Journal of Inequalities in Pure and Applied Mathematics
http://jipam.vu.edu.au/
Volume 2, Issue 3, Article 35, 2001

## CONSEQUENCES OF A THEOREM OF ERDÖS-PRACHAR

LAURENŢIU PANAITOPOL
Faculty of Mathematics, University of Bucharest,

14 Academiei St., RO-70109 Bucharest, Romania
pan@al.math.unibuc.ro
Received 27 March, 2001; accepted 11 June, 2001. Communicated by L. Toth

ABSTRACT. In the present article we study the asymptotic behavior of the sums $\sum_{n \leq x}\left|\frac{c_{n+1}}{p_{n+1}}-\frac{c_{n}}{p_{n}}\right|$ and $\sum_{n \leq x}\left|\frac{p_{n+1}}{c_{n+1}}-\frac{p_{n}}{c_{n}}\right|$, and of the series $\sum_{n=1}^{\infty}\left|\frac{c_{n+1}}{p_{n+1}}-\frac{c_{n}}{p_{n}}\right|^{\alpha}$, where $p_{n}$ denotes the $n$-th prime number while $c_{n}$ stands for the $n$-th composed number.

Key words and phrases: Sequences, Series, Prime Numbers, the Sequence of Composed Numbers, Asymptotic Formulae. 2000 Mathematics Subject Classification. 11A25, 11N05.

## 1. Introduction

We are going to use the following notation

$$
\begin{aligned}
& \pi(x) \text { the number of prime numbers } \leq x \\
& C(x) \text { the number of composed numbers } \leq x \\
& p_{n} \text { the } n \text {-th prime number, } \\
& c_{n} \text { the } n \text {-th composed number; } c_{1}=4, c_{2}=6, \ldots, \\
& \log _{2} n=\log (\log n)
\end{aligned}
$$

The present work originates in a result due to Erdös and Prachar [2]: they proved that there exist $c^{\prime}, c^{\prime \prime}>0$ such that

$$
c^{\prime} \log ^{2} x>\sum_{p_{k} \leq x}\left|\frac{p_{k+1}}{k+1}-\frac{p_{k}}{k}\right|>c^{\prime \prime} \log ^{2} x \text { for } x \geq 2
$$

[^0]that is
\[

$$
\begin{equation*}
\sum_{p_{k} \leq x}\left|\frac{p_{k+1}}{k+1}-\frac{p_{k}}{k}\right| \asymp \log ^{2} x \tag{1.1}
\end{equation*}
$$

\]

In a recent paper [3], Panaitopol proved that

$$
\begin{equation*}
\sum_{p_{k} \leq x}\left|\frac{k+1}{p_{k+1}}-\frac{k}{p_{k}}\right| \asymp \log \log x \tag{1.2}
\end{equation*}
$$

The proofs of these results rely on the following result due to Schnirelmann: if for $x$ positive and $n$ a positive integer one denotes by $M(n, x)$ the number of the indices $k$ such that $p_{k} \leq x$ and $p_{k+1}-p_{k}=n$, then

$$
M(n, x)<c^{\prime \prime \prime} \frac{x}{\log ^{2} x} \sum_{d \mid n} \frac{1}{d},
$$

where $c^{\prime \prime \prime}$ is a positive constant.
In the present paper, several well known results will be used:

$$
\begin{align*}
& \pi(x) \sim \frac{x}{\log x}  \tag{1.3}\\
& p_{n} \sim n \log n \tag{1.4}
\end{align*}
$$

$$
\begin{equation*}
\text { the series } \sum_{n=3}^{\infty} \frac{1}{n \log n(\log \log n)^{\alpha}} \text { is convergent if and only if } \alpha>1 ; \tag{1.5}
\end{equation*}
$$

$$
\begin{equation*}
\sum_{2 \leq n \leq x} \frac{1}{n \log n}=\log \log x+O(1) \tag{1.6}
\end{equation*}
$$

$$
\begin{equation*}
\sum_{2 \leq n \leq x} \frac{1}{n}=\log x+O(1) \tag{1.7}
\end{equation*}
$$

$$
\begin{equation*}
\sum_{p \text { prime } \leq x} \frac{\log p}{p} \sim \log x \tag{1.8}
\end{equation*}
$$

We also need the following result of Bojarincev [1]:

$$
\begin{equation*}
c_{n}=n+\frac{n}{\log n} \cdot u_{n}, \text { where } \lim _{n \rightarrow \infty} u_{n}=1 \tag{1.9}
\end{equation*}
$$

## 2. Properties of the $\operatorname{Sequence}\left(\frac{n}{p_{n}}\right)_{n \geq 1}$

The series $\sum_{n=1}^{\infty}\left|\frac{n+1}{p_{n+1}}-\frac{n}{p_{n}}\right|$ is divergent by 1.2 . In connection with this fact we prove the following result.
Theorem 2.1. The series

$$
\sum_{n=3}^{\infty}\left|\frac{n+1}{p_{n+1}}-\frac{n}{p_{n}}\right| \cdot \frac{1}{(\log \log n)^{\alpha}}
$$

is convergent if and only if $\alpha>1$.
Let us first prove the following auxiliary result.

