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Abstract

The aim of the present paper is to establish some new integral inequalities in
two independent variables and their discrete analogues which provide explicit
bounds on unknown functions. The inequalities given here can be used as
tools in the qualitative theory of certain partial differential and finite difference
equations.
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1. Introduction
The integral and finite difference inequalities involving functions of one and
more than one independent variables which provide explicit bounds on un-
known functions play a fundamental role in the development of the theory of
differential and finite difference equations. During the past few years, many
such new inequalities have been discovered, which are motivated by certain ap-
plications (see [1]–[10]). In the qualitative analysis of some classes of partial
differential and finite difference equations, the bounds provided by the earlier
inequalities are inadequate and it is necessary to seek some new inequalities in
order to achieve a diversity of desired goals. Our main objective here is to es-
tablish some useful integral inequalities involving functions of two independent
variables and their discrete analogues which can be used as ready and powerful
tools in the analysis of certain classes of partial differential and finite difference
equations.
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2. Statement of Results
In what follows,R denotes the set of real numbers andR+ = [0,∞), N0 =
{0, 1, 2, . . . } are the given subsets ofR. The first order partial derivatives of a
function z (x, y) defined forx, y ∈ R with respect tox andy are denoted by
zx (x, y) andzy (x, y) respectively. We use the usual conventions that empty
sums and products are taken to be0 and1 respectively. Throughout the paper,
all the functions which appear in the inequalities are assumed to be real-valued
and all the integrals, sums and products involved exist on the respective domains
of their definitions.

We need the inequalities in the following lemma, which are the slight vari-
ants of the inequalities given in [5, pp. 12, 28].

Lemma 2.1. Let u (t), a (t), b (t) be nonnegative and continuous functions de-
fined fort ∈ R+.

(α1) Assume thata (t) is nondecreasing fort ∈ R+. If

u (t) ≤ a (t) +

∫ t

0

b (s) u (s) ds,

for t ∈ R+, then

u (t) ≤ a (t) exp

(∫ t

0

b (s) ds

)
,

for t ∈ R+.
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(α2) Assume thata (t) is nonincreasing fort ∈ R+. If

u (t) ≤ a (t) +

∫ ∞

t

b (s) u (s) ds,

for t ∈ R+, then

u (t) ≤ a (t) exp

(∫ ∞

t

b (s) ds

)
,

for t ∈ R+.

The proofs of the inequalities in(α1), (α2) can be completed as in [5, pp.
12, 28, 325-326] (see also [4]). Here we omit the details.

Our main results on integral inequalities are established in the following the-
orems.

Theorem 2.2.Letu (x, y), a (x, y), b (x, y), c (x, y) be nonnegative continuous
functions defined forx, y ∈ R+.

(a1) If

(2.1) u (x, y) ≤ a (x, y) + b (x, y)

∫ x

0

∫ ∞

y

c (s, t) u (s, t) dtds,

for x, y ∈ R+, then

(2.2) u (x, y)

≤ a (x, y) + b (x, y) e (x, y) exp

(∫ x

0

∫ ∞

y

c (s, t) b (s, t) dtds

)
,
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for x, y ∈ R+, where

(2.3) e (x, y) =

∫ x

0

∫ ∞

y

c (s, t) a (s, t) dtds,

for x, y ∈ R+.

(a2) If

(2.4) u (x, y) ≤ a (x, y) + b (x, y)

∫ ∞

x

∫ ∞

y

c (s, t) u (s, t) dtds,

for x, y ∈ R+, then

(2.5) u (x, y)

≤ a (x, y) + b (x, y) ē (x, y) exp

(∫ ∞

x

∫ ∞

y

c (s, t) b (s, t) dtds

)
,

for x, y ∈ R+, where

(2.6) ē (x, y) =

∫ ∞

x

∫ ∞

y

c (s, t) a (s, t) dtds,

for x, y ∈ R+.

