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1. INTRODUCTION
Let L be a linear class of real-valued functions £ — R having the properties

(L1) f,g € Limply (af + 8g) € Lforall o, 5 € R;
(L2) 1€ L,ie.,if fo(t)=1,t € Ethenf, € L.

An isotonic linear functionad : L — R is a functional satisfying

(A1) A(af + Bg) = aA(f) + BA(g) forall f,g € L anda, 5 € R.

(A2) If f € Landf >0, thenA (f) > 0.

The mappingA is said to benormalised if

(A3) A(1) =1.

Isotonic, that is, order-preserving, linear functionals are natural objects in analysis which
enjoy a number of convenient properties. Thus, they provide, for example, Jessen’s inequality,
which is a functional form of Jensen’s inequality (se€e [2] and [10]).

We recall Jessen’s inequality (see also [8]).
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2 S.S. RAGOMIR

Theorem 1.1.Let¢p : I C R — R ({ is an interval), be a convex function arfd £ — I such
thatgoo f, f € L. If A: L — R s an isotonic linear and normalised functional, then

(1.1) P(A(f) < Ao f).

A counterpart of this result was proved by Beesack arithfein [2] for compact intervals
I =[a,f].
Theorem 1.2.Let¢ : [o, 5] C R — R be a convex function anfl: £ — [«, 5] such thato f,
feL.If A: L — Risanisotonic linear and normalised functional, then

B—A(f) A(f) — o
(1.2) A(¢Of)gw¢(a)+ﬁ¢(ﬁ)'
Remark 1.3. Note that[(I1.R) is a generalisation of the inequality
—_A A —
13) Ay < A ) Al

due to Lupas [9] (see for example [2, Theorem A]), which assumed|q, b], L satisfies (L1),
(L2), A : L — R satisfies (Al), (A2)A (1) = 1, ¢ is convex onF and¢ € L, e; € L, where
e1 (z) =,z € [a,b].
The following inequality is well known in the literature as the Hermite-Hadamard inequality
a+b 1 b v (a)+ ¢ (b)
: < < 7
(1.4) @( ! >—b_a/a*0<t>dt— ~el
provided thaty : [a, b] — R is a convex function.

Using Theorenj 1]1 and Theorgm |1.2, we may state the following generalisation of the
Hermite-Hadamard inequality for isotonic linear functionals ([11] and [12]).

Theorem 1.4.Let¢ : [a,b] C R — R be a convex function and: £ — [a, b] withe, ¢poe € L.
If A— Ris an isotonic linear and normalised functional, with(e) = £, then

(L5) w(“;b)swce)gw.

For other results concerning convex functions and isotonic linear functionals,/ se€ [3] — [6],
[12] — [14] and the recent monograph [7].

2. THE CONCEPTS OFm — W—CONVEX AND M — UW—CONVEX FUNCTIONS

Assume that the mapping : 7 C R — R (/ is an interval) is convex o andm € R. We
shall say that the mapping: I — R ism — ¥— lower convexf ¢ — mV is a convex mapping
on I (seel[4]). We may introduce the class of functions

(2.1) L(I,m,V):={¢p:I—R|p—mUV isconvexon/}.

Similarly, for M € R and¥ as above, we can introduce the class\of— W—upper convex
functions by (se€ [4])

(2.2) U ,MT):={¢: ] —RMY — ¢ isconvexonl}.

The intersection of these two classes will be called the clagsiof/) — W'—convex functions
and will be denoted by

(2.3) B(I,m, M, V) = L(I,m,¥)NU I, M7).

Remark2.1.If W € B(I,m, M, V), thenp—mWV¥ andM ¥—¢ are convex and thefp — mV¥)+
(MY — ¢) is also convex which shows that/ — m) ¥ is convex, implying that\/ > m (as
U is assumed not to be the trivial convex functirit) = 0, t € I).
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The above concepts may be introduced in the general case of a convex subset in a real linear
space, but we do not consider this extension here.