Lemma 2.2. Consider the sequences $\left(a_{n}\right)_{n \geq 1},\left(x_{n}\right)_{n \geq 1}$ and $\left(s_{n}\right)_{n \geq 1}$, where $s_{n}=\sum_{i=1}^{n} a_{i}$. If the sequence $\left(s_{n} x_{n}\right)_{n \geq 1}$ is convergent, then one of the series

$$
\sum_{n=1}^{\infty} s_{n}\left(x_{n+1}-x_{n}\right) \text { and } \sum_{n=1}^{\infty} a_{n} x_{n}
$$

is convergent if and only if the other one is convergent.
Proof. If $\sum_{n=1}^{\infty} s_{n}\left(x_{n+1}-x_{n}\right)$ is convergent, then $\lim _{n \rightarrow \infty} s_{n}\left(x_{n+1}-x_{n}\right)=0$. But $\lim _{n \rightarrow \infty} s_{n} x_{n}=k$ for some $k \in \mathbb{R}$, hence $\lim _{n \rightarrow \infty} s_{n} x_{n+1}=k$ and $\lim _{n \rightarrow \infty}\left(s_{n+1}-s_{n}\right) x_{n+1}$ $=0$.

On the other hand, if $\sum_{n=1}^{\infty} a_{n} x_{n}$ is convergent, then $\lim _{n \rightarrow \infty} a_{n+1} x_{n+1}=0$, hence $\lim _{n \rightarrow \infty}\left(s_{n+1}-s_{n}\right) x_{n+1}=0$.

Now let us denote $S_{n}=\sum_{i=1}^{n} a_{i} x_{i}$ and $\sigma_{n}=\sum_{i=1}^{n} s_{i}\left(x_{i+1}-x_{i}\right)$. Then for each $p$ we have

$$
\begin{equation*}
S_{n+p}-S_{n}=\sigma_{n+p}-\sigma_{n}+s_{n+p} x_{n+p}-s_{n+1} x_{n+1}+\left(s_{n+1}-s_{n}\right) x_{n+1} . \tag{2.1}
\end{equation*}
$$

Since we have just seen that in either case we have $\lim _{n \rightarrow \infty}\left(s_{n+1}-s_{n}\right) x_{n+1}=0$, relation 2.1) implies that in either case one of the sequences $\left(S_{n}\right)_{n \geq 1}$ and $\left(\sigma_{n}\right)_{n \geq 1}$ is Cauchy if and only if the other one is Cauchy. Now, by Cauchy's criterion, one of the two series is convergent if and only if the other one is convergent.

Proof of Theorem [2.1] If $\alpha \leq 0$, then the series is divergent by (1.2). Next assume $\alpha>0$ and choose $a_{n}=\left|\frac{n+1}{p_{n+1}}-\frac{n}{p_{n}}\right|$ and $x_{n}=\frac{1}{(\log \log n)^{\alpha}}$.

If we consider the function $f:[n, n+1] \rightarrow \mathbb{R}, f(x)=(\log \log x)^{-\alpha}$, then Lagrange's theorem implies

$$
(\log \log (n+1))^{-\alpha}-(\log \log n)^{-\alpha}=-\frac{\alpha\left(\log \log \theta_{n}\right)^{-\alpha-1}}{\theta_{n} \log \theta_{n}}
$$

where $n<\theta_{n}<n+1$. Since $\theta_{n} \sim n$, it follows that

$$
\begin{equation*}
x_{n+1}-x_{n} \sim \frac{-\alpha}{n \log n(\log \log n)^{\alpha+1}} . \tag{2.2}
\end{equation*}
$$

By (1.2) and (1.4) it follows that $s_{n} \asymp \log \log n$ and (2.2) implies

$$
\begin{equation*}
s_{n}\left(x_{n+1}-x_{n}\right) \asymp-\frac{1}{n \log n(\log \log n)^{\alpha}} . \tag{2.3}
\end{equation*}
$$

