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1. I NTRODUCTION

Let L be a linear class of real-valued functionsg : E → R having the properties

(L1) f, g ∈ L imply (αf + βg) ∈ L for all α, β ∈ R;
(L2) 1 ∈ L, i.e., if f0 (t) = 1, t ∈ E thenf0 ∈ L.

An isotonic linear functionalA : L → R is a functional satisfying

(A1) A (αf + βg) = αA (f) + βA (g) for all f, g ∈ L andα, β ∈ R.
(A2) If f ∈ L andf ≥ 0, thenA (f) ≥ 0.

The mappingA is said to benormalised if
(A3) A (1) = 1.

Isotonic, that is, order-preserving, linear functionals are natural objects in analysis which
enjoy a number of convenient properties. Thus, they provide, for example, Jessen’s inequality,
which is a functional form of Jensen’s inequality (see [2] and [10]).

We recall Jessen’s inequality (see also [8]).
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2 S.S. DRAGOMIR

Theorem 1.1.Letφ : I ⊆ R → R (I is an interval), be a convex function andf : E → I such
thatφ ◦ f , f ∈ L. If A : L → R is an isotonic linear and normalised functional, then

(1.1) φ (A (f)) ≤ A (φ ◦ f) .

A counterpart of this result was proved by Beesack and Pečaríc in [2] for compact intervals
I = [α, β].
Theorem 1.2.Letφ : [α, β] ⊂ R → R be a convex function andf : E → [α, β] such thatφ◦f ,
f ∈ L. If A : L → R is an isotonic linear and normalised functional, then

(1.2) A (φ ◦ f) ≤ β − A (f)

β − α
φ (α) +

A (f)− α

β − α
φ (β) .

Remark 1.3. Note that (1.2) is a generalisation of the inequality

(1.3) A (φ) ≤ b− A (e1)

b− a
φ (a) +

A (e1)− a

b− a
φ (b)

due to Lupaş [9] (see for example [2, Theorem A]), which assumedE = [a, b], L satisfies (L1),
(L2), A : L → R satisfies (A1), (A2),A (1) = 1, φ is convex onE andφ ∈ L, e1 ∈ L, where
e1 (x) = x, x ∈ [a, b].

The following inequality is well known in the literature as the Hermite-Hadamard inequality

(1.4) ϕ

(
a + b

2

)
≤ 1

b− a

∫ b

a

ϕ (t) dt ≤ ϕ (a) + ϕ (b)

2
,

provided thatϕ : [a, b] → R is a convex function.
Using Theorem 1.1 and Theorem 1.2, we may state the following generalisation of the

Hermite-Hadamard inequality for isotonic linear functionals ([11] and [12]).
Theorem 1.4.Letφ : [a, b] ⊂ R → R be a convex function ande : E → [a, b] with e, φ◦e ∈ L.
If A → R is an isotonic linear and normalised functional, withA (e) = a+b

2
, then

(1.5) ϕ

(
a + b

2

)
≤ A (φ ◦ e) ≤ ϕ (a) + ϕ (b)

2
.

For other results concerning convex functions and isotonic linear functionals, see [3] – [6],
[12] – [14] and the recent monograph [7].

2. THE CONCEPTS OF m−Ψ−CONVEX AND M −Ψ−CONVEX FUNCTIONS

Assume that the mappingΨ : I ⊆ R → R (I is an interval) is convex onI andm ∈ R. We
shall say that the mappingφ : I → R is m−Ψ− lower convexif φ−mΨ is a convex mapping
on I (see [4]). We may introduce the class of functions

(2.1) L (I, m, Ψ) := {φ : I → R|φ−mΨ is convex onI} .

Similarly, for M ∈ R andΨ as above, we can introduce the class ofM − Ψ−upper convex
functions by (see [4])

(2.2) U (I,M, Ψ) := {φ : I → R|MΨ− φ is convex onI} .

The intersection of these two classes will be called the class of(m, M)− Ψ−convex functions
and will be denoted by

(2.3) B (I, m,M, Ψ) := L (I, m, Ψ) ∩ U (I,M, Ψ) .

Remark 2.1. If Ψ ∈ B (I, m,M, Ψ), thenφ−mΨ andMΨ−φ are convex and then(φ−mΨ)+
(MΨ− φ) is also convex which shows that(M −m) Ψ is convex, implying thatM ≥ m (as
Ψ is assumed not to be the trivial convex functionΨ (t) = 0, t ∈ I).

