, and it is based on Hörmander's inequality (see [3, p. 7]).

The scalar product in the complex Euclidian space C^{k} of $A=\left(a_{1}, . ., a_{k}\right)$ and $B=\left(b_{1}, . ., b_{k}\right)$ is denoted as usually by $A \cdot B=\sum_{i=1}^{k} a_{i} \bar{b}_{i}$, and the norm of C^{k} by $|\cdot|$.

Let, by definition,

$$
\begin{equation*}
|A \wedge B|^{2}=\sum_{i<j}^{k}\left|a_{i} b_{j}-b_{i} a_{j}\right|^{2} \tag{2.3}
\end{equation*}
$$

The next lemma is a consequence of the classical Lagrange's identity (see [2]).

Lemma 2.2. Let $A=\left(a_{1}, . ., a_{k}\right) \in C^{k}$ and $B=\left(b_{1}, . ., b_{k}\right) \in C^{k}$, then (2.4)

$$
|A t+B|^{2}=\left(|A| t+\frac{\operatorname{Re}(A \cdot B)}{|A|}\right)^{2}+\frac{|\operatorname{Im}(A \cdot B)|^{2}+|A \wedge B|^{2}}{|A|^{2}}, \forall t \in R
$$

Proof. We have

$$
\begin{aligned}
|A t+B|^{2} & =(|A| t)^{2}+2 t \operatorname{Re}(A \cdot B)+|B|^{2} \\
& =\left(|A| t+\frac{\operatorname{Re}(A \cdot B)}{|A|}\right)^{2}+|B|^{2}-\left(\frac{\operatorname{Re}(A \cdot B)}{|A|}\right)^{2}
\end{aligned}
$$

We obtain (2.4) from the next classical Lagrange's identity

$$
|A|^{2}|B|^{2}=|\operatorname{Re}(A \cdot B)|^{2}+|\operatorname{Im}(A \cdot B)|^{2}+|A \wedge B|^{2}
$$

For $\xi \in \mathbb{R}^{n}$ we define the vector functions

$$
\begin{equation*}
A(\xi)=\left(p_{1}(\xi), . ., p_{k}(\xi)\right) \text { and } B(\xi)=\left(q_{1}(\xi), . ., q_{k}(\xi)\right) \tag{2.5}
\end{equation*}
$$

Let

$$
\begin{equation*}
\Xi=\left\{\omega \in S^{n-1}:|A(\omega)|^{2}=\sum_{j=1}^{k}\left|p_{j}(\omega)\right|^{2} \neq 0\right\} \tag{2.6}
\end{equation*}
$$

A Priori Estimate for a System of Differential Operators

Chikh Bouzar

Title Page

Contents	
Go Back	
Close	
Quit	
Page 6 of 10	

where S^{n-1} is the unit sphere of \mathbb{R}^{n}, and

$$
\begin{equation*}
F(t, \xi)=|\operatorname{grad} A(\xi)|^{2}+|A(\xi) t+B(\xi)|^{2} \tag{2.7}
\end{equation*}
$$

where $|\operatorname{grad} A(\xi)|^{2}=\sum_{j=1}^{k}\left|\operatorname{grad} p_{j}(\xi)\right|^{2}$.
Lemma 2.3. The inequality (2.2) holds if and only if there exist no sequences of real numbers $t_{j} \longrightarrow+\infty$ and $\omega_{j} \in S^{n-1}$ such that

$$
\begin{equation*}
F\left(t_{j}, \omega_{j}\right) \longrightarrow 0 \tag{2.8}
\end{equation*}
$$

Proof. Let t_{j} be a sequence of real numbers and ω_{j} a sequence of S^{n-1}, using the homogeneity of the functions p, q and r, then (2.2) is equivalent to

$$
\frac{\left|t_{j} \omega_{j}\right|^{2(m-1)}}{\sum_{l=1}^{k} \widetilde{P}_{l}\left(t_{j} \omega_{j}\right)^{2}}=\frac{1}{F\left(t_{j}, \omega_{j}\right)+2 \sum_{l=1}^{k} \operatorname{Re}\left(p_{l}\left(\omega_{j}\right) \cdot \bar{r}_{l}\left(\omega_{j}\right)\right)+\chi\left(\omega_{j}\right) \cdot O\left(\frac{1}{t_{j}}\right)} \leq C
$$

where χ is a bounded function. Hence it is easy to see Lemma 2.3.
If $\omega \in \Xi$ we define the function G by

$$
G(\omega)=|\operatorname{grad} A(\omega)|^{2}+\frac{|\operatorname{Im}(A(\omega) \cdot B(\omega))|^{2}+|A(\omega) \wedge B(\omega)|^{2}}{|A(\omega)|^{2}} .
$$

Theorem 2.4. The estimate (1.1) holds if and only if

$$
\begin{equation*}
\exists C>0, G(\omega) \geq C, \forall \omega \in \Xi \tag{2.9}
\end{equation*}
$$

Proof. All positive constants are denoted by C. If (2.9) holds then from (2.4) and (2.7) we have

$$
\begin{equation*}
F(t, \omega)=\left(|A(\omega)| t+\frac{\operatorname{Re}(A(\omega) \cdot B(\omega))}{|A(\omega)|}\right)^{2}+G(\omega) \geq C, \forall \omega \in \Xi, \forall t \geq 0 \tag{2.10}
\end{equation*}
$$