In [6], S.S. Dragomir and N.M. lonescu introduced the concepg-e€onvex dominated
mappings, for a mapping : I — R. We recall this, by saying, for a given convex functign
I — R, the functionf : I — R is g—convex dominated if§ + f andg — f are convex mappings
on /. In [6], the authors pointed out a number of inequalities for convex dominated functions
related to Jensen’s, Fuchs’,d2eic’s, Barlow-Marshall-Proschan and Vasviijalkovic results,
etc.

We observe that the conceptgf convex dominated functions can be obtained as a particular
case from(m, M) — ¥—convex functions by choosing = —1, M = 1 and¥ = g.

The following lemma holds (see alsd [4]).

Lerpma 2.2.LetV, ¢ : I C R — R be differentiable functions orand ¥ is a convex function
onl.

(i) Form € R, the functions € £ (i, m, ¥) iff
(2.4) m[¥ () =V (y) =V (y)(z—y)] < o(x) —d(y) — ¢ (y) (x —y)

forall z,y ef. .
(i1) For M € R, the functiony € U (I, M, D) iff
(2.5) ¢x) =)= (W) (x—y) < M[¥(z) -V (y) -V (y) (z—y)
forall z,y el.
(iti) For M,m € R with M > m, the functiony € B (I, m, M, ) iff both (2.4) and[(2})
hold.
Proof. Follows by the fact that aglifferentiable mappihg I — R is convex oni iff h (x) —
h(y) > h (y) (x —y) forall z,y €l. O

Another elementary fact for twice differentiable functions also holds (seelalso [4]).
Lemma2.3.LetV, ¢ : I C R — R be twice differentiable ohand ¥ is convex on.
(i) Form € R, the functionp € £ (I,m, 0) iff

(2.6) mU" (t) < ¢’ (t) forallt .
(i7) For M € R, the functiony € U/ (i, M, 0) iff
(2.7) ¢ () < MU (t) foralltel.
(i41) For M,m € R with M > m, the functionp € B (i, m, M, ) iff both (2.6) and|(2]7)
hold.
Proof. Follows by tbe fact that a twice differentiable functién: I — R is convex oni iff
R" (t) > 0forallt €l. O
We consider the—logarithmic mean of two positive numbers given by
a if b=a,
Ly(a,b) = L gptl 75
wrnooa " er

andp € R\ {-1,0}.
The following proposition holds (see also [4]).
Proposition 2.4. Let¢ : (0,00) — R be a differentiable mapping.
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(i) Form € R, the functionp € L ((0,00),m, (-)") withp € (—00,0) U (1, c0) iff

(2.8) mp (z —y) [L221 (z,y) — P '] < o (2) — o (y) — & (y) (z — )

forall z,y € (0,00).
(it) For M € R, the functionp € U ((0,00) , M, (-)) withp € (—o00,0) U (1, c0) iff

(2.9) ¢ (x) = o (y) — ¢ (y) (x —y) < Mp(x —y) [L22] (2,y) — "]

forall z,y € (0,00).
(i17) For M, m € R with M > m, the functionp € B ((0,00), M, (-)") withp € (—o0,0) U
(1, 00) iff both (2.8) and[(2.9) hold.
The proof follows by Lemmp 2|2 applied for the convex mapping) = t?, p € (—oco, 0) U
(4, 00) and via some elementary computation. We omit the details.
The following corollary is useful in practice.

Corollary 2.5. Let¢ : (0,00) — R be a differentiable function.
(1) For m € R, the functionp is m—quadratic-lower convex (i.e., for = 2) iff

(2.10) m(r—y)" <6 (2) = ¢ (y) — ¢ (y) (@~ )
forall z,y € (0, 00).
(17) For M € R, the functiony is M —quadratic-upper convex iff

(2.11) ¢(x)—dy)—¢ ) (x—y) < M(z—y)’

forall z,y € (0,00).
(i4¢) Form, M € Rwith M > m, the function is (m, M) —quadratic convex if both (2.10)
and (2.11) hold.