Theorem 2.3.Letu (x, y), a (x, y), b (x, y), c (x, y) be nonnegative continuous
functions defined forx, y ∈ R+.
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(b1) Assume thata (x, y) is nondecreasing inx ∈ R+. If

(2.7) u (x, y)

≤ a (x, y) +

∫ x

0

b (s, y) u (s, y) ds +

∫ x

0

∫ ∞

y

c (s, t) u (s, t) dtds,

for x, y ∈ R+, then

(2.8) u (x, y)

≤ p (x, y)

[
a (x, y) + A (x, y) exp

(∫ x

0

∫ ∞

y

c (s, t) p (s, t) dtds

)]
,

for x, y ∈ R+, where

p (x, y) = exp

(∫ x

0

b (s, y) ds

)
,(2.9)

A (x, y) =

∫ x

0

∫ ∞

y

c (s, t) p (s, t) a (s, t) dtds,(2.10)

for x, y ∈ R+.

(b2) Assume thata (x, y) is nonincreasing inx ∈ R+. If

(2.11) u (x, y)

≤ a (x, y) +

∫ ∞

x

b (s, y) u (s, y) ds +

∫ ∞

x

∫ ∞

y

c (s, t) u (s, t) dtds,
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for x, y ∈ R+, then

(2.12) u (x, y)

≤ p̄ (x, y)

[
a (x, y) + Ā (x, y) exp

(∫ ∞

x

∫ ∞

y

c (s, t) p̄ (s, t) dtds

)]
,

for x, y ∈ R+, where

p̄ (x, y) = exp

(∫ ∞

x

b (s, y) ds

)
,(2.13)

Ā (x, y) =

∫ ∞

x

∫ ∞

y

c (s, t) p̄ (s, t) a (s, t) dtds,(2.14)

for x, y ∈ R+.

Theorem 2.4. Let u (x, y), a (x, y), b (x, y) be nonnegative continuous func-
tions defined forx, y ∈ R+ andF : R3

+ → R+ be a continuous function which
satisfies the condition

0 ≤ F (x, y, u)− F (x, y, v) ≤ K (x, y, v) (u− v) ,

for u ≥ v ≥ 0, whereK (x, y, v) is a nonnegative continuous function defined
for x, y, v ∈ R+.

(c1) Assume thata (x, y) is nondecreasing inx ∈ R+. If

(2.15) u (x, y)

≤ a (x, y) +

∫ x

0

b (s, y) u (s, y) ds +

∫ x

0

∫ ∞

y

F (s, t, u (s, t)) dtds,
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for x, y ∈ R+, then

(2.16) u (x, y) ≤ p (x, y)

[
a (x, y) + B (x, y)

× exp

(∫ x

0

∫ ∞

y

K (s, t, p (s, t) a (s, t)) p (s, t) dtds

)]
,

for x, y ∈ R+, where

(2.17) B (x, y) =

∫ x

0

∫ ∞

y

F (s, t, p (s, t) a (s, t)) dtds,

for x, y ∈ R+ andp (x, y) is defined by (2.9).

(c2) Assume thata (x, y) is nonincreasing inx ∈ R+. If

(2.18) u (x, y)

≤ a (s, y) +

∫ ∞

x

b (s, y) u (s, y) ds +

∫ ∞

x

∫ ∞

y

F (s, t, u (s, t)) dtds,

for x, y ∈ R+, then

(2.19) u (x, y) ≤ p̄ (x, y)

[
a (x, y) + B̄ (x, y)

× exp

(∫ ∞

x

∫ ∞

y

K (s, t, p̄ (s, t) a (s, t)) p̄ (s, t) dtds

)]
,
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for x, y ∈ R+, where

(2.20) B̄ (x, y) =

∫ ∞

x

∫ ∞

y

F (s, t, p̄ (s, t) a (s, t)) dtds,

for x, y ∈ R+ and p̄ (x, y) is defined by (2.13).

We require the following discrete version of Lemma2.1to establish the dis-
crete analogues of Theorems2.3and2.4.

Lemma 2.5.Letu (n), a (n), b (n) be nonnegative functions defined forn ∈ N0.

(β1) Assume thata (n) is nondecreasing forn ∈ N0. If

u (n) ≤ a (n) +
n−1∑
s=0

b (s) u (s) ,

for n ∈ N0, then

u (n) ≤ a (n)
n−1∏
s=0

[1 + b (s)] ,

for n ∈ N0.

