Journal of Inequalities in Pure and Applied Mathematics

CONSEQUENCES OF A THEOREM OF ERDÖS-PRACHAR

LAURENTIU PANAITOPOL

Faculty of Mathematics,
University of Bucharest,
14 Academiei St.,
RO-70109 Bucharest, Romania
EMail: pan@al.math.unibuc.ro
volume 2 , issue 3 , article 35 , 2001

Received 27 March, 2001; accepted 11 June, 2001.

Communicated by: L. Toth

Abstract
Contents
Home Page
Go Back
Close

Abstract

In the presentarticle we study the asymptotic behavior of the sums $\sum_{n \leq x}\left|\frac{c_{n+1}}{p_{n+1}}-\frac{c_{n}}{p_{n}}\right|$ and $\sum_{n \leq x}\left|\frac{p_{n+1}}{c_{n+1}}-\frac{p_{n}}{c_{n}}\right|$, and of the series $\sum_{n=1}^{\infty}\left|\frac{c_{n+1}}{p_{n+1}}-\frac{c_{n}}{p_{n}}\right|^{\alpha}$, where p_{n} denotes the n-th prime number while c_{n} stands for the n-th composed number.

2000 Mathematics Subject Classification: 11A25, 11 N05.
Key words: Sequences, Series, Prime Numbers, the Sequence of Composed Numbers, Asymptotic Formulae

The author gratefully acknowledges support from Grant \#C12/2000 awarded by the Consiliul Naţional al Cercetării Ştiinţifice din Învăţământul Superior, România.

Contents

1 Introduction.. 3
2 Properties of the Sequence $\left(\frac{n}{p_{n}}\right)_{n \geq 1} \ldots \ldots \ldots \ldots \ldots \ldots \ldots$.
3 Properties of the Sequence $\left(\frac{c_{n}}{p_{n}}\right)_{n \geq 1} \ldots \ldots \ldots \ldots \ldots \ldots .$. References

Consequences of a Theorem of Erdös-Prachar

Laurenţiu Panaitopol

J. Ineq. Pure and Appl. Math. 2(3) Art. 35, 2001

1. Introduction

We are going to use the following notation

$$
\begin{aligned}
& \pi(x) \text { the number of prime numbers } \leq x, \\
& C(x) \text { the number of composed numbers } \leq x, \\
& p_{n} \text { the } n \text {-th prime number, } \\
& c_{n} \text { the } n \text {-th composed number; } c_{1}=4, c_{2}=6, \ldots, \\
& \log _{2} n=\log (\log n) .
\end{aligned}
$$

Consequences of a Theorem of
Erdös-Prachar
Laurenţiu Panaitopol
The present work originates in a result due to Erdös and Prachar [2]: they proved that there exist $c^{\prime}, c^{\prime \prime}>0$ such that

$$
c^{\prime} \log ^{2} x>\sum_{p_{k} \leq x}\left|\frac{p_{k+1}}{k+1}-\frac{p_{k}}{k}\right|>c^{\prime \prime} \log ^{2} x \text { for } x \geq 2
$$

that is

$$
\begin{equation*}
\sum_{p_{k} \leq x}\left|\frac{p_{k+1}}{k+1}-\frac{p_{k}}{k}\right| \asymp \log ^{2} x . \tag{1.1}
\end{equation*}
$$

In a recent paper [3], Panaitopol proved that

$$
\begin{equation*}
\sum_{p_{k} \leq x}\left|\frac{k+1}{p_{k+1}}-\frac{k}{p_{k}}\right| \asymp \log \log x \tag{1.2}
\end{equation*}
$$