J. Inequal. Pure and Appl. Math., 2(3) Art. 36, 2001 http://jipam.vu.edu.au/

http://jipam.vu.edu.au/


JESSEN’ S INEQUALITY FOR ISOTONICL INEAR FUNCTIONALS 3

The above concepts may be introduced in the general case of a convex subset in a real linear
space, but we do not consider this extension here.

In [6], S.S. Dragomir and N.M. Ionescu introduced the concept ofg−convex dominated
mappings, for a mappingf : I → R. We recall this, by saying, for a given convex functiong :
I → R, the functionf : I → R is g−convex dominated iffg+f andg−f are convex mappings
on I. In [6], the authors pointed out a number of inequalities for convex dominated functions
related to Jensen’s, Fuchs’, Pečaríc’s, Barlow-Marshall-Proschan and Vasić-Mijalković results,
etc.

We observe that the concept ofg−convex dominated functions can be obtained as a particular
case from(m, M)−Ψ−convex functions by choosingm = −1, M = 1 andΨ = g.

The following lemma holds (see also [4]).

Lemma 2.2. LetΨ, φ : I ⊆ R → R be differentiable functions on̊I andΨ is a convex function
on I̊.

(i) For m ∈ R, the functionφ ∈ L
(
I̊, m, Ψ

)
iff

(2.4) m [Ψ (x)−Ψ (y)−Ψ′ (y) (x− y)] ≤ φ (x)− φ (y)− φ′ (y) (x− y)

for all x, y ∈I̊.
(ii) For M ∈ R, the functionφ ∈ U

(
I̊, M, Ψ

)
iff

(2.5) φ (x)− φ (y)− φ′ (y) (x− y) ≤ M [Ψ (x)−Ψ (y)−Ψ′ (y) (x− y)]

for all x, y ∈I̊.
(iii) For M, m ∈ R with M ≥ m, the functionφ ∈ B

(
I̊, m, M, Ψ

)
iff both (2.4) and (2.5)

hold.

Proof. Follows by the fact that a differentiable mappingh : I → R is convex on̊I iff h (x) −
h (y) ≥ h′ (y) (x− y) for all x, y ∈I̊. �

Another elementary fact for twice differentiable functions also holds (see also [4]).

Lemma 2.3. LetΨ, φ : I ⊆ R → R be twice differentiable on̊I andΨ is convex on̊I.

(i) For m ∈ R, the functionφ ∈ L
(
I̊, m, Ψ

)
iff

(2.6) mΨ′′ (t) ≤ φ′′ (t) for all t ∈ I̊.

(ii) For M ∈ R, the functionφ ∈ U
(
I̊, M, Ψ

)
iff

(2.7) φ′′ (t) ≤ MΨ′′ (t) for all t ∈ I̊.

(iii) For M, m ∈ R with M ≥ m, the functionφ ∈ B
(
I̊, m, M, Ψ

)
iff both (2.6) and (2.7)

hold.

Proof. Follows by the fact that a twice differentiable functionh : I → R is convex on̊I iff
h′′ (t) ≥ 0 for all t ∈I̊. �

We consider thep−logarithmic mean of two positive numbers given by

Lp (a, b) :=


a if b = a,

[
bp+1 − ap+1

(p + 1) (b− a)

] 1
p

if a 6= b

andp ∈ R� {−1, 0}.
The following proposition holds (see also [4]).

Proposition 2.4. Letφ : (0,∞) → R be a differentiable mapping.
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4 S.S. DRAGOMIR

(i) For m ∈ R, the functionφ ∈ L ((0,∞) , m, (·)p) with p ∈ (−∞, 0) ∪ (1,∞) iff

(2.8) mp (x− y)
[
Lp−1

p−1 (x, y)− yp−1
]
≤ φ (x)− φ (y)− φ′ (y) (x− y)

for all x, y ∈ (0,∞) .
(ii) For M ∈ R, the functionφ ∈ U ((0,∞) , M, (·)p) with p ∈ (−∞, 0) ∪ (1,∞) iff

(2.9) φ (x)− φ (y)− φ′ (y) (x− y) ≤ Mp (x− y)
[
Lp−1

p−1 (x, y)− yp−1
]

for all x, y ∈ (0,∞) .
(iii) For M, m ∈ R with M ≥ m, the functionφ ∈ B ((0,∞) , M, (·)p) with p ∈ (−∞, 0) ∪

(1,∞) iff both (2.8) and (2.9) hold.

The proof follows by Lemma 2.2 applied for the convex mappingΨ (t) = tp, p ∈ (−∞, 0)∪
(4,∞) and via some elementary computation. We omit the details.

The following corollary is useful in practice.