(β2) Assume thata (n) is nonincreasing forn ∈ N0. If

u (n) ≤ a (n) +
∞∑

s=n+1

b (s) u (s) ,
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for n ∈ N0, then

u (n) ≤ a (n)
∞∏

s=n+1

[1 + b (s)] ,

for n ∈ N0.

The proof of(β1) can be completed by following the proof of Theorem 1o in
[6, p. 256] and closely looking at the proof of Theorem 4.2.2 in [5, p. 326]. For
the proof of(β2), see [10] and also [4].

The discrete analogues of Theorems2.2 – 2.4 are given in the following
theorems.

Theorem 2.6. Let u (m,n), a (m, n), b (m,n), c (m, n) be nonnegative func-
tions defined form, n ∈ N0.

(p1) If

(2.21) u (m, n) ≤ a (m, n) + b (m, n)
m−1∑
s=0

∞∑
t=n+1

c (s, t) u (s, t) ,

for m, n ∈ N0, then

(2.22) u (m,n)

≤ a (m, n) + b (m, n) f (m, n)
m−1∏
s=0

[
1 +

∞∑
t=n+1

c (s, t) b (s, t)

]
,
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for m, n ∈ N0, where

(2.23) f (m, n) =
m−1∑
s=0

∞∑
t=n+1

c (s, t) a (s, t) ,

for m, n ∈ N0.

(p2) If

(2.24) u (m,n) ≤ a (m, n) + b (m, n)
∞∑

s=m+1

∞∑
t=n+1

c (s, t) u (s, t) ,

for m, n ∈ N0, then

(2.25) u (m,n)

≤ a (m,n) + b (m, n) f̄ (m, n)
∞∏

s=m+1

[
1 +

∞∑
t=n+1

c (s, t) b (s, t)

]
,

for m, n ∈ N0, where

(2.26) f̄ (m, n) =
∞∑

s=m+1

∞∑
t=n+1

c (s, t) a (s, t) ,

for m, n ∈ N0.

Theorem 2.7. Let u (m,n), a (m, n), b (m,n), c (m, n) be nonnegative func-
tions defined form, n ∈ N0.
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(q1) Assume thata (m, n) is nondecreasing inm ∈ N0. If

(2.27) u (m,n)

≤ a (m, n) +
m−1∑
s=0

b (s, n) u (s, n) +
∞∑

s=m+1

∞∑
t=n+1

c (s, t) u (s, t) ,

for m, n ∈ N0, then

(2.28) u (m,n)

≤ q (m, n)

[
a (m,n) + G (m,n)

m−1∏
s=0

[
1 +

∞∑
t=n+1

c (s, t) q (s, t)

]]
,

for m, n ∈ N0, where

q (m,n) =
m−1∏
s=0

[1 + b (s, n)] ,(2.29)

G (m,n) =
m−1∑
s=0

∞∑
t=n+1

c (s, t) q (s, t) a (s, t) ,(2.30)

for m, n ∈ N0.

(q2) Assume thata (m, n) is nonincreasing inm ∈ N0. If

(2.31) u (m,n)

≤ a (m, n) +
∞∑

s=m+1

b (s, n) u (s, n) +
∞∑

s=m+1

∞∑
t=n+1

c (s, t) u (s, t) ,
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for m, n ∈ N0, then

(2.32) u (m,n)

≤ q̄ (m,n)

[
a (m, n) + Ḡ (m, n)

∞∏
s=m+1

[
1 +

∞∑
t=n+1

c (s, t) q̄ (s, t)

]]
,

for m, n ∈ N0, where

q̄ (m, n) =
∞∏

s=m+1

[1 + b (s, n)] ,(2.33)

Ḡ (m, n) =
∞∑

s=m+1

∞∑
t=n+1

c (s, t) q̄ (s, t) a (s, t) ,(2.34)

for m, n ∈ N0.

