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Abstract

In this paper we prove certain inequalities involving matrices and operators on
Hilbert spaces. In particular inequalities involving the trace and the determinant
of the product of certain positive definite matrices.
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Inequalities have proved to be a powerful tool in mathematics , in particular
in modeling error analysis for filtering and estimation problems, in adaptive
stochastic control and for investigation of quantum mechanical Hamiltonians as
it has been shown by Patel and Toda,[11, 17] and Lieb and Thirring ).

It is the object of this paper to prove new interesting matrix and operator
inequalities. We refer the reader tg [/, &] for the basics of matrix and operator
inequalities and for a survey of many other basic and important inequalities.

Through out the paper ifl is ann x n matrix, we writetr A to denote the
trace ofA anddet A for the determinant ofi. If A is positive definite we write
A > 0. The adjoint ofA (a matrix or operator) is denoted by .
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Theorem 2.3.

Through out this section, we work with square matrices on a finite dimensional
Hilbert space.

Theorem 2.1.1f A > 0andB > 0, then
(2.1) 0<tr(AB)™ < (tr (AB))™

for any integerm > 0.

Proof. The equality holds fom = 1. Form > 1,let B =1, andA;, A, ..., \,

be the eigenvalues of. Since}"" | A" < (37, A)™, then Matrix and Operator Inequalities
(2.2) 0<tr(A™) < (trA)™. Fozi M. Dannan
Since @.2) is true for anyA > 0, we letD = Bz AB:. Then inequality 2.2)
holds forD. Thus0 < ¢r (D™) < (trD)™, from which the result follows. [ Title Page
Theorem 2.2.Let A, B be positive definite matrices. Then Contents
(2.3) 0 < tr (AB)™ < [tr (AB)]* | 4« »
provided thatn and s are positive integers anch > s. 4 >
Proof. Clearlytr (AB)™ = tr (A%BA%>m > 0. Letly, L, ...,1, be the eigen- Co 2EES
values ofA3 BA3. Then from Hardy’s inequalityd] (17" + 12 + - - - + [™)m < Close

1 g
(I5+15+---+13)s form > s > 0, we get QU

) o ) NCE Page 4 of 17

[tr (AEBA?) ] < [t'r (AEBA?) } .
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If A; >0andB; >0 (i=1,2,...,k), then

k 2 k k
(2.4) (tTZAiBi> < (trZA?) . (trZBf) .

If A;B;, >0(i=1,2,... k), then

k 2 k k
(2-5) (tT’ Z AiBi) < (t?“ Z A?) ’ <t7‘ Z BE) : Matrix and Operator Inequalities
=1 i=1 =1

Fozi M. Dannan

Proof. Since
k k k k Title Page
0<tr) (0A;i+ B)" =0%r > A7 |+20tr [ > AB; | +tr | Y _B? |, Contents
i=1 =1 =1 =1
. : <4« >
we concludeZ.4). To prove R.5), it suffices to prove that
. ) . ) < | 2
(26) tr (Z A2B2> < (t?" Z (AZBZ)> . Go Back
=1 =1 Close
SinceA;B; > 0fori =1,2,...,k, thenU = Ele A;B; > 0. Therefore the Quit
inequalitytr (U)* < (trU)* for positive definitel/ implies (2.6) and the proof Page 5 of 17
is complete. O

Remark 2.1. The conditionA;B; > 0 in (2.5 is essential as the following 2 1059 T S LER: PHENO, 5 AU
http://jipam.vu.edu.au
example shows.
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Example 2.1. Let
4 -3 2 4
() (i)
3 3 1 -3
¢ = (3 6)’ B:<—3 10)'

It is clear thatA, B, C', and D are positive definite matrices . Now

B —10 10 s 10 560 Matrix and Operator Inequalities
(AB+CD) = ( 9 66 ) , (AB+CD)” = ( 504 4266 ) : o e
Thus
tr (AB + CD)* = 4276 > [tr (AB + C'D))* = 3136. Title Page
Remark 2.2. R. Bellman [] proved thattr (AB)* < tr (A2B?) (*) for positive Contents
definite matricesA and B. Further he asked: “Does the above inequality (*) pp >
hold for higher powers?”. Such a question had been solved by E.H.Lieb and
W.E. Thirring [5] ,where they proved < ;
Go Back
2.7) tr (AB)™ < tr (A™B™) °=ae
Close
for any positive integern, and for A, B positive definite matrices. In 1995, Quit