The proofs of these results rely on the following result due to Schnirelmann: if for x positive and n a positive integer one denotes by $M(n, x)$ the number of the indices k such that $p_{k} \leq x$ and $p_{k+1}-p_{k}=n$, then

$$
M(n, x)<c^{\prime \prime \prime} \frac{x}{\log ^{2} x} \sum_{d \mid n} \frac{1}{d}
$$

where $c^{\prime \prime \prime}$ is a positive constant.
In the present paper, several well known results will be used:

$$
\begin{equation*}
\pi(x) \sim \frac{x}{\log x} \tag{1.3}
\end{equation*}
$$

$$
\begin{equation*}
p_{n} \sim n \log n \tag{1.4}
\end{equation*}
$$

Consequences of a Theorem of Erdös-Prachar

Laurenţiu Panaitopol

$$
\begin{equation*}
\sum_{2 \leq n \leq x} \frac{1}{n}=\log x+O(1) \tag{1.7}
\end{equation*}
$$

$$
\begin{equation*}
\sum_{p \text { prime } \leq x} \frac{\log p}{p} \sim \log x . \tag{1.8}
\end{equation*}
$$

We also need the following result of Bojarincev [1]:

$$
\begin{equation*}
c_{n}=n+\frac{n}{\log n} \cdot u_{n}, \text { where } \lim _{n \rightarrow \infty} u_{n}=1 . \tag{1.9}
\end{equation*}
$$

J. Ineq. Pure and Appl. Math. 2(3) Art. 35, 2001

2. Properties of the Sequence $\left(\frac{n}{p_{n}}\right)_{n>1}$

The series $\sum_{n=1}^{\infty}\left|\frac{n+1}{p_{n+1}}-\frac{n}{p_{n}}\right|$ is divergent by (1.2). In connection with this fact we prove the following result.

Theorem 2.1. The series

$$
\sum_{n=3}^{\infty}\left|\frac{n+1}{p_{n+1}}-\frac{n}{p_{n}}\right| \cdot \frac{1}{(\log \log n)^{\alpha}}
$$

is convergent if and only if $\alpha>1$.
Let us first prove the following auxiliary result.
Lemma 2.2. Consider the sequences $\left(a_{n}\right)_{n \geq 1},\left(x_{n}\right)_{n \geq 1}$ and $\left(s_{n}\right)_{n \geq 1}$, where $s_{n}=$ $\sum_{i=1}^{n} a_{i}$. If the sequence $\left(s_{n} x_{n}\right)_{n \geq 1}$ is convergent, then one of the series

$$
\sum_{n=1}^{\infty} s_{n}\left(x_{n+1}-x_{n}\right) \text { and } \sum_{n=1}^{\infty} a_{n} x_{n}
$$

is convergent if and only if the other one is convergent.
Proof. If $\sum_{n=1}^{\infty} s_{n}\left(x_{n+1}-x_{n}\right)$ is convergent, then $\lim _{n \rightarrow \infty} s_{n}\left(x_{n+1}-x_{n}\right)=$ 0 . But $\lim _{n \rightarrow \infty} s_{n} x_{n}=k$ for some $k \in \mathbb{R}$, hence $\lim _{n \rightarrow \infty} s_{n} x_{n+1}=k$ and $\lim _{n \rightarrow \infty}\left(s_{n+1}-s_{n}\right) x_{n+1}=0$.

On the other hand, if $\sum_{n=1}^{\infty} a_{n} x_{n}$ is convergent, then $\lim _{n \rightarrow \infty} a_{n+1} x_{n+1}=0$, hence $\lim _{n \rightarrow \infty}\left(s_{n+1}-s_{n}\right) x_{n+1}=0$.

Consequences of a Theorem of Erdös-Prachar

Laurenţiu Panaitopol

J. Ineq. Pure and Appl. Math. 2(3) Art. 35, 2001 http://jipam.vu.edu.au

Now let us denote $S_{n}=\sum_{i=1}^{n} a_{i} x_{i}$ and $\sigma_{n}=\sum_{i=1}^{n} s_{i}\left(x_{i+1}-x_{i}\right)$. Then for each p we have
(2.1) $S_{n+p}-S_{n}=\sigma_{n+p}-\sigma_{n}+s_{n+p} x_{n+p}-s_{n+1} x_{n+1}+\left(s_{n+1}-s_{n}\right) x_{n+1}$.

Since we have just seen that in either case we have $\lim _{n \rightarrow \infty}\left(s_{n+1}-s_{n}\right) x_{n+1}=$ 0 , relation (2.1) implies that in either case one of the sequences $\left(S_{n}\right)_{n \geq 1}$ and $\left(\sigma_{n}\right)_{n \geq 1}$ is Cauchy if and only if the other one is Cauchy. Now, by Cauchy's criterion, one of the two series is convergent if and only if the other one is convergent.