Corollary 2.5. Letφ : (0,∞) → R be a differentiable function.

(i) For m ∈ R, the functionφ is m−quadratic-lower convex (i.e., forp = 2) iff

(2.10) m (x− y)2 ≤ φ (x)− φ (y)− φ′ (y) (x− y)

for all x, y ∈ (0,∞).
(ii) For M ∈ R, the functionφ is M−quadratic-upper convex iff

(2.11) φ (x)− φ (y)− φ′ (y) (x− y) ≤ M (x− y)2

for all x, y ∈ (0,∞).
(iii) For m, M ∈ R with M ≥ m, the functionφ is (m, M)−quadratic convex if both (2.10)

and (2.11) hold.

The following proposition holds (see also [4]).

Proposition 2.6. Letφ : (0,∞) → R be a twice differentiable function.

(i) For m ∈ R, the functionφ ∈ L ((0,∞) , m, (·)p) with p ∈ (−∞, 0) ∪ (1,∞) iff

(2.12) p (p− 1) mtp−2 ≤ φ′′ (t) for all t ∈ (0,∞) .

(ii) For M ∈ R, the functionφ ∈ U ((0,∞) , M, (·)p) with p ∈ (−∞, 0) ∪ (1,∞) iff

(2.13) φ′′ (t) ≤ p (p− 1) Mtp−2 for all t ∈ (0,∞) .

(iii) For m, M ∈ R with M ≥ m, the functionφ ∈ B ((0,∞) , m, M, (·)p) with p ∈
(−∞, 0) ∪ (1,∞) iff both (2.12) and (2.13) hold.

As can be easily seen, the above proposition offers the practical criterion of deciding when
a twice differentiable mapping is(·)p−lower or (·)p−upper convex and which weights the
constantm andM are.

The following corollary is useful in practice.

Corollary 2.7. Assume that the mappingφ : (a, b) ⊆ R → R is twice differentiable.

(i) If inf
t∈(a,b)

φ′′ (t) = k > −∞, thenφ is k
2
−quadratic lower convex on(a, b) ;

(ii) If sup
t∈(a,b)

φ′′ (t) = K < ∞, thenφ is K
2
−quadratic upper convex on(a, b) .
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JESSEN’ S INEQUALITY FOR ISOTONICL INEAR FUNCTIONALS 5

3. A REVERSE I NEQUALITY

We start with the following result which gives another counterpart forA (φ ◦ f), as did the
Lupaş-Beesack-Pečaríc result (1.2).
Theorem 3.1. Letφ : (α, β) ⊆ R → R be a differentiable convex function on(α, β), f : E →
(α, β) such thatφ◦f , f , φ′◦f , φ′◦f ·f ∈ L. If A : L → R is an isotonic linear and normalised
functional, then

0 ≤ A (φ ◦ f)− φ (A (f))(3.1)

≤ A (φ′ ◦ f · f)− A (f) · A (φ′ ◦ f)

≤ 1

4
[φ′ (β)− φ′ (α)] (β − α) (if α, β are finite).

Proof. As φ is differentiable convex on(α, β), we may write that

(3.2) φ (x)− φ (y) ≥ φ′ (y) (x− y) , for all x, y ∈ (α, β) ,

from where we obtain

(3.3) φ (A (f))− (φ ◦ f) (t) ≥ (φ′ ◦ f) (t) (A (f)− f (t))

for all t ∈ E, as, obviously,A (f) ∈ (α, β).
If we apply to (3.3) the functionalA, we may write

φ (A (f))− A (φ ◦ f) ≥ A (f) · A (φ′ ◦ f)− A (φ′ ◦ f · f) ,

which is clearly equivalent to the first inequality in (3.1).
It is well known that the following Grüss inequality for isotonic linear and normalised func-

tionals holds (see [1])

(3.4) |A (hk)− A (h) A (k)| ≤ 1

4
(M −m) (N − n) ,

provided thath, k ∈ L, hk ∈ L and−∞ < m ≤ h (t) ≤ M < ∞, −∞ < n ≤ k (t) ≤ N <
∞, for all t ∈ E.

Taking into account that for finiteα,β we haveα < f (t) < β with φ′ being monotonic on
(α, β), we haveφ′ (α) ≤ φ′ ◦ f ≤ φ′ (β), and then by the Grüss inequality, we may state that

A (φ′ ◦ f · f)− A (f) · A (φ′ ◦ f) ≤ 1

4
[φ′ (β)− φ′ (α)] (β − α)

and the theorem is completely proved. �

The following corollary holds.