The following proposition holds (see also [4]).
Proposition 2.6. Let¢ : (0,00) — R be a twice differentiable function.
(i) Form € R, the functionp € L ((0,00),m, (-)") withp € (—00,0) U (1, c0) iff

(2.12) p(p—1)mtP=2 < ¢"(t) forallt e (0,00).
(i1) For M € R, the functionp € U ((0,00) , M, (-)") withp € (—00,0) U (1, c0) iff
(2.13) " (t) <p(p—1)Mtr—? forall t € (0,00).

(i11) For m, M € R with M > m, the functiong € B((0,00),m, M, (-)") with p €
(—00,0) U (1, c0) iff both (2.12) and[(2.13) hold.
As can be easily seen, the above proposition offers the practical criterion of deciding when
a twice differentiable mapping i6)” —lower or (-)” —upper convex and which weights the
constantn andM are.
The following corollary is useful in practice.

Corollary 2.7. Assume that the mapping: (a,b) C R — R is twice differentiable.
() If i?fb) ¢" (t) = k > —oo, theng is £—quadratic lower convex ofu, b) ;
te(a,

(1) If tS}lIZ) ¢" (t) = K < oo, theng is & —quadratic upper convex ofu, b) .
cl(a,
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3. AREVERSE INEQUALITY

We start with the following result which gives another counterpart4dp o f), as did the
Lupag-Beesack-Raric result [1.2).
Theorem 3.1.Let¢ : (o, ) C R — R be a differentiable convex function ¢n, 3), f : F —
(e, B) suchthawo f, f,¢'of,¢'of-f € L. If A: L — Ris an isotonic linear and normalised
functional, then

(3.1) 0 < A(gof)—o(A(S))
< A of - f)—A(f) - A(d o f)
< }lw B) — ¢ ()] (F—a) (if a, 3 are finite).

Proof. As ¢ is differentiable convex ofx, 5), we may write that

(3.2) ¢ () —d(y) > ¢ (y) (v —y), forallz,y € (a, ),
from where we obtain
(3.3) P(A(f) = (o f)(t) = (¢ o f) () (A(f) — f (1))

forallt € E, as, obviouslyA (f) € («, 3).
If we apply to [3.3) the functionall, we may write

¢ (A(f) —Aldof) =2 A(f)-A(d o f)—A(dof-f),
which is clearly equivalent to the first inequality [n (8.1).

It is well known that the following Griss inequality for isotonic linear and normalised func-
tionals holds (see [1])

(3.4) |A(hk) = A(h) A(F)] < - (M —m) (N —n),

1
4
provided thath, k € L, hk € Land—oco < m < h(t) < M <o0,—co<n < k(t) <N <
oo, forallt € F.

Taking into account that for finite,3 we havea < f(t) <  with ¢’ being monotonic on
(o, B), we havey’ (o) < ¢’ o f < ¢ (/3), and then by the Gruss inequality, we may state that

Ao f )= A AW o)< 116 (5) ¢ ()] (5 )
and the theorem is completely proved. O

The following corollary holds.
Corollary 3.2. Let¢ : [a, b Cfg R — R be a differentiable convex function dnlif o, €1,
¢, ¢ -eg € L(eg(x) =uz,2 € [a,b])and A : L — R is an isotonic linear and normalised
functional, then:

(3.5) 0 < A(¢) —¢(Aler))
< A o) = Ale) - A(9)
< 100) -0 @] 6-a).

There are some particular cases which can naturally be considered.