Proof of Theorem 2.1. If $\alpha \leq 0$, then the series is divergent by (1.2). Next assume $\alpha>0$ and choose $a_{n}=\left|\frac{n+1}{p_{n+1}}-\frac{n}{p_{n}}\right|$ and $x_{n}=\frac{1}{(\log \log n)^{\alpha}}$.

If we consider the function $f:[n, n+1] \rightarrow \mathbb{R}, f(x)=(\log \log x)^{-\alpha}$, then Lagrange's theorem implies

$$
(\log \log (n+1))^{-\alpha}-(\log \log n)^{-\alpha}=-\frac{\alpha\left(\log \log \theta_{n}\right)^{-\alpha-1}}{\theta_{n} \log \theta_{n}}
$$

where $n<\theta_{n}<n+1$. Since $\theta_{n} \sim n$, it follows that

$$
\begin{equation*}
x_{n+1}-x_{n} \sim \frac{-\alpha}{n \log n(\log \log n)^{\alpha+1}} . \tag{2.2}
\end{equation*}
$$

By (1.2) and (1.4) it follows that $s_{n} \asymp \log \log n$ and (2.2) implies

$$
\begin{equation*}
s_{n}\left(x_{n+1}-x_{n}\right) \asymp-\frac{1}{n \log n(\log \log n)^{\alpha}} \tag{2.3}
\end{equation*}
$$

Consequences of a Theorem of Erdös-Prachar

Laurenţiu Panaitopol

Title Page
Contents

$\mathbf{~ G o ~ B a c k ~}$
Close
Quit
Page 7 of 16

If $\alpha>1$, then we have

$$
\lim _{n \rightarrow \infty} s_{n} x_{n}=\lim _{n \rightarrow \infty} \frac{\log \log n}{(\log \log n)^{\alpha}}=0
$$

while for $\alpha=1$ we get $\lim _{n \rightarrow \infty} s_{n} x_{n}=1$. Thus, for $\alpha \geq 1$, the above lemma implies that one of the series $\sum_{n=3}^{\infty} s_{n}\left(x_{n+1}-x_{n}\right)$ and $\sum_{n=3}^{\infty} a_{n} x_{n}$ is convergent if and only if the other one is convergent. In view of (1.5) and (2.3), the series $\sum_{n=3}^{\infty} a_{n} x_{n}$ is convergent for $\alpha>1$ and divergent for $\alpha=1$.

Finally, if $0<\alpha<1$, then

$$
x_{n}\left|\frac{n+1}{p_{n+1}}-\frac{n}{p_{n}}\right|>\frac{1}{\log \log n}\left|\frac{n+1}{p_{n+1}}-\frac{n}{p_{n}}\right|
$$

and the desired conclusion follows.
Consequence 1. If $\alpha>1$, then the series

$$
\sum_{n=1}^{\infty}\left|\frac{n+1}{p_{n+1}}-\frac{n}{p_{n}}\right|^{\alpha}
$$

is convergent.
Proof. We have

$$
\left|\frac{n+1}{p_{n+1}}-\frac{n}{p_{n}}\right|^{\alpha-1} \leq \max \left(\frac{n+1}{p_{n+1}}, \frac{n}{p_{n}}\right)^{\alpha-1} .
$$

Consequences of a Theorem of
Erdös-Prachar
Laurenţiu Panaitopol

J. Ineq. Pure and Appl. Math. 2(3) Art. 35, 2001

For $K>0$ and $n \geq 3$, we have $\frac{1}{(\log n)^{\alpha-1}}<\frac{K}{(\log \log n)^{\alpha}}$ and (1.4) implies that $\frac{n+1}{p_{n+1}} \sim \frac{n}{p_{n}} \sim \frac{1}{\log n}$. There exists K^{\prime} such that

$$
\left|\frac{n+1}{p_{n+1}}-\frac{n}{p_{n}}\right|^{\alpha}<K^{\prime}\left|\frac{n+1}{p_{n+1}}-\frac{n}{p_{n}}\right| \frac{1}{(\log \log n)^{\alpha}}
$$

and the convergence of the series $\sum_{n=1}^{\infty}\left|\frac{n+1}{p_{n+1}}-\frac{n}{p_{n}}\right|^{\alpha}$ follows by Theorem 2.1.