Theorem 2.8.Letu (m, n), a (m, n), b (m, n) be nonnegative functions defined
for m,n ∈ N0 and L : N2

0 × R+ → R+ be a function which satisfies the
condition

0 ≤ L (m, n, u)− L (m, n, v) ≤ M (m, n, v) (u− v) ,

for u ≥ v ≥ 0, whereM (m, n, v) is a nonnegative function form, n ∈ N0,
v ∈ R+.
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(r1) Assume thata (m, n) is nondecreasing inm ∈ N0. If

(2.35) u (m,n)

≤ a (m, n) +
m−1∑
s=0

b (s, n) u (s, n) +
m−1∑
s=0

∞∑
t=n+1

L (s, t, u (s, t)) ,

for m, n ∈ N0, then

(2.36) u (m,n) ≤ q (m, n)

[
a (m, n) + H (m, n)

×
m−1∏
s=0

[
1 +

∞∑
t=n+1

M (s, t, q (s, t) a (s, t)) q (s, t)

]]
,

for m, n ∈ N0, where

(2.37) H (m, n) =
m−1∑
s=0

∞∑
t=n+1

L (s, t, q (s, t) a (s, t)) ,

for m, n ∈ N0 andq (m,n) is defined by (2.29).

(q2) Assume thata (m, n) is nonincreasing inm ∈ N0. If

(2.38) u (m,n)

≤ a (m,n) +
∞∑

s=m+1

b (s, n) u (s, n) +
∞∑

s=m+1

∞∑
t=n+1

L (s, t, u (s, t)) ,
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for m, n ∈ N0, then

(2.39) u (m,n) ≤ q̄ (m, n)

[
a (m, n) + H̄ (m, n)

×
∞∏

s=m+1

[
1 +

∞∑
t=n+1

M (s, t, q̄ (s, t) a (s, t)) q̄ (s, t)

]]
,

for m, n ∈ N0, where

(2.40) H̄ (m, n) =
∞∑

s=m+1

∞∑
t=n+1

L (s, t, q̄ (s, t) a (s, t)) ,

for m, n ∈ N0 and q̄ (m,n) is defined by (2.33).
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3. Proofs of Theorems2.2– 2.4
Since the proofs resemble one another, we give the details for(a1), (b1) and
(c1); the proofs of(a2), (b2) and(c2) can be completed by following the proofs
of the above mentioned results with suitable changes.

(a1) Define a functionz (x, y) by

(3.1) z (x, y) =

∫ x

0

∫ ∞

y

c (s, t) u (s, t) dtds.

Then (2.1) can be restated as

(3.2) u (x, y) ≤ a (x, y) + b (x, y) z (x, y) .

From (3.1) and (3.2) we have

z (x, y) ≤
∫ x

0

∫ ∞

y

c (s, t) [a (s, t) + b (s, t) z (s, t)] dtds(3.3)

= e (x, y) +

∫ x

0

∫ ∞

y

c (s, t) b (s, t) z (s, t) dtds,

wheree (x, y) is defined by (2.3). Clearly,e (x, y) is nonnegative, continuous,
nondecreasing inx and nonincreasing iny for x, y ∈ R+. First we assume that
e (x, y) > 0 for x, y ∈ R+. From (3.3) it is easy to observe that

(3.4)
z (x, y)

e (x, y)
≤ 1 +

∫ x

0

∫ ∞

y

c (s, t) b (s, t)
z (s, t)

e (s, t)
dtds.
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Define a functionv (x, y) by the right hand side of (3.4), thenv (0, y) = v (x,∞) =

1, z(x,y)
e(x,y)

≤ v (x, y), v (x, y) is nonincreasing iny, y ∈ R+ and

vx (x, y) =

∫ ∞

y

c (x, t) b (x, t)
z (x, t)

e (x, t)
dt(3.5)

≤
∫ ∞

y

c (x, t) b (x, t) v (x, t) dt

≤ v (x, y)

∫ ∞

y

c (x, t) b (x, t) dt.

Treatingy, y ∈ R+ fixed in (3.5), dividing both sides of (3.5) by v (x, y), setting
x = s and integrating the resulting inequality from0 to x, x ∈ R+ we get

(3.6) v (x, y) ≤ exp

(∫ x

0

∫ ∞

y

c (s, t) b (s, t) dtds

)
.

Using (3.6) in z(x,y)
e(x,y)

≤ v (x, y), we have

(3.7) z (x, y) ≤ e (x, y) exp

(∫ x

0

∫ ∞

y

c (s, t) b (s, t) dtds

)
.