(1) Let¢(z) = lnz, z > 0. If Inf, f, % € LandA : L — R is an isotonic linear and
normalised functional, then:

(3.6) OS] - Al < A(NA(F) -1
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provided thatf (¢) > Oforallt € EandA(f) > 0.
If 0 <m < f(t) <M < oo,t € E, then, by the second part ¢f (B.1) we have:

(3.7) A(f)A N i< (M —m)’ (which is a known result)
' f - 4dmM '
Note that the inequality (3.6) is equivalent to

< spriny <o 404 (5) -1

(2) Letp () =exp (z),z € R. Ifexp (f), f, f-exp(f) € LandA : L — R is an isotonic
linear and normalised functional, then

(3.9) 0 < Afexp(f)] —exp[A(f)]

(3.8)

< Alfexp(f)] = A(f) exp[A(f)]
< i[exp(]\/[)—exp(m)] (M—m) (f m<f<MonE).

4. A FURTHER RESULT FOR m — W—CONVEX AND M — V—CONVEX FUNCTIONS

In [4], S.S. Dragomir proved the following inequality of Jessen’s typerior W—convex
andM — ¥—convex functions.

Theorem4.1.Let¥ : ] C R — R be a convex functionanfl: £ — I suchthatVo f, f € L
and A : L — R be an isotonic linear and normalised functional.

(i) fp e L(I,m,V)and¢o f € L, then we have the inequality

(4.1) m[AWo f) =V(A(f)] <A(pof)—d(A(f)).
(i) f g eU (I, M,V)and¢ o f € L, then we have the inequality
(4.2) A(pof) = (A(f)) S M[A(To f) =T (A(f))].

(i4¢) If ¢ € B(I,m,M,¥)and¢o f € L, then both[(4]1) and (4.2) hold.
The following corollary is useful in practice.
Corollary 4.2. LetV¥ : I C R — R be a twice differentiable convex function brf E— 1T
suchthatl o f, f € LandA : L — R be an isotonic linear and normalised functional.
(1) If ¢ : I — Ris twice differentiable and” (t) > mW” (¢), ¢ ei (wherem is a given real
number), ther| (4]1) holds, provided that f € L. .
(17) If ¢ : I — R is twice differentiable an@d” (t) < MV” (t), t €l (where M is a given
real number), theri (4]2) holds, provided that f € L. .
(zii) If ¢ : I — R is twice differentiable aneh V" (t) < ¢ (t) < MY” (), t €l, then both
(4.7) and[(4.2) hold, providedo f € L.
In [5], S.S. Dragomir obtained the following result of Lupas-BeesaataRetype form —
¥ —convex andV/ — ¥—convex functions.
Theorem 4.3.LetV : o, 5] C R — R be a convex function anfl: I — [«, 5] suchthatVo f,
f e LandA: L — Ris an isotonic linear and normalised functional.

(1)) Ifpe L(I,m,V)and¢ o f € L, then we have the inequality

(43) m ﬁ%‘g)\p (o) + %xv (6) — A(To f)
< AWy )+ 22 5 Ao
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() fpeU(I,M,V)and¢o f € L, then
B—Af) A(f) —a

(4.4) 6_—&(%5(04)4' 3—a ¢(B) — A(pof)
<v |2 D w )+ 220 (g - awe ).

(i6¢) If ¢ € B(I,m,M,¥)and¢o f € L, then both[(43) and (4.4) hold.
The following corollary is useful in practice.

Corollary 4.4. LetV¥ : I C R — R be a twice differentiable convex function Brf B =1
suchthatv o f, f € LandA : L — R is an isotonic linear and normalised functional.
(1) If ¢ : I — Ris twice differentiableg o f € L and¢” (t) > m¥” (¢),t ei (wherem is
a given real number), then (4.3) holds. .
(73) If ¢ : I — Ris twice differentiableg o f € L and¢” (t) < MY (t),t €l (wherem is
a given real number), thef (4.4) holds.
(iid) If mW” (t) < ¢ (t) < MU (t), t €l, then both[(4.B) and (4]4) hold.
We now prove the following new result.

Theorem 4.5.LetV : I C R — R be differentiable convex function arfd: £ — I such that
Vof,Wof,VWof-f, fe LandA: L — R be anisotonic linear and normalised functional.