Consequences of a Theorem of Erdös-Prachar

Laurenţiu Panaitopol

J. Ineq. Pure and Appl. Math. 2(3) Art. 35, 2001 http://jipam.vu.edu.au

3. Properties of the Sequence $\left(\frac{c_{n}}{p_{n}}\right)_{n \geq 1}$

Since $c_{n} \sim n$ (see (1.9)), for the sequence $\left(\frac{c_{n}}{p_{n}}\right)_{n \geq 1}$ we obtain properties which are similar to those of the sequence $\left(\frac{n}{p_{n}}\right)_{n>1}$.

In connection with (1.2) we have the following fact.
Theorem 3.1. We have

$$
\sum_{p_{k} \leq x}\left|\frac{c_{k+1}}{p_{k+1}}-\frac{c_{k}}{p_{k}}\right| \asymp \log \log x
$$

for every $x>e$.
Proof. If we denote $\alpha_{k}=c_{k+1}-c_{k}-1$, then it follows that $\alpha_{k}=0$ if $c_{k}+1$ is a composed number, and $\alpha_{k}=1$ if $c_{k}+1$ is prime. In the last case $c_{k}+1=p_{m}$. Setting $k=k(m)$, we deduce by (1.9) that $c_{k}-k \sim \frac{k}{\log k}$ and $\log k \sim \log c_{k} \sim$ $\log p_{m} \sim \log m$. It then follows that $k(m)-p_{m} \sim-\frac{p_{m}}{\log m}$ and (1.4) implies that

$$
\begin{equation*}
k(m)=p_{m}-m y_{m} \text { with } \lim _{m \rightarrow \infty} y_{m}=1 \tag{3.1}
\end{equation*}
$$

We have by (1.9)

$$
\begin{aligned}
\frac{c_{k+1}}{p_{k+1}}-\frac{c_{k}}{p_{k}} & =\frac{c_{k}+1+\alpha_{k}}{p_{k+1}}-\frac{c_{k}}{p_{k}}=\frac{\alpha_{k}+1}{p_{k+1}}-\frac{c_{k}\left(p_{k+1}-p_{k}\right)}{p_{k} p_{k+1}} \\
& =\frac{\alpha_{k}+1}{p_{k+1}}-\frac{k\left(p_{k+1}-p_{k}\right)}{p_{k} p_{k+1}}-\frac{k u_{k}}{(\log k) p_{k} p_{k+1}}
\end{aligned}
$$

J. Ineq. Pure and Appl. Math. 2(3) Art. 35, 2001 http://jipam.vu.edu.au

$$
=\left(\frac{k+1}{p_{k+1}}-\frac{k}{p_{k}}\right)+\frac{\alpha_{k}}{p_{k+1}}-\frac{k u_{k}\left(p_{k+1}-p_{k}\right)}{(\log k) p_{k} p_{k+1}} .
$$

We have the inequality

$$
\begin{align*}
& \left|\frac{k+1}{p_{k+1}}-\frac{k}{p_{k}}\right|-\left|\frac{\alpha_{k}}{p_{k+1}}\right|-\left|\frac{k u_{k}\left(p_{k+1}-p_{k}\right)}{(\log k) p_{k} p_{k+1}}\right| \tag{3.2}\\
& \quad \leq\left|\frac{c_{k+1}}{p_{k+1}}-\frac{c_{k}}{p_{k}}\right| \leq\left|\frac{k+1}{p_{k+1}}-\frac{k}{p_{k}}\right|+\left|\frac{\alpha_{k}}{p_{k+1}}\right|+\left|\frac{k u_{k}\left(p_{k+1}-p_{k}\right)}{(\log k) p_{k} p_{k+1}}\right|
\end{align*}
$$

We have

$$
\frac{k u_{k}\left(p_{k+1}-p_{k}\right)}{(\log k) p_{k} p_{k+1}} \sim \frac{k\left(p_{k+1}-p_{k}\right)}{k^{2} \log ^{3} k}=\frac{p_{k+1}-p_{k}}{k \log ^{3} k}
$$

Panaitopol proves in [4] that for $\beta>2$ the series $\sum_{n=2}^{\infty} \frac{p_{n+1}-p_{n}}{n \log ^{\beta} n}$ is convergent, hence the series $\sum_{k=2}^{\infty} \frac{k u_{k}\left(p_{k+1}-p_{k}\right)}{(\log k) p_{k} p_{k+1}}$ is also convergent.