Corollary 3.2. Let φ : [a, b] ⊂I̊⊆ R → R be a differentiable convex function onI̊. If φ, e1,
φ′, φ′ · e1 ∈ L (e1 (x) = x, x ∈ [a, b]) andA : L → R is an isotonic linear and normalised
functional, then:

0 ≤ A (φ)− φ (A (e1))(3.5)

≤ A (φ′ · e1)− A (e1) · A (φ′)

≤ 1

4
[φ′ (b)− φ′ (a)] (b− a) .

There are some particular cases which can naturally be considered.
(1) Let φ (x) = ln x, x > 0. If ln f , f , 1

f
∈ L andA : L → R is an isotonic linear and

normalised functional, then:

(3.6) 0 ≤ ln [A (f)]− A [ln (f)] ≤ A (f) A

(
1

f

)
− 1,
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6 S.S. DRAGOMIR

provided thatf (t) > 0 for all t ∈ E andA (f) > 0.
If 0 < m ≤ f (t) ≤ M < ∞, t ∈ E, then, by the second part of (3.1) we have:

(3.7) A (f) A

(
1

f

)
− 1 ≤ (M −m)2

4mM
(which is a known result).

Note that the inequality (3.6) is equivalent to

(3.8) 1 ≤ A (f)

exp [A [ln (f)]]
≤ exp

[
A (f) A

(
1

f

)
− 1

]
.

(2) Letφ (x) = exp (x), x ∈ R. If exp (f), f , f · exp (f) ∈ L andA : L → R is an isotonic
linear and normalised functional, then

0 ≤ A [exp (f)]− exp [A (f)](3.9)

≤ A [f exp (f)]− A (f) exp [A (f)]

≤ 1

4
[exp (M)− exp (m)] (M −m) (if m ≤ f ≤ M onE).

4. A FURTHER RESULT FOR m−Ψ−CONVEX AND M −Ψ−CONVEX FUNCTIONS

In [4], S.S. Dragomir proved the following inequality of Jessen’s type form − Ψ−convex
andM −Ψ−convex functions.

Theorem 4.1.LetΨ : I ⊆ R → R be a convex function andf : E → I such thatΨ ◦ f , f ∈ L
andA : L → R be an isotonic linear and normalised functional.

(i) If φ ∈ L (I, m, Ψ) andφ ◦ f ∈ L, then we have the inequality

(4.1) m [A (Ψ ◦ f)−Ψ (A (f))] ≤ A (φ ◦ f)− φ (A (f)) .

(ii) If φ ∈ U (I, M, Ψ) andφ ◦ f ∈ L, then we have the inequality

(4.2) A (φ ◦ f)− φ (A (f)) ≤ M [A (Ψ ◦ f)−Ψ (A (f))] .

(iii) If φ ∈ B (I, m,M, Ψ) andφ ◦ f ∈ L, then both (4.1) and (4.2) hold.

The following corollary is useful in practice.

Corollary 4.2. Let Ψ : I ⊆ R → R be a twice differentiable convex function onI̊, f : E → I
such thatΨ ◦ f , f ∈ L andA : L → R be an isotonic linear and normalised functional.

(i) If φ : I → R is twice differentiable andφ′′ (t) ≥ mΨ′′ (t), t ∈I̊ (wherem is a given real
number), then (4.1) holds, provided thatφ ◦ f ∈ L.

(ii) If φ : I → R is twice differentiable andφ′′ (t) ≤ MΨ′′ (t), t ∈I̊ (whereM is a given
real number), then (4.2) holds, provided thatφ ◦ f ∈ L.

(iii) If φ : I → R is twice differentiable andmΨ′′ (t) ≤ φ′′ (t) ≤ MΨ′′ (t), t ∈I̊, then both
(4.1) and (4.2) hold, providedφ ◦ f ∈ L.

In [5], S.S. Dragomir obtained the following result of Lupaş-Beesack-Pečaríc type form −
Ψ−convex andM −Ψ−convex functions.

Theorem 4.3.LetΨ : [α, β] ⊂ R → R be a convex function andf : I → [α, β] such thatΨ◦f ,
f ∈ L andA : L → R is an isotonic linear and normalised functional.

(i) If φ ∈ L (I,m, Ψ) andφ ◦ f ∈ L, then we have the inequality

(4.3) m

[
β − A (f)

β − α
Ψ (α) +

A (f)− α

β − α
Ψ (β)− A (Ψ ◦ f)

]
≤ β − A (f)

β − α
φ (α) +

A (f)− α

β − α
φ (β)− A (φ ◦ f) .