If $\alpha>1$, then we have

$$
\lim _{n \rightarrow \infty} s_{n} x_{n}=\lim _{n \rightarrow \infty} \frac{\log \log n}{(\log \log n)^{\alpha}}=0
$$

while for $\alpha=1$ we get $\lim _{n \rightarrow \infty} s_{n} x_{n}=1$. Thus, for $\alpha \geq 1$, the above lemma implies that one of the series $\sum_{n=3}^{\infty} s_{n}\left(x_{n+1}-x_{n}\right)$ and $\sum_{n=3}^{\infty} a_{n} x_{n}$ is convergent if and only if the other one is convergent. In view of (1.5) and (2.3), the series $\sum_{n=3}^{\infty} a_{n} x_{n}$ is convergent for $\alpha>1$ and divergent for $\alpha=1$.

Finally, if $0<\alpha<1$, then

$$
x_{n}\left|\frac{n+1}{p_{n+1}}-\frac{n}{p_{n}}\right|>\frac{1}{\log \log n}\left|\frac{n+1}{p_{n+1}}-\frac{n}{p_{n}}\right|
$$

and the desired conclusion follows.

Consequence 1. If $\alpha>1$, then the series

$$
\sum_{n=1}^{\infty}\left|\frac{n+1}{p_{n+1}}-\frac{n}{p_{n}}\right|^{\alpha}
$$

is convergent.
Proof. We have

$$
\left|\frac{n+1}{p_{n+1}}-\frac{n}{p_{n}}\right|^{\alpha-1} \leq \max \left(\frac{n+1}{p_{n+1}}, \frac{n}{p_{n}}\right)^{\alpha-1}
$$

For $K>0$ and $n \geq 3$, we have $\frac{1}{(\log n)^{\alpha-1}}<\frac{K}{(\log \log n)^{\alpha}}$ and 1.4 implies that $\frac{n+1}{p_{n+1}} \sim \frac{n}{p_{n}} \sim \frac{1}{\log n}$. There exists $K^{\prime}$ such that

$$
\left|\frac{n+1}{p_{n+1}}-\frac{n}{p_{n}}\right|^{\alpha}<K^{\prime}\left|\frac{n+1}{p_{n+1}}-\frac{n}{p_{n}}\right| \frac{1}{(\log \log n)^{\alpha}}
$$

and the convergence of the series $\sum_{n=1}^{\infty}\left|\frac{n+1}{p_{n+1}}-\frac{n}{p_{n}}\right|^{\alpha}$ follows by Theorem 2.1.

## 3. Properties of the $\operatorname{Sequence}\left(\frac{c_{n}}{p_{n}}\right)_{n \geq 1}$

Since $c_{n} \sim n$ (see 1.9 ), for the sequence $\left(\frac{c_{n}}{p_{n}}\right)_{n \geq 1}$ we obtain properties which are similar to those of the sequence $\left(\frac{n}{p_{n}}\right)_{n \geq 1}$.

In connection with (1.2) we have the following fact.
Theorem 3.1. We have

$$
\sum_{p_{k} \leq x}\left|\frac{c_{k+1}}{p_{k+1}}-\frac{c_{k}}{p_{k}}\right| \asymp \log \log x
$$

for every $x>e$.
Proof. If we denote $\alpha_{k}=c_{k+1}-c_{k}-1$, then it follows that $\alpha_{k}=0$ if $c_{k}+1$ is a composed number, and $\alpha_{k}=1$ if $c_{k}+1$ is prime. In the last case $c_{k}+1=p_{m}$. Setting $k=k(m)$, we deduce by 1.9 that $c_{k}-k \sim \frac{k}{\log k}$ and $\log k \sim \log c_{k} \sim \log p_{m} \sim \log m$. It then follows that $k(m)-p_{m} \sim-\frac{p_{m}}{\log m}$ and 1.4 implies that

$$
\begin{equation*}
\bar{k}(m)=p_{m}-m y_{m} \text { with } \lim _{m \rightarrow \infty} y_{m}=1 . \tag{3.1}
\end{equation*}
$$

We have by (1.9)

$$
\begin{aligned}
\frac{c_{k+1}}{p_{k+1}}-\frac{c_{k}}{p_{k}} & =\frac{c_{k}+1+\alpha_{k}}{p_{k+1}}-\frac{c_{k}}{p_{k}}=\frac{\alpha_{k}+1}{p_{k+1}}-\frac{c_{k}\left(p_{k+1}-p_{k}\right)}{p_{k} p_{k+1}} \\
& =\frac{\alpha_{k}+1}{p_{k+1}}-\frac{k\left(p_{k+1}-p_{k}\right)}{p_{k} p_{k+1}}-\frac{k u_{k}}{(\log k) p_{k} p_{k+1}} \\
& =\left(\frac{k+1}{p_{k+1}}-\frac{k}{p_{k}}\right)+\frac{\alpha_{k}}{p_{k+1}}-\frac{k u_{k}\left(p_{k+1}-p_{k}\right)}{(\log k) p_{k} p_{k+1}} .
\end{aligned}
$$