(1) If ¢ is differentiablegp € L (f, m, \IJ) andg¢o f,¢' o f,¢' o f- f € L, then we have the
inequality
(4.5) m[A(W o f-f)+U(A(f)—A(f) - A(V'of)—A(Vof)
<A@ of - fl+o(A(f) —A(f) - A(d o f)— Ao f).
(ii) If ¢ is differentiablegp € U (f, M,V)andgo f, ¢ o f, ¢ o f- f € L, then we have the
inequality
(4.6) A(¢'of-f)+o(A(f))—A(f)-A(d o f)—A(dof)
SMAWof-fl+V(A(f)—A(f)- AW o f)—A(Vo f)].
(iii) If ¢ is differentiableg € B (f, m, M, V) andgo f,¢'o f,¢'o f- f € L, then both)
and (4.6) hold.
Proof. The proof is as follows.
(1) As ¢ € L(I,m,¥), theny — mV is convex and we can apply the first part of the
inequality [3.1) forp — m¥ getting
(4.7) Al(¢—m¥)o f]— (¢ —m¥) (A(f))
<Al(@—mP)of-fl=A(f)A((¢—m¥)of).
However,
All¢—m¥)o f] = A(gof)—mA(Tof),
(0 —m¥) (A(f)) = ¢(A(f)) —m¥(A(f)),
Al(@—mP)of-fl = A(@of - f)=mA(¥of-f)
and
A((p—mW) o f)=A(¢' o f) =mA (¥ o f)

and then, by[(4]7), we deduce the desired inequélity (4.5).
(7i) Goes likewise and we omit the details.
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(7i7) Follows by(z) and(i).
0
The following corollary is useful in practice,

Corollary 4.6. LetV¥ : I C R — R be a twice differentiable convex function Bry‘ B — 1
suchthatl o f,¥'o f,¥' o f-f,f € LandA : L — R be an isotonic linear and normalised
functional.
(i) If ¢ : I — Ris twice differentiableg o f, ¢’ o f, ¢’ o f - f € L and¢” (t) > mW¥” (¢),
t i, (wherem is a given real number), then the inequaL4.5) holds.
(77) With the same assumptions, bupif(t) < MY” (¢), t €l, (where M is a given real
number), then the inequality (4.6) holds.
(idd) If mW” (t) < ¢ (t) < MP” (t), t €l, then both[(4.5) and (4]6) hold.
Some particular important cases of the above corollary are embodied in the following propo-
sition.
Proposition 4.7. Assume that the mapping: / C R — R is twice differentiable o
() If inlf ¢" (t) = k > —o0, then we have the inequality
te

(@8) Sk[A(7) ~ AU
SA(@of-f)+o(A(f) —A(f)-A(d o f)—Apof),
provided thatp o f, ¢’ o f, ¢’ o f - f, % € L.

(i) If sup ¢” (t) = K < oo, then we have the inequality
tel

(4.9) A6/ o f-f)+0(A(f) —A()- A(¢0 )= A(60 )
< SEA(P) ~ AP

(idi) If —o0 < k < ¢ (t) < K < oo, t €, then both[(4.B) and (4]9) hold.
The proof follows by Corollary 4]6 applied far (t) = 5t* andm = k, M = K.
Another result is the following one.

Proposition 4.8. Assume that the mappirg: I C (0, 00) — R is twice differentiable o Let
p € (—00,0) U (1,00) and defingy, : I — R, g, (t) = ¢" () t*7P.
(¢) Ifinf g, (t) = v > —o0, then we have the inequality
tel

(4.10)

[(p— D [A) = [ANP) = pAN) [A(PY) = (AN ]

SA(@of - fl+o(A(f) —A(f)-A(g o f)—A(dof),

provided thatp o f, ¢ o f, ¢’ o f - f, fP, fP~L € L.
(i) If sup g, (t) = I' < oo, then we have the inequality
tel

(4.11) Ao f- N+ o(A(f) —A(f)-A(d o f) = Aldo f)
< oo [P DA —[ADF =pAN [A ) ~ AN
(iti) If —00 <y < g, (t) < T < oo, t €, then both[(4.10) and (4.11) hold.