Changqin Xu F] proved a particular case of4.7): that is whenA and B

are 2 x 2 positive definite matrices. Notice thatrAB)™ and tr (A™B™) Page 6 of 17

are upper bounds fotr (AB)™ in (2.1) and 2.7) . One may ask what is

max{tr (A™B™) ,tr (AB)™} . The following examples show that eittierAB)™ ¥ Ineq. Pure and Appl. Math. 2(3) At. 34, 2001
http://jipam.vu.edu.au
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Example 2.2. Let

3 -1 5
=(A) e

Thentr (AB)* = 144 < 204 = tr (A2B?).

— DN
N—

Example 2.3. Let

3 =2 2
(5 3) e

Thentr (A2B?) = 25 < 36 = tr (AB)>.

Matrix and Operator Inequalities

N
N—
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Theorem 2.4.1f 0 < A; < B, and0 < A, < B,, then Title Page
Contents
2.8 0 < tr(A;Ay) < tr (B.Bs) .
(2.8) (A14s) < tr (BiBy) « -
Proof. Since0 < A; < B; and0 < A, < By, it follows that < S
0< A2A A2 < A2B, A2 Go Back
Close
and
Quit
(2.:9) 0 < Bf A:Bf < Bf BBy Page 7 of 17

Since trace is a monotone function on the definite matrices, we get
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and
(211) 0<tr (BlAQ) <tr (BlBQ) .

This implies @.9). O

Remark 2.3. The conditions4; > 0 and A, > 0 in Theoren?.4. are essential
even ifA; A, and B, By are symmetric as the following example shows.

Example 2.4. Let
-1 1 10
Al - ( 1 _3)7 Bl_<0 2)7
13 30
_ 2 _
v (3 a) (i)

Itis clear thatd; < B; and A, < B,. We have also

i -1 30
A1A2:( 2 2), BlBQ:<
¥ 04

andtr (AlAQ) =8>7=1tr (BlBg) .
Theorem 2.5.1f A > 0 and B > 0, then

m

(2.12) n(det A-det B)» <tr(A™B™)

for any positive integem.
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Proof. SinceA is diagonalizable, there exists an orthogonal mafriand a di-

agonal matrix\ such that\ = PT AP. Soifthe eigenvalues of arel;, \s, ..., A,

thenA = diag ()\1, Aoy, )\n) .
Letbiy (m),bas (m) ..., by, (m) denote the elements ¢2BPT)™. Then

(2.13) ltr(AmBm): tr (PA™P"B™)
n

tr (\"P"B™P)

[ 3| —R3I—3|+

tr [A™ (PTBP)™]

n

Using the arithmetic-mean geometric- mean inequalifywe get

1
n

(2.14) %W«AmBm)z[ATxyu-Agﬁ[mlm@bm(mqu-mnonﬂ

Sincedet A < ajiag - - - ay, for any positive definite matrid, [4] we conclude
that

(2.15) det (PTBP)™ < byy (m) - bas (m) - -+ - by (M)
and
(2.16) det A™ < XNPATY ...\
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Therefore from 2.14) it follows that

%tr (A"B™) > [det (A™)]

S|=

- [det (PTBP)"] "

= [det (PTAP)] " - [det (P"BP)]
= (detA-detB)~ .

2|3

Here we used the fact that > 0 and B > 0. The proof is complete. O

Corollary 2.6. [6] Let A and X be positive definite. x n- matrices such that

det X = 1. Then
(2.17) n (det A)r < tr (AX).

Proof. TakeB = X andm = 1 in Theorem2.5. O
Theorem 2.7.1f A> 0, B> 0andAB = BA, then

(2.18) 2m=1n det (A™ 4 B™) > [det (A + B)]™
and
(2.19) 2"y (A™ + B™) > tr (A+ B)™

for any positive integem.
Proof. To prove inequalityZ.18), it is enough to prove

A"+ B Z(A+B)

(2.20) . >
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for any pair of commuting positive definite matricéand B. We use induction
to prove €.20. Clearly .20 holds true form = 2. Assume that4.20) is true
for m = k. We have to proveA 20 for m = k + 1. Indeed, since

Ak + Bk A+B A+B Ak 4+ BF
2 2 2 2

it follows that

k+1
(2.21) (A+B> + - A+ B A"+ B
2 2

A4 gt AR pEE BAR 4 ABY
- 2 - 4 + 4

Ak—i—l + Bk—l—l Ak—l—l + Bk—l—l _ BAk _ ABk
- 2 - 4

Ak+1 + Bk+1 (Ak . Bk) (A . B)

2 4 ‘

Now the equality
(A*—B*)(A-B)= (A" + A" 2B +...+ AB*? + B* ') (A- B)®
forA>0,B >0andAB = BA, impliesAB > 0 [2]. Consequently
L=A14 AR 2B 4 ... 4+ ABF 24 B¥1 > 0.