The desired inequality (2.2) follows from (3.2) and (3.7).
If e (x, y) is nonnegative, we carry out the above procedure withe (x, y) + ε

instead ofe (x, y), whereε > 0 is an arbitrary small constant, and then subse-
quently pass to the limit asε → 0 to obtain (2.2).
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(b1) Define a functionz (x, y) by

(3.8) z (x, y) =

∫ x

0

∫ ∞

y

c (s, t) u (s, t) dtds.

Then (2.7) can be restated as

(3.9) u (x, y) ≤ z (x, y) +

∫ x

0

b (s, y) u (s, y) ds.

Clearlyz (x, y) is a nonnegative, continuous and nondecreasing function inx,
x ∈ R+. Treatingy, y ∈ R+ fixed in (3.9) and using part(α1) of Lemma2.1to
(3.9), we get

(3.10) u (x, y) ≤ z (x, y) p (x, y) ,

wherep (x, y) is defined by (2.9). From (3.10) and (3.8) we have

(3.11) u (x, y) ≤ p (x, y) [a (x, y) + v (x, y)] ,

where

(3.12) v (x, y) =

∫ x

0

∫ ∞

y

c (s, t) u (s, t) dtds.

From (3.11) and (3.12) we get

v (x, y) ≤
∫ x

0

∫ ∞

y

c (s, t) p (s, t) [a (s, t) + v (s, t)] dtds

= A (x, y) +

∫ x

0

∫ ∞

y

c (s, t) p (s, t) v (s, t) dtds,
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whereA (x, y) is defined by (2.10). Clearly,A (x, y) is nonnegative, continuous,
nondecreasing inx, x ∈ R+ and nonincreasing iny, y ∈ R+. Now, by following
the proof of(a1), we obtain

(3.13) v (x, y) ≤ A (x, y) exp

(∫ x

0

∫ ∞

y

c (s, t) p (s, t) dtds

)
.

Using (3.13) in (3.11) we get the required inequality in (2.8).

(c1) Define a functionz (x, y) by

(3.14) z (x, y) = a (x, y) +

∫ x

0

∫ ∞

y

F (s, t, u (s, t)) dtds.

Then (2.15) can be restated as

(3.15) u (x, y) ≤ z (x, y) +

∫ x

0

b (s, y) u (s, y) ds.

Clearly,z (x, y) is a nonnegative, continuous and nondecreasing function inx,
x ∈ R+. Treatingy, y ∈ R+ fixed in (3.15) and using part(α1) of Lemma2.1
to (3.15), we obtain

(3.16) u (x, y) ≤ z (x, y) p (x, y) ,

wherep (x, y) is defined by (2.9). From (3.16) and (3.15) we have

(3.17) u (x, y) ≤ p (x, y) [a (x, y) + v (x, y)] ,
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where

(3.18) v (x, y) =

∫ x

0

∫ ∞

y

F (s, t, u (s, t)) dtds.

From (3.18), (3.17) and the hypotheses onF it follows that

(3.19) v (x, y) ≤
∫ x

0

∫ ∞

y

[F (s, t, p (s, t) (a (s, t) + v (s, t)))

− F (s, t, p (s, t) a (s, t)) + F (s, t, p (s, t) a (s, t))]dtds

≤ B (x, y) +

∫ x

0

∫ ∞

y

K (s, t, p (s, t) a (s, t)) p (s, t) v (s, t) dtds.

Clearly,B (x, y) is nonnegative, continuous and nondecreasing inx and nonin-
creasing iny for x, y ∈ R+. By following the proof of(a1), we get

(3.20) v (x, y)

≤ B (x, y) exp

(∫ x

0

∫ ∞

y

K (s, t, p (s, t) a (s, t)) p (s, t) dtds

)
.

The required inequality (2.16) follows from (3.17) and (3.20).
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4. Proofs of Theorems2.6– 2.8
We give the proofs of(p1), (q1), (r1) only; the proofs of(p2), (q2), (r2) can be
completed by following the proofs of the above mentioned inequalities.

(p1) Define a functionz (m, n) by

(4.1) z (m, n) =
m−1∑
s=0

∞∑
t=n+1

c (s, t) u (s, t) .