We have the inequality

$$
\begin{align*}
\left|\frac{k+1}{p_{k+1}}-\frac{k}{p_{k}}\right|-\left|\frac{\alpha_{k}}{p_{k+1}}\right| & -\left|\frac{k u_{k}\left(p_{k+1}-p_{k}\right)}{(\log k) p_{k} p_{k+1}}\right|  \tag{3.2}\\
& \leq\left|\frac{c_{k+1}}{p_{k+1}}-\frac{c_{k}}{p_{k}}\right| \leq\left|\frac{k+1}{p_{k+1}}-\frac{k}{p_{k}}\right|+\left|\frac{\alpha_{k}}{p_{k+1}}\right|+\left|\frac{k u_{k}\left(p_{k+1}-p_{k}\right)}{(\log k) p_{k} p_{k+1}}\right|
\end{align*}
$$

We have

$$
\frac{k u_{k}\left(p_{k+1}-p_{k}\right)}{(\log k) p_{k} p_{k+1}} \sim \frac{k\left(p_{k+1}-p_{k}\right)}{k^{2} \log ^{3} k}=\frac{p_{k+1}-p_{k}}{k \log ^{3} k} .
$$

Panaitopol proves in [4] that for $\beta>2$ the series $\sum_{n=2}^{\infty} \frac{p_{n+1}-p_{n}}{n \log ^{3} n}$ is convergent, hence the series $\sum_{k=2}^{\infty} \frac{k u_{k}\left(p_{k+1}-p_{k}\right)}{(\log k) p_{k} p_{k+1}}$ is also convergent.

We have furthermore

$$
\sum_{k=1}^{\infty} \frac{\alpha_{k}}{p_{k+1}}=\sum^{\prime} \frac{1}{p_{k+1}}
$$

where $\sum^{\prime}$ extends over the values of $k$ such that $\alpha_{k}=1$, that is, $c_{k}+1=p_{m}$. Then by (2.2) and (1.4) we get

$$
\begin{equation*}
p_{k+1} \sim p_{k} \sim p_{p_{m}} \sim m \log ^{2} m \tag{3.3}
\end{equation*}
$$

Since the series $\sum_{m=2}^{\infty} \frac{1}{m \log ^{2} m}$ is convergent, it then follows that the series $\sum_{k=1}^{\infty} \frac{\alpha_{k}}{p_{k+1}}$ is also convergent. Now (3.2) implies that

$$
\sum_{k=1}^{n}\left|\frac{c_{k+1}}{p_{k+1}}-\frac{c_{k}}{p_{k}}\right|=\sum_{k=1}^{n}\left|\frac{k+1}{p_{k+1}}-\frac{k}{p_{k}}\right|+O(1)
$$

and the desired conclusion follows.
Analogously to the Erdös-Prachar theorem, we shall prove the following fact.
Theorem 3.2. We have

$$
\sum_{p_{k} \leq x}\left|\frac{p_{k+1}}{c_{k+1}}-\frac{p_{k}}{c_{k}}\right| \asymp \log ^{2} x
$$

for every $x>1$.
Proof. We have

$$
\begin{align*}
& \frac{p_{k+1}}{c_{k+1}}-\frac{p_{k}}{c_{k}}=\left(\frac{p_{k+1}}{k+1}-\frac{p_{k}}{k}\right)+p_{k}\left(\frac{1}{k(k+1)}-\frac{c_{k+1}-c_{k}}{c_{k+1} c_{k}}\right)  \tag{3.4}\\
& +\frac{\left(p_{k+1}-p_{k}\right)\left(k+1-c_{k+1}\right)}{(k+1) c_{k+1}} .
\end{align*}
$$

By (1.9) we get

$$
\begin{aligned}
& \sum_{p_{k} \leq x}\left|\frac{\left(p_{k+1}-p_{k}\right)\left(k+1-c_{k+1}\right)}{(k+1) c_{k+1}}\right| \\
& =-\sum_{p_{k} \leq x} \frac{\left(p_{k+1}-p_{k}\right) u_{k+1}}{c_{k+1} \log (k+1)} \\
& =O\left(\sum_{k=2}^{\pi(x)} \frac{p_{k+1}-p_{k}}{k \log k}\right) \\
& =O\left(\frac{x}{\pi(x) \log \pi(x)}+\sum_{k=3}^{\pi(x)} p_{k}\left(\frac{1}{(k-1) \log (k-1)}-\frac{1}{k \log k}\right)\right) .
\end{aligned}
$$