The vector function A is analytic and the set Ξ is dense in S^{n-1}, therefore by continuity we obtain

$$
\begin{equation*}
F(t, \omega) \geq C, \forall t \geq 0, \forall \omega \in S^{n-1} \tag{2.11}
\end{equation*}
$$

For $\xi \in \mathbb{R}^{n}$, set $\omega=\frac{\xi}{|\xi|}$ and $t=|\xi|$ in (2.11), as the vector functions A and B are homogeneous, we obtain

$$
|A(\xi)+B(\xi)|^{2}+|\operatorname{grad} A(\xi)|^{2} \geq C|\xi|^{2(m-1)}, \forall \xi \in \mathbb{R}^{n}
$$

and then, for $|\xi| \geq C$, we have

$$
\begin{equation*}
\sum_{j=1}^{k}\left(\left|P_{j}(\xi)\right|^{2}+\left|\operatorname{grad} P_{j}(\xi)\right|^{2}\right)+O\left(\left(1+|\xi|^{2}\right)^{m-2}\right) \geq C|\xi|^{2(m-1)} \tag{2.12}
\end{equation*}
$$

From the last inequality we easily get (2.2) of Lemma 2.1.
Suppose that (2.9) does not hold, then there exists a sequence $\omega_{j} \in \Xi$ such that $G\left(\omega_{j}\right) \longrightarrow 0$, i.e.

A Priori Estimate for a System of Differential Operators

Chikh Bouzar

| Title Page |
| :---: | :---: |
| Contents |
| Go Back |
| Close |
| Quit |

$$
\begin{equation*}
\left|\operatorname{grad} A\left(\omega_{j}\right)\right|^{2} \rightarrow 0 \tag{2.13}
\end{equation*}
$$

$$
\begin{equation*}
\frac{\left|\operatorname{Im}\left(A\left(\omega_{j}\right) \cdot B\left(\omega_{j}\right)\right)\right|^{2}+\left|A\left(\omega_{j}\right) \wedge B\left(\omega_{j}\right)\right|^{2}}{\left|A\left(\omega_{j}\right)\right|^{2}} \rightarrow 0 \tag{2.14}
\end{equation*}
$$

As S^{n-1} is compact we can suppose that $\omega_{j} \longrightarrow \omega_{0} \in S^{n-1}$. Hence, from (2.14) and (2.4) with $t=0$, we obtain

$$
\begin{equation*}
\frac{\operatorname{Re}\left(A\left(\omega_{j}\right) \cdot B\left(\omega_{j}\right)\right)}{\left|A\left(\omega_{j}\right)\right|} \longrightarrow \pm\left|B\left(\omega_{0}\right)\right| \tag{2.15}
\end{equation*}
$$

From (2.13), due to Euler's identity for homogeneous functions,

$$
\begin{equation*}
A\left(\omega_{0}\right)=\overrightarrow{0} \tag{2.16}
\end{equation*}
$$

Now if $B\left(\omega_{0}\right)=0$ then $F\left(t, \omega_{0}\right) \equiv 0$, which contradicts (2.8).
Let $B\left(\omega_{0}\right) \neq 0$, and suppose that

$$
\begin{equation*}
\frac{\operatorname{Re}\left(A\left(\omega_{j}\right) \cdot B\left(\omega_{j}\right)\right)}{\left|A\left(\omega_{j}\right)\right|} \longrightarrow-\left|B\left(\omega_{0}\right)\right| \tag{2.17}
\end{equation*}
$$

then setting $t_{j}=\frac{\left|B\left(\omega_{j}\right)\right|}{\left|A\left(\omega_{j}\right)\right|}$ in (2.10), it is clear that $t_{j} \longrightarrow+\infty$, so, with $G\left(\omega_{j}\right) \longrightarrow$ $0, F\left(t_{j}, \omega_{j}\right)$ will converge to 0 , which contradicts (2.8).

If

$$
\frac{\operatorname{Re}\left(A\left(\omega_{j}\right) \cdot B\left(\omega_{j}\right)\right)}{\left|A\left(\omega_{j}\right)\right|} \longrightarrow+\left|B\left(\omega_{0}\right)\right|
$$

A Priori Estimate for a System of Differential Operators

Chikh Bouzar

Title Page
Contents
Go Back
Close
Quit
Page 9 of 10

then changing ω_{j} to $-\omega_{j}$ and using the homogeneity of the functions A and B, we obtain the same conclusion.

References

[1] C. BOUZAR, Local estimates for pseudodifferential operators, Doklady Nats. Akad. Nauk Belarusi, 44(4) (2000), 18-20. (in Russian)
[2] G. HARDY, J. LITTLEWOOD And G. POLYA, Inequalities, Cambridge Univ. Press, 2nd Ed., 1967.
[3] L. HÖRMANDER, The Analysis of Partial Differential Operators, T.II, Springer-Verlag. 1983.

A Priori Estimate for a System of Differential Operators

Chikh Bouzar