We have furthermore

$$
\sum_{k=1}^{\infty} \frac{\alpha_{k}}{p_{k+1}}=\sum^{\prime} \frac{1}{p_{k+1}}
$$

where \sum^{\prime} extends over the values of k such that $\alpha_{k}=1$, that is, $c_{k}+1=p_{m}$. Then by (2.2) and (1.4) we get

$$
\begin{equation*}
p_{k+1} \sim p_{k} \sim p_{p_{m}} \sim m \log ^{2} m \tag{3.3}
\end{equation*}
$$

Consequences of a Theorem of Erdös-Prachar

Laurenţiu Panaitopol

Title Page

Contents

Go Back
Close
Quit
Page 11 of 16

Since the series $\sum_{m=2}^{\infty} \frac{1}{m \log ^{2} m}$ is convergent, it then follows that the series $\sum_{k=1}^{\infty} \frac{\alpha_{k}}{p_{k+1}}$ is also convergent. Now (3.2) implies that

$$
\sum_{k=1}^{n}\left|\frac{c_{k+1}}{p_{k+1}}-\frac{c_{k}}{p_{k}}\right|=\sum_{k=1}^{n}\left|\frac{k+1}{p_{k+1}}-\frac{k}{p_{k}}\right|+O(1)
$$

and the desired conclusion follows.
Analogously to the Erdös-Prachar theorem, we shall prove the following fact.

Theorem 3.2. We have

$$
\sum_{p_{k} \leq x}\left|\frac{p_{k+1}}{c_{k+1}}-\frac{p_{k}}{c_{k}}\right| \asymp \log ^{2} x
$$

for every $x>1$.
Proof. We have
(3.4) $\frac{p_{k+1}}{c_{k+1}}-\frac{p_{k}}{c_{k}}=\left(\frac{p_{k+1}}{k+1}-\frac{p_{k}}{k}\right)+p_{k}\left(\frac{1}{k(k+1)}-\frac{c_{k+1}-c_{k}}{c_{k+1} c_{k}}\right)$

$$
+\frac{\left(p_{k+1}-p_{k}\right)\left(k+1-c_{k+1}\right)}{(k+1) c_{k+1}} .
$$

Consequences of a Theorem of Erdös-Prachar

Laurenţiu Panaitopol

By (1.9) we get

$$
\begin{aligned}
& \sum_{p_{k} \leq x}\left|\frac{\left(p_{k+1}-p_{k}\right)\left(k+1-c_{k+1}\right)}{(k+1) c_{k+1}}\right| \\
& =-\sum_{p_{k} \leq x} \frac{\left(p_{k+1}-p_{k}\right) u_{k+1}}{c_{k+1} \log (k+1)} \\
& =O\left(\sum_{k=2}^{\pi(x)} \frac{p_{k+1}-p_{k}}{k \log k}\right) \\
& =O\left(\frac{x}{\pi(x) \log \pi(x)}+\sum_{k=3}^{\pi(x)} p_{k}\left(\frac{1}{(k-1) \log (k-1)}-\frac{1}{k \log k}\right)\right)
\end{aligned}
$$

By (1.3) we have $\pi(x) \log \pi(x) \sim x$,

$$
p_{k}\left(\frac{1}{(k-1) \log (k-1)}-\frac{1}{k \log k}\right) \sim \frac{p_{k} \log k}{k^{2} \log ^{2} k} \sim \frac{1}{k}
$$

and (1.7) implies

$$
\begin{equation*}
\sum_{p_{k} \leq x} \frac{\left(p_{k+1}-p_{k}\right)\left(k+1-c_{k+1}\right)}{(k+1) c_{k+1}}=O(\log x) \tag{3.5}
\end{equation*}
$$