Proof. The proof is as follows.

y
pp—1)
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(¢) We have for the auxiliary mapping, (t) = ¢ (t) — }ﬁtp that

B = ¢ () — P2 = (12 (1) — )
= (g (1) =) 2 0.

That is, h, is convex or, equivalentlyy € £ (I, ZTI;—LU’ (~)p>. Applying CoroIIar,
we get

T [pA(f) + AN —pAF) AP = A(P)]

pp—1)
SA(@of-f)+o(A(f) —A(f)-A(d o f) = A(pof),
which is clearly equivalent t¢ (4.10).
(7i) Goes similarly.
(77i) Follows by(i) and(i).

O

The following proposition also holds.

Proposition 4.9. Assume that the mapping: I C (0,00) — R is twice differentiable on.
Definel (t) = t2¢" (t),t € I.

(i) If infl (t) = s > —oo, then we have the inequality
tel

(4.12) s {A () A (1) 1 (Wm[A(f)] — Al ()

S
<A@ of-f)+o(Af) —A(f)-A( o f)—Al(dof),

provided thatp o f,¢~ o f,¢o o f - f, %,lnf € LandA(f) > 0.
(i) I supl(t) = S < oo, then we have the inequality
tel
(4.13) A(¢'of - )+ (A(f) —A(f) A of)—A(dof)
<s|40A(F) ~1- A - Al )|

(idi) If —0o < s < (t) < S < oo for t €l, then both[(4.1R) and (4.13) hold.

Proof. The proof is as follows.
(7) Define the auxiliary functior ()

¢ (t) + slnt. Then

" /! 1 /!
W1 = ¢ (1) = = = 5 (¢ ()12 = 5) 2 0
which shows that is convex, or, equivalently) € £ (I,s,—1In(-)). Applying Corol-
lary[4.6, we may write

|

s|—A@M) —mA(f)+A(f) A (%) +A(In <f>>]

SA(@of [+ o(Af) —A(f)-A(¢' o f)—A(eof),
which is clearly equivalent t¢ (4.1.2).
(17) Goes similarly.
(77i) Follows by(i) and(i).
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Finally, the following result also holds.
Proposition 4.10. Assume that the mapping: I C (0,00) — R is twice differentiable on.
Definel (t) = t¢" (t),t € 1.

(i) If inf I (t) = § > —oo, then we have the inequality
tel

(4.14) 6A(f) [In[A(f)] = A(n(f))]
SA(@of [+ o(Af) —A(f) - A(¢'of)—A(eof),

provided thatp o f,¢ro f.¢ro f- f.Inf, f € Land A (f) > 0.

(17) If squ(t) = A < oo, then we have the inequality
tel

(4.15) A(¢' o f-f)+o(A(f) —A(f)-A(d' o f) = Ao f)
< AA(S) In[A(f)] = An(f))]-

(iii) If —oo < 6 < I (t) < A < oo for ¢ €, then both|(4.14) and (4.15) hold.

Proof. The proof is as follows.
(i) Define the auxiliary mapping (t) = ¢ (t) — dtlnt, t € I. Then
) 1 17
" Y/ I Y _ _ = B >
W) = ¢ (1) = 5 =5 [0 ()t =] = < [T(H) = 6] =0
which shows that is convex or equivalently) € £ (7,6, (-) In(-)). Applying Corollary

4.9, we get
SlA[(Inf+1) [+ A(f)mA(f) = A(f) A(ln f+1) = A(f In f)]
SA@ o f- )+ o(A) —A(f)-A(d o f) = Ao f)

which is equivalent with[(4.14).
(17) Goes similarly.
(77i) Follows by(i) and ().

