Journal of Inequalities in Pure and Applied Mathematics
http://jipam.vu.edu.au/
Volume 3, Issue 1, Article 7, 2002

L'HOSPITAL TYPE RULES FOR MONOTONICITY: APPLICATIONS TO
PROBABILITY INEQUALITIES FOR SUMS OF BOUNDED RANDOM VARIABLES
IOSIF PINELIS
Department of Mathematical Sciences
Michigan Technological University
Houghton, MI 49931, USA
ipinelis@mtu.edu

Received 29 January, 2001; accepted 6 September, 2001.
Communicated by C.E.M. Pearce

Abstract. This paper continues a series of results begun by a l'Hospital type rule for monotonicity, which is used here to obtain refinements of the Eaton-Pinelis inequalities for sums of bounded independent random variables.

Key words and phrases: L'Hospital's Rule, Monotonicity, Probability inequalities, Sums of independent random variables, Student's statistic.

2000 Mathematics Subject Classification. Primary: 26A48, 26D10, 60E15; Secondary: 26D07, 62H15, 62F04, 62F35, 62G10, 62G15.

1. Introduction

In [8], the following criterion for monotonicity was given, which reminds one of the l'Hospital rule for computing limits.
Proposition 1.1. Let $-\infty \leq a<b \leq \infty$. Let f and g be differentiable functions on an interval (a, b). Assume that either $g^{\prime}>0$ everywhere on (a, b) or $g^{\prime}<0$ on (a, b). Suppose that $f(a+)=g(a+)=0$ or $f(b-)=g(b-)=0$ and $\frac{f^{\prime}}{g^{\prime}}$ is increasing (decreasing) on (a, b). Then $\frac{f}{g}$ is increasing (respectively, decreasing) on (a, b). (Note that the conditions here imply that g g is nonzero and does not change sign on (a, b).)

Developments of this result and applications were given: in [8], applications to certain information inequalities; in [10], extensions to non-monotonic ratios of functions, with applications to certain probability inequalities arising in bioequivalence studies and to convexity problems; in [9], applications to monotonicity of the relative error of a Padé approximation for the complementary error function.

```
ISSN (electronic): 1443-5756
(C)2002 Victoria University. All rights reserved.
013-01
```

Here we shall consider further applications, to probability inequalities, concerning the Student t statistic.
Let $\eta_{1}, \ldots, \eta_{n}$ be independent zero-mean random variables such that $\mathbb{P}\left(\left|\eta_{i}\right| \leq 1\right)=1$ for all i, and let a_{1}, \ldots, a_{n} be any real numbers such that $a_{1}^{2}+\cdots+a_{n}^{2}=1$. Let ν stand for a standard normal random variable.

In [3] and [4], a multivariate version of the following inequality was given:

$$
\begin{equation*}
\mathbb{P}\left(\left|a_{1} \eta_{1}+\cdots+a_{n} \eta_{n}\right| \geq u\right)<c \cdot \mathbb{P}(|\nu| \geq u) \quad \forall u \geq 0 \tag{1.1}
\end{equation*}
$$

where

$$
c:=\frac{2 e^{3}}{9}=4.463 \ldots ;
$$

cf. Corollary 2.6 in [4] and the comment in the middle of page 359 therein concerning the Hunt inequality. For subsequent developments, see [5], [6], and [7].

Inequality (1.1) implies a conjecture made by Eaton [2]. In turn, (1.1) was obtained in [4] based on the inequality

$$
\begin{equation*}
\mathbb{P}\left(\left|a_{1} \eta_{1}+\cdots+a_{n} \eta_{n}\right| \geq u\right) \leq Q(u) \quad \forall u \geq 0 \tag{1.2}
\end{equation*}
$$