Then (2.21) can be stated as

(4.2) u (m, n) ≤ a (m, n) + b (m,n) z (m, n) .

From (4.1) and (4.2) we have

z (m, n) ≤
m−1∑
s=0

∞∑
t=n+1

c (s, t) [a (s, t) + b (s, t) z (s, t)](4.3)

= f (m, n) +
m−1∑
s=0

∞∑
t=n+1

c (s, t) b (s, t) z (s, t) ,

wheref (m,n) is defined by (2.23). Clearly,f (m,n) is nonnegative, nonde-
creasing inm and nonincreasing inn for m, n ∈ N0. First, we assume that
f (m,n) > 0 for m, n ∈ N0. From (4.3) we observe that

z (m, n)

f (m, n)
≤ 1 +

m−1∑
s=0

∞∑
t=n+1

c (s, t) b (s, t)
z (s, t)

f (s, t)
.
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Define a functionv (m, n) by

(4.4) v (m, n) = 1 +
m−1∑
s=0

∞∑
t=n+1

c (s, t) b (s, t)
z (s, t)

f (s, t)
,

then z(m,n)
f(m,n)

≤ v (m, n) and

[v (m + 1, n)− v (m, n)]− [v (m + 1, n + 1)− v (m, n + 1)](4.5)

= c (m,n + 1) b (m,n + 1)
z (m, n + 1)

f (m, n + 1)

≤ c (m,n + 1) b (m, n + 1) v (m, n + 1) .

From (4.5) and using the facts thatv (m, n) > 0, v (m, n + 1) ≤ v (m,n) for
m, n ∈ N0, we observe that

(4.6)
[v (m + 1, n)− v (m, n)]

v (m, n)
− [v (m + 1, n + 1)− v (m, n + 1)]

v (m, n + 1)

≤ c (m, n + 1) b (m,n + 1) .

Keepingm fixed in (4.6), setn = t and sum overt = n, n + 1, . . . , r − 1
(r ≥ n + 1 is arbitrary inN0) to obtain

(4.7)
[v (m + 1, n)− v (m,n)]

v (m, n)
− [v (m + 1, r)− v (m, r)]

v (m, r)

≤
r∑

t=n+1

c (m, t) b (m, t) ,
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Noting that lim
r→∞

v (m, r) = lim
r→∞

v (m + 1, r) = 1 and by lettingr → ∞ in

(4.7) we get

[v (m + 1, n)− v (m, n)]

v (m, n)
≤

∞∑
t=n+1

c (m, t) b (m, t) ,

i.e.,

(4.8) v (m + 1, n) ≤

[
1 +

∞∑
t=n+1

c (m, t) b (m, t)

]
v (m,n) .

Now, by keepingn fixed in (4.8) and settingm = s and substitutings =
0, 1, 2, . . . ,m − 1 successively and using the fact thatv (0, n) = 1, we get

(4.9) v (m, n) ≤
m−1∏
s=0

[
1 +

∞∑
t=n+1

c (m, t) b (m, t)

]
.

Using (4.9) in z(m,n)
f(m,n)

≤ v (m, n) we have

(4.10) z (m, n) ≤ f (m, n)
m−1∏
s=0

[
1 +

∞∑
t=n+1

c (s, t) b (s, t)

]
.

The required inequality in (2.22) follows from (4.2) and (4.10).
If f (m, n) is nonnegative, then we carry out the above procedure withf (m, n)+

ε instead off (m, n), whereε > 0 is an arbitrary small constant, and subse-
quently pass to the limit asε → 0 to obtain (2.22).
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(q1) Define a functionz (m, n) by

(4.11) z (m,n) = a (m, n) +
m−1∑
s=0

∞∑
t=n+1

c (s, t) u (s, t) ,

then (2.27) can be restated as

(4.12) u (m, n) ≤ z (m, n) +
m−1∑
s=0

b (s, n) u (s, n) .

Clearly,z (m, n) is nonnegative and nondecreasing inm, m ∈ N0. Treatingn,
n ∈ N0 fixed in (4.12) and using part(β1) of Lemma2.5to (4.12), we obtain

(4.13) u (m,n) ≤ z (m,n) q (m, n) ,

whereq (m, n) is defined by (2.29). From (4.13) and (4.11) we have

(4.14) u (m,n) ≤ q (m, n) [a (m, n) + v (m,n)] ,

where

(4.15) v (m, n) =
m−1∑
s=0

∞∑
t=n+1

c (s, t) u (s, t) .