5. SOME APPLICATIONS FOR BULLEN’SINEQUALITY

The following inequality is well known in the literature as Bullen’s inequality (see for exam-
ple [7, p. 10])

(5.1) ﬁ/@bgb(t)dtg%V(a);‘ﬁ(buqb(a;b)},

provided that : [a,b] — R is a convex function oifz, b]. In other words, ag (5.1) is equivalent
to:

Lo at B\ _o@ro®) 1 [
5.2) osm/a¢<t>dt—¢(2>s = KL

we can conclude that in the Hermite-Hadamard inequality

o0 M (1)

the integral mean'- fab ¢ (t) dt is closer top (“2) than to—¢(“);¢(b>,
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Using some of the results pointed out in the previous sections, we may upper and lower bound
theBullen difference:

B =5 [ M (0] - Lo

2 2

(which is positive for convex functions) for different classes of twice differentiable functions
Now, if we assume thatl (f f f(t)dt, thenforf =e,e(z) = x,z € [a,b], W
have, for a differentiable funct|o¢ﬁ that

A(@ o f-[)+o(A(f) —A(f)-A(¢' o f) = A(pof)
1 b a+b
:b_a/axgb(:c)dx—i—qb( : )

St [ vwa- i [ewe
_ﬁ[w)()—m /¢ dx]+¢<a+b>

_a;b.(ﬁ(bl))—a b—a/¢
SN -y ey
= 2B (¢;a,b).

a) Assume thad : [a,b] C R — R is a twice differentiable function satisfying the property
that—oo < k < ¢ (t) < K < co. Then by Propositioh 4,7, we may state the inequality

i(b—a)szB((b;a,b)S4—18(b—a)2K.

(5.4) e

This follows by Propositiofi 4]7 on taking into account that

2

1, 1t (b—a)?
maxd.f—(m/a.fdl')— 12 .

b) Now, assume that the twice differentiable function [a,b] C (0,00) — R satisfies the
property that-oco < v < t#77¢" (t) < T < oo, t € (a,b), p € (—0,0) U (1,00). Then by
Propositiorj 4.8 and taking into account that

A(f?) = (A = bia/:f”pdm_(bia/abxdxy

= Lg (aab) — A” (aa b)a

and

A(f ) = (AP =L (a,b) — A7 (a, b)),

J. Inequal. Pure and Appl. Math2(3) Art. 36, 2001 http://jipam.vu.edu.au/


http://jipam.vu.edu.au/

12 S.S. RAGOMIR

we may state the inequality

(5.5)
Y P(a.b) — AP (a _ a P10 ) — AP (g
Y P [(p— 1) [Z2 (a,b) — A7 (a,b)] — pA (a,b) [L27} (a,b) — AP~ (a,b)]]
< B(¢;a,b)
< ooy [ D L @b = 4 (@ h)] = pA(eb) [L75 a,0) = A7 (@ b)]].

c) Assume that the twice differentiable function [a,b] C (0,00) — R satisfies the property
that—oo < s < 12¢" (t) < S < oo, t € (a,b), then by Propositioh 4.9, and taking into account
that

A(f)A(f_l)—1—1n[A(f)]+Aln(f) = ?EZ’zi—l—lnA(a,b)—FI(a,b)
B I(a,b) A(a,b) — L(a,b)
‘1“[A<a,b>'“p( L(a,b) )1
we get the inequality
s I (a,b) Al(a,b) — L(a,b)
I R S |
< B(¢;a,b)
S I(a,b) A(a,b) — L(a,b)
SEI“[A@NXP( L (a,b) )}

d) Finally, if ¢ satisfies the conditiorco < ¢ < t¢” (t) < A < oo, then by Propositioh 4.10,
we may state the inequality

Ala,b)
I (a,b)

(5.7) dA (a,b)In {

] < B(¢:a,b) < AA(a,b)In [?fﬁfi] '
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