J. Inequal. Pure and Appl. Math., 2(3) Art. 36, 2001 http://jipam.vu.edu.au/

http://jipam.vu.edu.au/


JESSEN’ S INEQUALITY FOR ISOTONICL INEAR FUNCTIONALS 7

(ii) If φ ∈ U (I, M, Ψ) andφ ◦ f ∈ L, then

(4.4)
β − A (f)

β − α
φ (α) +

A (f)− α

β − α
φ (β)− A (φ ◦ f)

≤ M

[
β − A (f)

β − α
Ψ (α) +

A (f)− α

β − α
Ψ (β)− A (Ψ ◦ f)

]
.

(iii) If φ ∈ B (I,m,M, Ψ) andφ ◦ f ∈ L, then both (4.3) and (4.4) hold.

The following corollary is useful in practice.

Corollary 4.4. Let Ψ : I ⊆ R → R be a twice differentiable convex function onI̊, f : E → I
such thatΨ ◦ f , f ∈ L andA : L → R is an isotonic linear and normalised functional.

(i) If φ : I → R is twice differentiable,φ ◦ f ∈ L andφ′′ (t) ≥ mΨ′′ (t), t ∈I̊ (wherem is
a given real number), then (4.3) holds.

(ii) If φ : I → R is twice differentiable,φ ◦ f ∈ L andφ′′ (t) ≤ MΨ′′ (t), t ∈I̊ (wherem is
a given real number), then (4.4) holds.

(iii) If mΨ′′ (t) ≤ φ′′ (t) ≤ MΨ′′ (t), t ∈I̊, then both (4.3) and (4.4) hold.

We now prove the following new result.
Theorem 4.5. Let Ψ : I ⊆ R → R be differentiable convex function andf : E → I such that
Ψ ◦ f , Ψ′ ◦ f , Ψ′ ◦ f · f , f ∈ L andA : L → R be an isotonic linear and normalised functional.

(i) If φ is differentiable,φ ∈ L
(
I̊, m, Ψ

)
andφ ◦ f , φ′ ◦ f , φ′ ◦ f · f ∈ L, then we have the

inequality

(4.5) m [A (Ψ′ ◦ f · f) + Ψ (A (f))− A (f) · A (Ψ′ ◦ f)− A (Ψ ◦ f)]

≤ A (φ′ ◦ f · f) + φ (A (f))− A (f) · A (φ′ ◦ f)− A (φ ◦ f) .

(ii) If φ is differentiable,φ ∈ U
(
I̊, M, Ψ

)
andφ ◦ f , φ′ ◦ f , φ′ ◦ f · f ∈ L, then we have the

inequality

(4.6) A (φ′ ◦ f · f) + φ (A (f))− A (f) · A (φ′ ◦ f)− A (φ ◦ f)

≤ M [A (Ψ′ ◦ f · f) + Ψ (A (f))− A (f) · A (Ψ′ ◦ f)− A (Ψ ◦ f)] .

(iii) If φ is differentiable,φ ∈ B
(
I̊, m, M, Ψ

)
andφ◦f , φ′ ◦f , φ′ ◦f ·f ∈ L, then both (4.5)

and (4.6) hold.

Proof. The proof is as follows.
(i) As φ ∈ L (I, m, Ψ), thenφ − mΨ is convex and we can apply the first part of the

inequality (3.1) forφ−mΨ getting

(4.7) A [(φ−mΨ) ◦ f ]− (φ−mΨ) (A (f))

≤ A
[
(φ−mΨ)′ ◦ f · f

]
− A (f) A

(
(φ−mΨ)′ ◦ f

)
.

However,

A [(φ−mΨ) ◦ f ] = A (φ ◦ f)−mA (Ψ ◦ f) ,

(φ−mΨ) (A (f)) = φ (A (f))−mΨ (A (f)) ,

A
[
(φ−mΨ)′ ◦ f · f

]
= A (φ′ ◦ f · f)−mA (Ψ′ ◦ f · f)

and
A

(
(φ−mΨ)′ ◦ f

)
= A (φ′ ◦ f)−mA (Ψ′ ◦ f)

and then, by (4.7), we deduce the desired inequality (4.5).
(ii) Goes likewise and we omit the details.
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8 S.S. DRAGOMIR

(iii) Follows by(i) and(ii).
�

The following corollary is useful in practice,

Corollary 4.6. Let Ψ : I ⊆ R → R be a twice differentiable convex function onI̊, f : E → I
such thatΨ ◦ f , Ψ′ ◦ f , Ψ′ ◦ f · f , f ∈ L andA : L → R be an isotonic linear and normalised
functional.