where

$$
\begin{align*}
Q(u) & :=\min \left[1, \frac{1}{u^{2}}, W(u)\right] \tag{1.3}\\
& =\left\{\begin{array}{lll}
1 & \text { if } & 0 \leq u \leq 1, \\
\frac{1}{u^{2}} & \text { if } & 1 \leq u \leq \mu_{1}, \\
W(u) & \text { if } & u \geq \mu_{1},
\end{array}\right. \tag{1.4}\\
\mu_{1} & :=\frac{\mathbb{E}|\nu|^{3}}{\mathbb{E}|\nu|^{2}}=2 \sqrt{\frac{2}{\pi}}=1.595 \ldots ; \\
W(u) & :=\inf \left\{\frac{\mathbb{E}(|\nu|-t)_{+}^{3}}{(u-t)^{3}}: t \in(0, u)\right\} ;
\end{align*}
$$

cf. Lemma 3.5 in [4]. The bound $Q(u)$ possesses a certain optimality property; cf. (3.7) in [4] and the definition of $Q_{r}(u)$ therein. In [1], $Q(u)$ is denoted by $B_{\mathrm{EP}}(u)$, called the Eaton-Pinelis bound, and tabulated, along with other related bounds; various statistical applications are given therein.

Let

$$
\varphi(u):=\frac{1}{\sqrt{2 \pi}} e^{-u^{2} / 2}, \quad \Phi(u):=\int_{-\infty}^{u} \varphi(s) d s, \quad \text { and } \quad \bar{\Phi}(u):=1-\Phi(u)
$$

denote, as usual, the density, distribution function, and tail function of the standard normal law.
It follows from [4] (cf. Lemma 3.6 therein) that the ratio

$$
\begin{equation*}
r(u):=\frac{Q(u)}{c \cdot \mathbb{P}(|\nu| \geq u)}=\frac{Q(u)}{c \cdot 2 \bar{\Phi}(u)}, \quad u \geq 0 \tag{1.5}
\end{equation*}
$$

of the upper bounds in (1.2) and (1.1) is less than 1 for all $u \geq 0$, so that (1.2) indeed implies (1.1). Moreover, it was shown in [4] that $r(u) \rightarrow 1$ as $u \rightarrow \infty$; cf. Proposition A. 2 therein. Other methods of obtaining (1.1) are given in [5] and [6].

In Section 2 of this paper, we shall present monotonicity properties of the ratio r, from which it follows, once again, that

$$
\begin{equation*}
r<1 \quad \text { on } \quad(0, \infty) \tag{1.6}
\end{equation*}
$$

Combining the bounds (1.1) and (1.2) and taking (1.3) into account, one has the following improvement of the upper bound provided by (1.1):

$$
\begin{equation*}
\mathbb{P}\left(\left|a_{1} \eta_{1}+\cdots+a_{n} \eta_{n}\right| \geq u\right) \leq V(u):=\min \left[1, \frac{1}{u^{2}}, c \cdot \mathbb{P}(|\nu| \geq u)\right] \quad \forall u \geq 0 \tag{1.7}
\end{equation*}
$$

Monotonicity properties of the ratio

$$
\begin{equation*}
R:=\frac{Q}{V} \tag{1.8}
\end{equation*}
$$

of the upper bounds in (1.2) and (1.7) will be studied in Section 3 .
Our approach is based on Proposition 1.1. Mainly, we follow here lines of [3].

2. Monotonocity Properties of the Ratio r given by (1.5)

Theorem 2.1.

1. There is a unique solution to the equation $2 \bar{\Phi}(d)=d \cdot \varphi(d)$ for $d \in\left(1, \mu_{1}\right)$; in fact, $d=1.190 \ldots$.
2. The ratio r is
(a) increasing on $[0,1]$ from $r(0)=\frac{1}{c}=0.224 \ldots$ to $r(1)=\frac{1}{c \cdot 2 \bar{\Phi}(1)}=0.706 \ldots$;
(b) decreasing on $[1, d]$ from $r(1)=0.706 \ldots$ to $r(d)=\frac{\frac{1}{d^{2}}}{c \cdot 2 \bar{\Phi}(d)}=0.675 \ldots$;
(c) increasing on $[d, \infty)$ from $r(d)=0.675 \ldots$ to $r(\infty)=1$.

Proof.

