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Abstract

In this paper we prove certain inequalities involving matrices and operators on
Hilbert spaces. In particular inequalities involving the trace and the determinant
of the product of certain positive definite matrices.
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1. Introduction
Inequalities have proved to be a powerful tool in mathematics , in particular
in modeling error analysis for filtering and estimation problems, in adaptive
stochastic control and for investigation of quantum mechanical Hamiltonians as
it has been shown by Patel and Toda [10, 11, 12] and Lieb and Thirring [5].

It is the object of this paper to prove new interesting matrix and operator
inequalities. We refer the reader to [4, 7, 8] for the basics of matrix and operator
inequalities and for a survey of many other basic and important inequalities.

Through out the paper ifA is ann × n matrix, we writetrA to denote the
trace ofA anddet A for the determinant ofA. If A is positive definite we write
A > 0. The adjoint ofA (a matrix or operator) is denoted byA∗.
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2. Matrix Inequalities
Through out this section, we work with square matrices on a finite dimensional
Hilbert space.

Theorem 2.1. If A > 0 andB > 0, then

(2.1) 0 < tr (AB)m < (tr (AB))m

for any integerm > 0.

Proof. The equality holds form = 1. Form > 1, let B = I, andλ1, λ2, . . . , λn

be the eigenvalues ofA. Since
∑n

i=1 λm
i < (

∑n
i=1 λi)

m
, then

(2.2) 0 < tr (Am) < (trA)m .

Since (2.2) is true for anyA > 0, we letD = B
1
2 AB

1
2 . Then inequality (2.2)

holds forD. Thus0 < tr (Dm) < (trD)m, from which the result follows.

Theorem 2.2.LetA, B be positive definite matrices. Then

(2.3) 0 < tr (AB)m < [tr (AB)s]
m
s ,

provided thatm ands are positive integers andm > s.

Proof. Clearlytr (AB)m = tr
(
A

1
2 BA

1
2

)m

> 0. Let l1, l2, . . . , ln be the eigen-

values ofA
1
2 BA

1
2 . Then from Hardy’s inequality [3] (lm1 + lm2 + · · ·+ lmn )

1
m <

(ls1 + ls2 + · · ·+ lsn)
1
s for m > s > 0, we get[
tr
(
A

1
2 BA

1
2

)m] 1
m

<
[
tr
(
A

1
2 BA

1
2

)s] 1
s

.

This implies (2.3).
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If Ai > 0 andBi > 0 (i = 1, 2, . . . , k) , then

(2.4)

(
tr

k∑
i=1

AiBi

)2

≤

(
tr

k∑
i=1

A2
i

)
·

(
tr

k∑
i=1

B2
i

)
.

If AiBi > 0 (i = 1, 2, . . . , k) , then

(2.5)

(
tr

k∑
i=1

AiBi

)2

<

(
tr

k∑
i=1

A2
i

)
·

(
tr

k∑
i=1

B2
i

)
.

Proof. Since

0 ≤ tr
k∑

i=1

(θAi + Bi)
2 = θ2tr

(
k∑

i=1

A2
i

)
+2θtr

(
k∑

i=1

AiBi

)
+tr

(
k∑

i=1

B2
i

)
,

we conclude (2.4). To prove (2.5), it suffices to prove that

(2.6) tr

(
k∑

i=1

AiBi

)2

<

(
tr

k∑
i=1

(AiBi)

)2

.

SinceAiBi > 0 for i = 1, 2, . . . , k, thenU =
∑k

i=1 AiBi > 0. Therefore the
inequalitytr (U)2 < (trU)2 for positive definiteU implies (2.6) and the proof
is complete.

Remark 2.1. The conditionAiBi > 0 in (2.5) is essential as the following
example shows.
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Example 2.1.Let

A =

(
4 −3
−3 3

)
, B =

(
2 4
4 9

)
,

C =

(
3 3
3 6

)
, B =

(
1 −3
−3 10

)
.

It is clear thatA, B, C, andD are positive definite matrices . Now

(AB + CD) =

(
−10 10
−9 66

)
, (AB + CD)2 =

(
10 560

−504 4266

)
.

Thus
tr (AB + CD)2 = 4276 > [tr (AB + CD)]2 = 3136.

Remark 2.2. R. Bellman [1] proved thattr (AB)2 ≤ tr (A2B2) (*) for positive
definite matricesA andB. Further he asked: “Does the above inequality (*)
hold for higher powers?”. Such a question had been solved by E.H.Lieb and
W.E. Thirring [5] ,where they proved

(2.7) tr (AB)m < tr (AmBm)

for any positive integerm, and forA, B positive definite matrices. In 1995,
Changqin Xu [2] proved a particular case of (2.7): that is whenA and B
are 2 × 2 positive definite matrices. Notice that(trAB)m and tr (AmBm)
are upper bounds fortr (AB)m in (2.1) and (2.7) . One may ask what is
max{tr (AmBm) , tr (AB)m} . The following examples show that either(trAB)m

or tr (AmBm) can be the least.

http://jipam.vu.edu.au/
mailto:fmdannan@qu.edu.qa
http://jipam.vu.edu.au/


Matrix and Operator Inequalities

Fozi M. Dannan

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 7 of 17

J. Ineq. Pure and Appl. Math. 2(3) Art. 34, 2001

http://jipam.vu.edu.au

Example 2.2.Let

A =

(
3 −1
−1 1

)
, B =

(
5 2
2 1

)
.