(i) If φ : I → R is twice differentiable,φ ◦ f , φ′ ◦ f , φ′ ◦ f · f ∈ L andφ′′ (t) ≥ mΨ′′ (t),
t ∈I̊, (wherem is a given real number), then the inequality (4.5) holds.

(ii) With the same assumptions, but ifφ′′ (t) ≤ MΨ′′ (t), t ∈I̊, (whereM is a given real
number), then the inequality (4.6) holds.

(iii) If mΨ′′ (t) ≤ φ′′ (t) ≤ MΨ′′ (t), t ∈I̊, then both (4.5) and (4.6) hold.

Some particular important cases of the above corollary are embodied in the following propo-
sition.
Proposition 4.7. Assume that the mappingφ : I ⊆ R → R is twice differentiable on̊I.

(i) If inf
t∈I̊

φ′′ (t) = k > −∞, then we have the inequality

(4.8)
1

2
k

[
A

(
f 2

)
− [A (f)]2

]
≤ A (φ′ ◦ f · f) + φ (A (f))− A (f) · A (φ′ ◦ f)− A (φ ◦ f) ,

provided thatφ ◦ f , φ′ ◦ f , φ′ ◦ f · f, f2 ∈ L.
(ii) If sup

t∈I̊

φ′′ (t) = K < ∞, then we have the inequality

(4.9) A (φ′ ◦ f · f) + φ (A (f))− A (f) · A (φ′ ◦ f)− A (φ ◦ f)

≤ 1

2
K

[
A

(
f 2

)
− [A (f)]2

]
.

(iii) If −∞ < k ≤ φ′′ (t) ≤ K < ∞, t ∈I̊, then both (4.8) and (4.9) hold.

The proof follows by Corollary 4.6 applied forΨ (t) = 1
2
t2 andm = k, M = K.

Another result is the following one.

Proposition 4.8. Assume that the mappingφ : I ⊆ (0,∞) → R is twice differentiable on̊I. Let
p ∈ (−∞, 0) ∪ (1,∞) and definegp : I → R, gp (t) = φ′′ (t) t2−p.

(i) If inf
t∈I̊

gp (t) = γ > −∞, then we have the inequality

(4.10)
γ

p (p− 1)

[
(p− 1) [A (fp)− [A (f)]p]− pA (f)

[
A

(
fp−1

)
− [A (f)]p−1]]

≤ A (φ′ ◦ f · f) + φ (A (f))− A (f) · A (φ′ ◦ f)− A (φ ◦ f) ,

provided thatφ ◦ f , φ′ ◦ f , φ′ ◦ f · f, fp, fp−1 ∈ L.
(ii) If sup

t∈I̊

gp (t) = Γ < ∞, then we have the inequality

(4.11) A (φ′ ◦ f · f) + φ (A (f))− A (f) · A (φ′ ◦ f)− A (φ ◦ f)

≤ Γ

p (p− 1)

[
(p− 1) [A (fp)− [A (f)]p]− pA (f)

[
A

(
fp−1

)
− [A (f)]p−1]] .

(iii) If −∞ < γ ≤ gp (t) ≤ Γ < ∞, t ∈I̊, then both (4.10) and (4.11) hold.

Proof. The proof is as follows.
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(i) We have for the auxiliary mappinghp (t) = φ (t)− γ
p(p−1)

tp that

h′′p (t) = φ′′ (t)− γtp−2 = tp−2
(
t2−pφ′′ (t)− γ

)
= tp−2 (gp (t)− γ) ≥ 0.

That is,hp is convex or, equivalently,φ ∈ L
(
I, γ

p(p−1)
, (·)p

)
. Applying Corollary 4.6,

we get

γ

p (p− 1)

[
pA (fp) + [A (f)]p − pA (f) A

(
fp−1

)
− A (fp)

]
≤ A (φ′ ◦ f · f) + φ (A (f))− A (f) · A (φ′ ◦ f)− A (φ ◦ f) ,

which is clearly equivalent to (4.10).
(ii) Goes similarly.

(iii) Follows by(i) and(ii).

�

The following proposition also holds.

Proposition 4.9. Assume that the mappingφ : I ⊆ (0,∞) → R is twice differentiable on̊I.
Definel (t) = t2φ′′ (t), t ∈ I.