From (4.14) and (4.15), it is easy to see that

v (m, n) ≤ G (m, n) +
m−1∑
s=0

∞∑
t=n+1

c (s, t) q (s, t) v (s, t) ,
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whereG (m,n) is as defined by (2.30). The rest of the proof of (2.28) can be
completed by following the proof of(p1) given above, and we omit the further
details.

(r1) The proof follows by closely looking at the proofs of(p1), (q1) and
(c1) given above. Here we leave the details to the reader.
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5. Some Applications
In this section we present some immediate applications of part(a2) of Theo-
rem2.2 to study certain properties of solutions of the following terminal value
problem for the hyperbolic partial differential equation

uxy (x, y) = h (x, y, u (x, y)) + r (x, y) ,(5.1)

u (x,∞) = σ∞ (x) , u (∞, y) = τ∞ (y) , u (∞,∞) = d,(5.2)

whereh : R2
+ × R → R, r : R2

+ → R, σ∞, τ∞ : R+ → R are continuous
functions andd is a real constant.

The following theorem deals with the estimate on the solution of (5.1) – (5.2)

Theorem 5.1.Suppose that

|h (x, y, u)| ≤ c (x, y) |u| ,(5.3) ∣∣∣∣σ∞ (x) + τ∞ (y)− d +

∫ ∞

x

∫ ∞

y

r (s, t) dtds

∣∣∣∣ ≤ a (x, y) ,(5.4)

wherea (x, y), c (x, y) are as defined in part(a2) of Theorem2.2. Letu (x, y)
be a solution of (5.1) – (5.2) for x, y ∈ R+, then

(5.5) |u (x, y)| ≤ a (x, y) + ē (x, y) exp

(∫ ∞

x

∫ ∞

y

c (s, t) dtds

)
,

for x, y ∈ R+, whereē (x, y) is defined by (2.6).
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Proof. If u (x, y) is a solution of (5.1) – (5.2), then it can be written as (see [1,
p. 80])

(5.6) u (x, y) = σ∞ (x) + τ∞ (y)− d

+

∫ ∞

x

∫ ∞

y

[h (s, t, u (s, t)) + r (s, t)] dtds,

for x, y ∈ R+. From (5.6), (5.3), (5.4) we get

(5.7) |u (x, y)| ≤ a (x, y) +

∫ ∞

x

∫ ∞

y

c (s, t) |u (s, t)| dtds.

Now, a suitable application of part(a2) of Theorem2.2 to (5.7) yields the re-
quired estimate in (5.5).

Our next result deals with the uniqueness of the solutions of (5.1) – (5.2).

Theorem 5.2.Suppose that the functionh in (5.1) satisfies the condition

(5.8) |h (x, y, u)− h (x, y, v)| ≤ c (x, y) |u− v| ,

wherec (x, y) is as defined in Theorem2.2. Then the problem (5.1) – (5.2) has
at most one solution onR2

+.

Proof. The problem (5.1) – (5.2) is equivalent to the integral equation (5.6). Let
u (x, y), v (x, y) be two solutions of (5.1) – (5.2). From (5.6), (5.8) we have

(5.9) |u (x, y)− v (x, y)| ≤
∫ ∞

x

∫ ∞

y

c (s, t) |u (s, t)− v (s, t)| dtds.

Now a suitable application of part(a2) of Theorem2.2yieldsu (x, y) = v (x, y),
i.e., there is at most one solution to the problem (5.1) – (5.2).
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We note that the inequality given in part(b2) of Theorem2.3 can be used
to obtain the bound and uniqueness of the solutions of the following non-self-
adjoint hyperbolic partial differential equation

(5.10) uxy (x, y) = (r (x, y) u (x, y))x + h (x, y, u (x, y)) ,

with the given terminal value conditions in (5.2), under some suitable conditions
on the functions involved in (5.10) – (5.2). We also note that the inequalities
given here have many applications, however, various applications of other in-
equalities is left for another time.
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