By (1.3) we have $\pi(x) \log \pi(x) \sim x$,

$$
p_{k}\left(\frac{1}{(k-1) \log (k-1)}-\frac{1}{k \log k}\right) \sim \frac{p_{k} \log k}{k^{2} \log ^{2} k} \sim \frac{1}{k}
$$

and (1.7) implies

$$
\begin{equation*}
\sum_{p_{k} \leq x} \frac{\left(p_{k+1}-p_{k}\right)\left(k+1-c_{k+1}\right)}{(k+1) c_{k+1}}=O(\log x) . \tag{3.5}
\end{equation*}
$$

We have also

$$
\begin{aligned}
& \sum_{p_{k} \leq x}\left|p_{k}\left(\frac{1}{k(k+1)}-\frac{c_{k+1}-c_{k}}{c_{k+1} c_{k}}\right)\right| \\
& \leq \sum_{p_{k} \leq x}^{\prime \prime}\left|p_{k}\left(\frac{1}{k(k+1)}-\frac{1}{c_{k}\left(c_{k}+1\right)}\right)\right|+2 \sum_{p_{k} \leq x}^{\prime}\left|\frac{p_{k}}{c_{k}\left(c_{k}+2\right)}\right|
\end{aligned}
$$

where $\sum^{\prime}$ extends over the values of $k$ such that $c_{k}+1$ is a prime number, while $\sum^{\prime \prime}$ extends over the values of $k$ such that $c_{k}+1=p_{m}$ is composed. By (1.9) we deduce

$$
\begin{aligned}
\sum_{p_{k} \leq x}^{\prime \prime}\left|\frac{p_{k}\left(c_{k}-k\right)\left(c_{k}+k+1\right)}{k(k+1) c_{k}\left(c_{k}+1\right)}\right| & =O\left(\sum_{p_{k} \leq x} \frac{k \log k}{k^{4}} \cdot k^{2} \log k\right) \\
& =O\left(\sum_{p_{k} \leq x} \frac{1}{k}\right)=O(\log x) .
\end{aligned}
$$

By (1.4) and (1.8) it follows that

$$
\begin{aligned}
\sum_{p_{k} \leq x}^{\prime}\left|\frac{p_{k}}{c_{k}\left(c_{k}+2\right)}\right| & \sim \sum_{k \leq \pi(x)}{ }^{\prime} \frac{c_{k} \log c_{k}}{c_{k}\left(c_{k}+2\right)} \\
& \sim \sum_{c_{k} \leq x}^{\prime} \frac{\log \left(c_{k}+1\right)}{c_{k}+1} \\
& =\sum_{p_{m} \leq x} \frac{\log p_{m}}{p_{m}}=O(\log x) .
\end{aligned}
$$

Thus

$$
\begin{equation*}
\sum_{p_{k} \leq x} p_{k}\left|\frac{1}{k(k+1)}-\frac{c_{k+1}-c_{k}}{c_{k+1} c_{k}}\right|=O(\log x) \tag{3.6}
\end{equation*}
$$

Now by 1.1, (3.4, 3.5 and 3.6, it follows that $\sum_{p_{k} \leq x}\left|\frac{p_{k+1}}{c_{k+1}}-\frac{p_{k}}{c_{k}}\right| \asymp \log ^{2} x$ and the proof is completed.

## References

[1] A.E. BOJARINCEV, Asymptotic expressions for the $n$th composite number, Ural. Gos. Univ. Mat. Zap., 6 (1967), 21-43 (in Russian).
[2] P. ERDÖS and K. PRACHAR, Sätze und Probleme über $p_{k} / k$, Abh. Math. Sem. Univ. Hamburg, 25 (1961/1962), 251-256.
[3] L. PANAITOPOL, On Erdös-Prachar Theorem, An. Univ. Bucureşti Mat., 2 (1999), 143-148.
[4] L. PANAITOPOL, On the sequence of the differences of consecutive prime numbers, Gaz. Mat. Ser. A, 79 (1974), 238-242 (in Romanian).


[^0]:    ISSN (electronic): 1443-5756
    (C) 2001 Victoria University. All rights reserved.

    The author gratefully acknowledges support from Grant \#C12/2000 awarded by the Consiliul Naţional al Cercetării Ştiinţifice din Învăţământul Superior, România.

    028-01