(i) If inf
t∈I̊

l (t) = s > −∞, then we have the inequality

(4.12) s

[
A (f) A

(
1

f

)
− 1− (ln [A (f)]− A [ln (f)])

]
≤ A (φ′ ◦ f · f) + φ (A (f))− A (f) · A (φ′ ◦ f)− A (φ ◦ f) ,

provided thatφ ◦ f, φ−1 ◦ f, φ−1 ◦ f · f, 1
f
, ln f ∈ L andA (f) > 0.

(ii) If sup
t∈I̊

l (t) = S < ∞, then we have the inequality

(4.13) A (φ′ ◦ f · f) + φ (A (f))− A (f) · A (φ′ ◦ f)− A (φ ◦ f)

≤ S

[
A (f) A

(
1

f

)
− 1− (ln [A (f)]− A [ln (f)])

]
.

(iii) If −∞ < s ≤ l (t) ≤ S < ∞ for t ∈I̊, then both (4.12) and (4.13) hold.

Proof. The proof is as follows.

(i) Define the auxiliary functionh (t) = φ (t) + s ln t. Then

h′′ (t) = φ′′ (t)− s

t2
=

1

t2
(
φ′′ (t) t2 − s

)
≥ 0

which shows thath is convex, or, equivalently,φ ∈ L (I, s,− ln (·)). Applying Corol-
lary 4.6, we may write

s

[
−A (1)− ln A (f) + A (f) A

(
1

f

)
+ A (ln (f))

]
≤ A (φ′ ◦ f · f) + φ (A (f))− A (f) · A (φ′ ◦ f)− A (φ ◦ f) ,

which is clearly equivalent to (4.12).
(ii) Goes similarly.

(iii) Follows by(i) and(ii).

�
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10 S.S. DRAGOMIR

Finally, the following result also holds.

Proposition 4.10. Assume that the mappingφ : I ⊆ (0,∞) → R is twice differentiable on̊I.
DefineĨ (t) = tφ′′ (t), t ∈ I.

(i) If inf
t∈I̊

Ĩ (t) = δ > −∞, then we have the inequality

(4.14) δA (f) [ln [A (f)]− A (ln (f))]

≤ A (φ′ ◦ f · f) + φ (A (f))− A (f) · A (φ′ ◦ f)− A (φ ◦ f) ,

provided thatφ ◦ f, φ′ ◦ f, φ′ ◦ f · f, ln f, f ∈ L andA (f) > 0.
(ii) If sup

t∈I̊

Ĩ (t) = ∆ < ∞, then we have the inequality

(4.15) A (φ′ ◦ f · f) + φ (A (f))− A (f) · A (φ′ ◦ f)− A (φ ◦ f)

≤ ∆A (f) [ln [A (f)]− A (ln (f))] .

(iii) If −∞ < δ ≤ Ĩ (t) ≤ ∆ < ∞ for t ∈I̊, then both (4.14) and (4.15) hold.

Proof. The proof is as follows.

(i) Define the auxiliary mappingh (t) = φ (t)− δt ln t, t ∈ I. Then

h′′ (t) = φ′′ (t)− δ

t
=

1

t2
[φ′′ (t) t− δ] =

1

t

[
Ĩ (t)− δ

]
≥ 0

which shows thath is convex or equivalently,φ ∈ L (I, δ, (·) ln (·)). Applying Corollary
4.6, we get

δ [A [(ln f + 1) f ] + A (f) ln A (f)− A (f) A (ln f + 1)− A (f ln f)]

≤ A (φ′ ◦ f · f) + φ (A (f))− A (f) · A (φ′ ◦ f)− A (φ ◦ f)

which is equivalent with (4.14).
(ii) Goes similarly.

(iii) Follows by(i) and(ii).

�

5. SOME APPLICATIONS FOR BULLEN ’ S I NEQUALITY

The following inequality is well known in the literature as Bullen’s inequality (see for exam-
ple [7, p. 10])

(5.1)
1

b− a

∫ b

a

φ (t) dt ≤ 1

2

[
φ (a) + φ (b)

2
+ φ

(
a + b

2

)]
,

provided thatφ : [a, b]→ R is a convex function on[a, b]. In other words, as (5.1) is equivalent
to:

(5.2) 0 ≤ 1

b− a

∫ b

a

φ (t) dt− φ

(
a + b

2

)
≤ φ (a) + φ (b)

2
− 1

b− a

∫ b

a

φ (t) dt

we can conclude that in the Hermite-Hadamard inequality

(5.3)
φ (a) + φ (b)

2
≥ 1

b− a

∫ b

a

φ (t) dt ≥ φ

(
a + b

2

)
the integral mean1

b−a

∫ b

a
φ (t) dt is closer toφ

(
a+b
2

)
than toφ(a)+φ(b)