1. Consider the function

$$
h(u):=2 \bar{\Phi}(u)-u \varphi(u) .
$$

One has $h(1)=0.07 \ldots>0, h\left(\mu_{1}\right)=-0.06 \ldots<0$, and $h^{\prime}(u)=\left(u^{2}-3\right) \varphi(u)$. Hence, $h^{\prime}(u)<0$ for $u \in\left[1, \mu_{1}\right]$, since $\mu_{1}<\sqrt{3}$. This implies part 1 of the theorem.
2.
(a) Part 2(a) of the theorem is immediate from (1.5) and (1.4).
(b) For $u>0$, one has

$$
\frac{d}{d u}\left(u^{2} \bar{\Phi}(u)\right)=u h(u),
$$

where h is the function considered in the proof of part 1 of the theorem. Since $h>0$ on $[1, d)$ and $r(u)=\frac{1}{2 c u^{2} \bar{\Phi}(u)}$ for $u \in\left[1, \mu_{1}\right]$, part 2(b) now follows.
(c) Since $h<0$ on $\left(d, \mu_{1}\right.$], it also follows from above that r is increasing on $\left[d, \mu_{1}\right]$. It remains to show that r is increasing on $\left[\mu_{1}, \infty\right)$. This is the main part of the proof,
and it requires some notation and facts from [4]. Let

$$
\begin{aligned}
C & :=\frac{1}{\int_{0}^{\infty} e^{-s^{2} / 2} d s}, \\
\gamma(u) & :=\int_{u}^{\infty}(s-u)^{3} e^{-s^{2} / 2} d s, \\
\gamma^{(j)}(u) & :=\frac{d^{j} \gamma(u)}{d u^{j}} \quad\left(\gamma^{(0)}:=\gamma\right), \\
\mu(t) & :=t-\frac{3 \gamma(t)}{\gamma^{\prime}(t)}, \\
F(t, u) & :=C \frac{\gamma(t)}{(u-t)^{3}}, \quad t<u ;
\end{aligned}
$$

cf. notation on pages 361-363 in [4], in which we presently take $r=1$.
Then $\forall j \in\{0,1,2,3,4,5\}$

$$
\begin{align*}
(-1)^{j} \gamma^{(j)} & >0 \quad \text { on } \quad(0, \infty), \tag{2.2}\\
(-1)^{j} \gamma^{(j)}(u) & =6 u^{j-4} e^{-u^{2} / 2}(1+o(1)) \quad \text { as } \quad u \rightarrow \infty, \tag{2.3}\\
\gamma^{(4)}(u) & =6 e^{-u^{2} / 2} \quad \text { and } \quad \gamma^{(5)}(u)=-6 u e^{-u^{2} / 2} ; \tag{2.4}
\end{align*}
$$

cf. Lemma 3.3 in [4]. Moreover, it was shown in [4] (see page 363 therein) that on $[0, \infty)$
so that the formula

$$
\begin{equation*}
\mu^{\prime}>0, \tag{2.5}
\end{equation*}
$$

$$
t \leftrightarrow u=\mu(t)
$$

defines an increasing correspondence between $t \geq 0$ and $u \geq \mu(0)=\mu_{1}$, so that the inverse map

$$
\mu^{-1}:\left[\mu_{1}, \infty\right) \rightarrow[0, \infty)
$$

is correctly defined and is a bijection. Finally, one has (cf. (3.11) in [4] and (1.4) and (2.1) above)

$$
\begin{equation*}
\forall u \geq \mu_{1} \quad Q(u)=W(u)=F(t, u)=-\frac{C}{27} \frac{\gamma^{\prime}(t)^{3}}{\gamma(t)^{2}} \tag{2.6}
\end{equation*}
$$

here and in the rest of this proof, t stands for $\mu^{-1}(u)$ and, equivalently, u for $\mu(t)$. Now equation (2.6) implies
for $u \geq \mu_{1}$; here we used the formula

$$
\begin{equation*}
\mu^{\prime}(t)=\frac{3 \gamma(t) \gamma^{\prime \prime}(t)-2 \gamma^{\prime}(t)^{2}}{\gamma^{\prime}(t)^{2}} . \tag{2.8}
\end{equation*}
$$