Thentr (AB)2 = 144 < 204 = tr (A2B2) .

Example 2.3.Let

A =

(
3 −2
−2 2

)
, B =

(
2 1
1 2

)
.

Thentr (A2B2) = 25 < 36 = tr (AB)2 .

Theorem 2.4. If 0 < A1 ≤ B1 and0 < A2 ≤ B2, then

(2.8) 0 < tr (A1A2) ≤ tr (B1B2) .

Proof. Since0 < A1 ≤ B1 and0 < A2 ≤ B2, it follows that

0 < A
1
2
2 A1A

1
2
2 ≤ A

1
2
2 B1A

1
2
2

and

(2.9) 0 < B
1
2
1 A2B

1
2
1 ≤ B

1
2
1 B2B

1
2
1 .

Since trace is a monotone function on the definite matrices, we get

(2.10) 0 < tr (A1A2) ≤ tr (B1A2) .
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and

(2.11) 0 < tr (B1A2) ≤ tr (B1B2) .

This implies (2.8).

Remark 2.3. The conditionsA1 > 0 andA2 > 0 in Theorem2.4. are essential
even ifA1A2 andB1B2 are symmetric as the following example shows.

Example 2.4.Let

A1 =

(
−1 1
1 −3

)
, B1 =

(
1 0
0 2

)
,

A2 =

(
1 3

2
3
2

−2

)
, B2 =

(
3 0
0 2

)
.

It is clear thatA1 < B1 andA2 < B2. We have also

A1A2 =

(
1
2

−7
2

−7
2

15
2

)
, B1B2 =

(
3 0
0 4

)
andtr (A1A2) = 8 > 7 = tr (B1B2) .

Theorem 2.5. If A > 0 andB > 0, then

(2.12) n (det A · det B)
m
n ≤ tr (AmBm)

for any positive integerm.
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Proof. SinceA is diagonalizable, there exists an orthogonal matrixP and a di-
agonal matrixΛ such thatΛ = P T AP. So if the eigenvalues ofA areλ1, λ2, . . . , λn,
thenΛ = diag (λ1, λ2, . . . , λn) .

Let b11 (m) , b22 (m) , . . . , bnn (m) denote the elements of
(
PBP T

)m
. Then

1

n
tr (AmBm) =

1

n
tr
(
PΛmP T Bm

)
(2.13)

=
1

n
tr
(
ΛmP T BmP

)
=

1

n
tr
[
Λm
(
P T BP

)m]
=

1

n
[λm

1 b11 (m) + λm
2 b22 (m) + · · ·+ λm

n bnn (m)] .

Using the arithmetic-mean geometric- mean inequality [9], we get

(2.14)
1

n
tr (AmBm) ≥ [λm

1 λm
2 · · ·λm

n ]
1
n [b11 (m) b22 (m) · · · bnn (m)]

1
n .

Sincedet A ≤ a11a22 · · · ann for any positive definite matrixA, [4] we conclude
that

(2.15) det
(
P T BP

)m ≤ b11 (m) · b22 (m) · · · · · bnn (m)

and

(2.16) det Λm ≤ λm
1 λm

2 · · ·λm
n .
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Therefore from (2.14) it follows that

1

n
tr (AmBm) ≥ [det (Λm)]

1
n ·
[
det
(
P T BP

)m] 1
n

=
[
det
(
P T AP

)]m
n ·
[
det
(
P T BP

)]m
n

= (det A · det B)
m
n .

Here we used the fact thatA > 0 andB > 0. The proof is complete.

Corollary 2.6. [6] Let A andX be positive definiten × n- matrices such that
det X = 1. Then

(2.17) n (det A)
1
n ≤ tr (AX) .

Proof. TakeB = X andm = 1 in Theorem2.5.

Theorem 2.7. If A ≥ 0, B ≥ 0 andAB = BA, then

(2.18) 2(m−1)n det (Am + Bm) ≥ [det (A + B)]m

and

(2.19) 2m−1tr (Am + Bm) ≥ tr (A + B)m

for any positive integerm.

Proof. To prove inequality (2.18), it is enough to prove

(2.20)
Am + Bm

2
≥
(

A + B

2

)m

http://jipam.vu.edu.au/
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for any pair of commuting positive definite matricesA andB. We use induction
to prove (2.20). Clearly (2.20) holds true form = 2. Assume that (2.20) is true
for m = k. We have to prove (2.20) for m = k + 1. Indeed, since

Ak + Bk

2
· A + B

2
=

A + B

2
· Ak + Bk

2
,

it follows that(
A + B

2

)k+1

≤ A + B

2
· Ak + Bk

2
(2.21)

=
Ak+1 + Bk+1

2
− Ak+1 + Bk+1

4
+

BAk + ABk

4

=
Ak+1 + Bk+1

2
− Ak+1 + Bk+1 −BAk − ABk

4

=
Ak+1 + Bk+1

2
−
(
Ak −Bk

)
(A−B)

4
.