Consequences of a Theorem of Erdös-Prachar

Laurenţiu Panaitopol

Title Page
Contents

Go Back
Close
Quit
Page 13 of 16

We have also

$$
\begin{aligned}
\sum_{p_{k} \leq x} \mid p_{k}(& \left.\frac{1}{k(k+1)}-\frac{c_{k+1}-c_{k}}{c_{k+1} c_{k}}\right) \mid \\
& \leq \sum_{p_{k} \leq x}^{\prime \prime}\left|p_{k}\left(\frac{1}{k(k+1)}-\frac{1}{c_{k}\left(c_{k}+1\right)}\right)\right|+2 \sum_{p_{k} \leq x}^{\prime}\left|\frac{p_{k}}{c_{k}\left(c_{k}+2\right)}\right|
\end{aligned}
$$

where \sum^{\prime} extends over the values of k such that $c_{k}+1$ is a prime number, while $\sum^{\prime \prime}$ extends over the values of k such that $c_{k}+1=p_{m}$ is composed. By (1.9) we deduce

$$
\begin{aligned}
\sum_{p_{k} \leq x}^{\prime \prime}\left|\frac{p_{k}\left(c_{k}-k\right)\left(c_{k}+k+1\right)}{k(k+1) c_{k}\left(c_{k}+1\right)}\right| & =O\left(\sum_{p_{k} \leq x} \frac{k \log k}{k^{4}} \cdot k^{2} \log k\right) \\
& =O\left(\sum_{p_{k} \leq x} \frac{1}{k}\right)=O(\log x)
\end{aligned}
$$

By (1.4) and (1.8) it follows that

$$
\begin{aligned}
\sum_{p_{k} \leq x}^{\prime}\left|\frac{p_{k}}{c_{k}\left(c_{k}+2\right)}\right| & \sim \sum_{k \leq \pi(x)}^{\prime} \frac{c_{k} \log c_{k}}{c_{k}\left(c_{k}+2\right)} \\
& \sim \sum_{c_{k} \leq x}^{\prime} \frac{\log \left(c_{k}+1\right)}{c_{k}+1} \\
& =\sum_{p_{m} \leq x} \frac{\log p_{m}}{p_{m}}=O(\log x)
\end{aligned}
$$

Consequences of a Theorem of Erdös-Prachar

Laurenţiu Panaitopol

Title Page
Contents

| $\mathbf{~ G o ~ B a c k ~}$ |
| :---: | :---: |
| Close |
| Quit |
| Page 14 of 16 |

J. Ineq. Pure and Appl. Math. 2(3) Art. 35, 2001 http://jipam.vu.edu.au

Thus

$$
\begin{equation*}
\sum_{p_{k} \leq x} p_{k}\left|\frac{1}{k(k+1)}-\frac{c_{k+1}-c_{k}}{c_{k+1} c_{k}}\right|=O(\log x) \tag{3.6}
\end{equation*}
$$

Now by (1.1), (3.4), (3.5) and (3.6) it follows that $\sum_{p_{k} \leq x}\left|\frac{p_{k+1}}{c_{k+1}}-\frac{p_{k}}{c_{k}}\right| \asymp \log ^{2} x$ and the proof is completed.

References

[1] A.E. BOJARINCEV, Asymptotic expressions for the nth composite number, Ural. Gos. Univ. Mat. Zap., 6 (1967), 21-43 (in Russian).
[2] P. ERDÖS AND K. PRACHAR, Sätze und Probleme über p_{k} / k, Abh. Math. Sem. Univ. Hamburg, 25 (1961/1962), 251-256.
[3] L. PANAITOPOL, On Erdös-Prachar Theorem, An. Univ. Bucureşti Mat., 2 (1999), 143-148.
[4] L. PANAITOPOL, On the sequence of the differences of consecutive prime numbers, Gaz. Mat. Ser. A, 79 (1974), 238-242 (in Romanian).

J. Ineq. Pure and Appl. Math. 2(3) Art. 35, 2001