SinceL - (A — B)* = (A— B)*- L, then(A* — B*) (A — B) > 0. Therefore,
from (2.21) we obtain

(A—i—B)kH _ AR+l Bh+1
2 - 2 )
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The proof is complete. Inequalit (19 follows directly from @.20). O

Remark 2.4. The conditionAB = BA in inequality .20 is essential as the
following example shows.

Example 2.5. Let

1 -1 3 =2
(A5) (B )
It is clear thatA > 0, B > 0 and AB # BA. For m = 3 inequality ¢.20
becomes
(2.22) 4(A*+ B%) > (A+B).

Easily we find that

s oy [ 236 —216 s [ 84 —45
(4 +B)_(—216 196 ) (A+B)_(—45 24

anddet C' = —9 which implies that” < 0.
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In this section we consider inequalities involving operators on separable Hilbert
spaceX. We start with the following simple well-known inequality.

Theorem 3.1.Let S and 7" be self-adjoint bounded linear operators on the
Hilbert spaceH. Then

ST+TS [(S+T\°
(3.1) RN Gt
2 2
Proof. Since Matrix and Operator Inequalities
S+T 2 ST+TS S_|_T 2 Fozi M. Dannan
(57) - ()
and since the square of the self-adjoint operator is a non-negative operator, we Title Page
get(SJFTT)2 > (). The claim of the theorem now follows. O F——
Now we present a similar type result as Theofbut for non-self-adjoint <« b
case . More precisely:
. . < | 2
Theorem 3.2.Let S andT be bounded linear operators on a Hilbert spake
Assumeés to be self-adjoint . Then Go Back
1
(32) ZKZ + Hp S HQ7 Close
Quit
where
Page 13 of 17
1 S+T\?
(3.3) P = -(ST+TS), Q= (L) ,
? 1 2 J. Ineq. Pure and Appl. Math. 2(3) Art. 34, 2001
" " http://jipam.vu.edu.au
(3.4) Hp = §(P+P), HQ:§(Q+Q)
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andK =3 (T'+1T7).

Proof. For any bounded linear operattrwe have

T:%[(T+T*)+(T—T*)]:HT+K,

where Hy = %(T+ T*). Inequality 8.1) can be applied to the self-adjoint
operatorsS and Hr, so we get

Matrix and Operator Inequalities
(3.5) (Uz,x) >0,

Fozi M. Dannan

whereU = (S + Hy)* — 2(SHy + HyrS) . Now we have

Title P
(36) U = (S+Hp)?—S(T+T)—(T+T"S He Tage
= (S+ Hyp)* —4Hp Contents
1 T2+ (T%)° 1 < >
= S [28°+ — 4+ - (IT"+T"T) - 4H
1
= 3 (25% + T% + (T*)* — 4Hp — 2K?) Go Back
— L (8Hy - 4ty — 4t - 2K7) Close
- 92 Q P P Qu|t
= 4<HQ—HP—3K2). Page 14 of 17
Therefore the required inequalit$.@) follows from (3.6) and @.5). O 3. Ineq. Pure and Appl. Math. 2(3) Art. 34, 2001
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Remark 3.1. When bothS and T are not self-adjoint operators , Theoresr?
does not hold. The following example illustrates this fact.

Example 3.1.Let S andT be defined ofR? — R? by the following matrices

s=(1 %) r=(43)

By computation we find that

Matrix and Operator Inequalities

1 12
P = §(ST+TS):<—76 14), Fozi M. Dannan
S+T\? -1 8 -5 0
Q = (T) :(_4 7), K2:( 04 RO E Title Page
4
7 3 1 9 Contents
- (15) me(32)
3 14 @ 2 7 <« >
1, —2 1
HQ—HP_ZK = (_116 _ﬂ><0‘ < 4
16
Go Back
Close
Quit
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