Now the equality(
Ak −Bk

)
(A−B) =

(
Ak−1 + Ak−2B + · · ·+ ABk−2 + Bk−1

)
(A−B)2

for A ≥ 0, B ≥ 0 andAB = BA, impliesAB ≥ 0 [8]. Consequently

L = Ak−1 + Ak−2B + · · ·+ ABk−2 + Bk−1 ≥ 0.

SinceL · (A−B)2 = (A−B)2 · L, then
(
Ak −Bk

)
(A−B) ≥ 0. Therefore,

from (2.21) we obtain (
A + B

2

)k+1

≤ Ak+1 + Bk+1

2
.

http://jipam.vu.edu.au/
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The proof is complete. Inequality (2.19) follows directly from (2.20).

Remark 2.4. The conditionAB = BA in inequality (2.20) is essential as the
following example shows.

Example 2.5.Let

A =

(
1 −1
−1 2

)
, B =

(
3 −2
−2 2

)
.

It is clear thatA > 0, B > 0 and AB 6= BA. For m = 3 inequality (2.20)
becomes

(2.22) 4
(
A3 + B3

)
≥ (A + B)3 .

Easily we find that

4
(
A3 + B3

)
=

(
256 −216
−216 196

)
, (A + B)3 =

(
84 −45
−45 24

)
anddet C = −9 which implies thatC < 0.

http://jipam.vu.edu.au/
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3. Operator Inequalities
In this section we consider inequalities involving operators on separable Hilbert
spaceX. We start with the following simple well-known inequality.

Theorem 3.1. Let S and T be self-adjoint bounded linear operators on the
Hilbert spaceH. Then

(3.1)
ST + TS

2
≤
(

S + T

2

)2

.

Proof. Since (
S + T

2

)2

− ST + TS

2
=

(
S + T

2

)2

and since the square of the self-adjoint operator is a non-negative operator, we
get
(

S+T
2

)2 ≥ 0. The claim of the theorem now follows.

Now we present a similar type result as Theorem3.1but for non-self-adjoint
case . More precisely:

Theorem 3.2.LetS andT be bounded linear operators on a Hilbert spaceX.
AssumeS to be self-adjoint . Then

(3.2)
1

4
K2 + Hp ≤ HQ,

where

P =
1

2
(ST + TS) , Q =

(
S + T

2

)2

,(3.3)

HP =
1

2
(P + P ∗) , HQ =

1

2
(Q + Q∗)(3.4)

http://jipam.vu.edu.au/
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andK = 1
2
(T + T ∗) .

Proof. For any bounded linear operatorT we have

T =
1

2
[(T + T ∗) + (T − T ∗)] = HT + K,

whereHT = 1
2
(T + T ∗) . Inequality (3.1) can be applied to the self-adjoint

operatorsS andHT , so we get

(3.5) 〈Ux, x〉 ≥ 0,

whereU = (S + HT )2 − 2 (SHT + HT S) . Now we have

U = (S + HT )2 − S (T + T ∗)− (T + T ∗) S(3.6)

= (S + HT )2 − 4HP

=
1

2

[
2S2 +

T 2 + (T ∗)2

2
+

1

2
(TT ∗ + T ∗T )− 4HP

]
=

1

2

(
2S2 + T 2 + (T ∗)2 − 4HP − 2K2

)
=

1

2

(
8HQ − 4HP − 4HP − 2K2

)
= 4

(
HQ −HP −

1

4
K2

)
.

Therefore the required inequality (3.2) follows from (3.6) and (3.5).

http://jipam.vu.edu.au/
mailto:fmdannan@qu.edu.qa
http://jipam.vu.edu.au/


Matrix and Operator Inequalities

Fozi M. Dannan

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 15 of 17

J. Ineq. Pure and Appl. Math. 2(3) Art. 34, 2001

http://jipam.vu.edu.au

Remark 3.1. When bothS andT are not self-adjoint operators , Theorem3.2
does not hold. The following example illustrates this fact.

Example 3.1.LetS andT be defined onR2 → R2 by the following matrices

S =

(
1 −2
1 4

)
, T =

(
1 6
−3 2

)
.

By computation we find that

P =
1

2
(ST + TS) =

(
7 12
−6 14

)
,

Q =

(
S + T

2

)2

=

(
−1 8
−4 7

)
, K2 =

(
−81

4
0

0 −81
4

)
,

HP =

(
7 3
3 14

)
, HQ =

(
−1 2
2 7

)
,

HQ −HP −
1

4
K2 =

(
−47

16
−1

−1 −31
16

)
< 0.
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