2
.
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Using some of the results pointed out in the previous sections, we may upper and lower bound
theBullen difference:

B (φ; a, b) :=
1

2

[
φ (a) + φ (b)

2
+ φ

(
a + b

2

)]
− 1

b− a

∫ b

a

φ (t) dt

(which is positive for convex functions) for different classes of twice differentiable functionsφ.
Now, if we assume thatA (f) := 1

b−a

∫ b

a
f (t) dt, then forf = e, e (x) = x, x ∈ [a, b], we

have, for a differentiable functionφ, that

A (φ′ ◦ f · f) + φ (A (f))− A (f) · A (φ′ ◦ f)− A (φ ◦ f)

=
1

b− a

∫ b

a

xφ′ (x) dx + φ

(
a + b

2

)
− a + b

2
· 1

b− a

∫ b

a

φ′ (x) dx− 1

b− a

∫ b

a

φ (x) dx

=
1

b− a

[
bφ (b)− aφ (a)−

∫ b

a

φ (x) dx

]
+ φ

(
a + b

2

)
− a + b

2
· φ (b)− φ (a)

b− a
− 1

b− a

∫ b

a

φ (x) dx

=
φ (a) + φ (b)

2
+ φ

(
a + b

2

)
− 2

b− a

∫ b

a

φ (x) dx

= 2B (φ; a, b) .

a) Assume thatφ : [a, b] ⊂ R → R is a twice differentiable function satisfying the property
that−∞ < k ≤ φ′′ (t) ≤ K < ∞. Then by Proposition 4.7, we may state the inequality

(5.4)
1

48
(b− a)2 k ≤ B (φ; a, b) ≤ 1

48
(b− a)2 K.

This follows by Proposition 4.7 on taking into account that

1

b− a

∫ b

a

x2dx−
(

1

b− a

∫ b

a

xdx

)2

=
(b− a)2

12
.

b) Now, assume that the twice differentiable functionφ : [a, b] ⊂ (0,∞) → R satisfies the
property that−∞ < γ ≤ t2−pφ′′ (t) ≤ Γ < ∞, t ∈ (a, b), p ∈ (−∞, 0) ∪ (1,∞). Then by
Proposition 4.8 and taking into account that

A (fp)− (A (f))p =
1

b− a

∫ b

a

xpdx−
(

1

b− a

∫ b

a

xdx

)p

= Lp
p (a, b)− Ap (a, b) ,

and

A
(
fp−1

)
− (A (f))p−1 = Lp−1

p−1 (a, b)− Ap−1 (a, b) ,
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12 S.S. DRAGOMIR

we may state the inequality

γ

p (p− 1)

[
(p− 1)

[
Lp

p (a, b)− Ap (a, b)
]
− pA (a, b)

[
Lp−1

p−1 (a, b)− Ap−1 (a, b)
]](5.5)

≤ B (φ; a, b)

≤ Γ

p (p− 1)

[
(p− 1)

[
Lp

p (a, b)− Ap (a, b)
]
− pA (a, b)

[
Lp−1

p−1 (a, b)− Ap−1 (a, b)
]]

.

c) Assume that the twice differentiable functionφ : [a, b] ⊂ (0,∞) → R satisfies the property
that−∞ < s ≤ t2φ′′ (t) ≤ S < ∞, t ∈ (a, b), then by Proposition 4.9, and taking into account
that

A (f) A
(
f−1

)
− 1− ln [A (f)] + A ln (f) =

A (a, b)

L (a, b)
− 1− ln A (a, b) + I (a, b)

= ln

[
I (a, b)

A (a, b)
· exp

(
A (a, b)− L (a, b)

L (a, b)

)]
,

we get the inequality

s

2
ln

[
I (a, b)

A (a, b)
· exp

(
A (a, b)− L (a, b)

L (a, b)

)]
(5.6)

≤ B (φ; a, b)

≤ S

2
ln

[
I (a, b)

A (a, b)
· exp

(
A (a, b)− L (a, b)

L (a, b)

)]
.

d) Finally, if φ satisfies the condition−∞ < δ ≤ tφ′′ (t) ≤ ∆ < ∞, then by Proposition 4.10,
we may state the inequality

(5.7) δA (a, b) ln

[
A (a, b)

I (a, b)

]
≤ B (φ; a, b) ≤ ∆A (a, b) ln

[
A (a, b)

I (a, b)

]
.
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[9] A. LUPAŞ, A generalisation of Hadamard’s inequalities for convex functions,Univ. Beograd. Elek.
Fak.,577–579 (1976), 115–121.
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