Next,

$$
\begin{aligned}
\gamma^{\prime}(t) \mu(t) & =t \gamma^{\prime}(t)-3 \gamma(t) \\
& =-3 \int_{t}^{\infty}\left[t(s-t)^{2}+(s-t)^{3}\right] e^{-s^{2} / 2} d s \\
& =-3 \int_{t}^{\infty}(s-t)^{2} s e^{-s^{2} / 2} d s \\
& =-6 \int_{t}^{\infty}(s-t) e^{-s^{2} / 2} d s \\
& =-\gamma^{\prime \prime}(t)
\end{aligned}
$$

for the fourth of the five equalities here, integration by parts was used. Hence, on $[0, \infty)$,
this and 2.5 yield
whence

$$
\begin{equation*}
\mu=-\frac{\gamma^{\prime \prime}}{\gamma^{\prime}} \tag{2.9}
\end{equation*}
$$

$$
\mu^{\prime}=\frac{\gamma^{\prime \prime 2}-\gamma^{\prime} \gamma^{\prime \prime \prime}}{\gamma^{\prime 2}}
$$

Let (cf. 1.5) and use (2.7))

$$
\begin{equation*}
\rho(u):=\frac{Q^{\prime}(u)}{c \cdot 2 \bar{\Phi}^{\prime}(u)}=\frac{C}{54 c} \frac{\gamma^{\prime}(t)^{4}}{\gamma(t)^{3} \varphi(\mu(t))} \tag{2.11}
\end{equation*}
$$

Using (2.11) and then (2.9) and (2.8), one has

$$
\frac{d \ln \rho(u)}{d t}=\frac{d}{d t}\left(4 \ln \left|\gamma^{\prime}(t)\right|-3 \ln \gamma(t)+\frac{\mu(t)^{2}}{2}\right)=-\frac{3 D(t)^{2} \gamma^{\prime \prime}(t)^{2}}{\gamma(t) \gamma^{\prime}(t)^{3}}
$$

for all $t>0$, where

$$
D:=\frac{\gamma^{\prime 2}}{\gamma^{\prime \prime}}-\gamma
$$

Further, on $(0, \infty)$,

$$
\begin{equation*}
D^{\prime}=\frac{\gamma^{\prime}}{\gamma^{\prime \prime 2}}\left(\gamma^{\prime \prime 2}-\gamma^{\prime} \gamma^{\prime \prime \prime}\right)<0 \tag{2.13}
\end{equation*}
$$

in view of (2.2) and (2.10). On the other hand, it follows from 2.3 that $D(t) \rightarrow 0$ as $t \rightarrow \infty$. Hence, 2.13 implies that on $(0, \infty)$

$$
\begin{equation*}
D>0 \tag{2.14}
\end{equation*}
$$

Now (2.12), 2.14), and (2.2) imply that ρ is increasing on $\left(\mu_{1}, \infty\right)$. Also, it follows from (2.6) and (2.3) that $Q(u) \rightarrow 0$ as $u \rightarrow \infty$; it is obvious that $c \cdot 2 \bar{\Phi}(u) \rightarrow 0$ as $u \rightarrow \infty$. It remains to refer to (1.5), (2.11), Proposition 1.1, and also (for $r(\infty)=1$) to Proposition A. 2 [4].

3. Monotonocity Properties of the Ratio R given by (1.8)

Theorem 3.1.

1. There is a unique solution to the equation

$$
\begin{equation*}
\frac{1}{z^{2}}=c \cdot \mathbb{P}(|\nu| \geq z) \tag{3.1}
\end{equation*}
$$

for $z>\mu_{1}$; in fact, $z=1.834 \ldots$
2.

$$
V(u)= \begin{cases}1 & \text { if } 0 \leq u \leq 1 \tag{3.2}\\ \frac{1}{u^{2}} & \text { if } 1 \leq u \leq z \\ c \cdot \mathbb{P}(|\nu| \geq u) & \text { if } u \geq z\end{cases}
$$

3. (a) $R=1$ on $\left[0, \mu_{1}\right]$;
(b) R is decreasing on $\left[\mu_{1}, z\right]$ from $R\left(\mu_{1}\right)=1$ to $R(z)=0.820 \ldots$;
(c) R is increasing on $[z, \infty)$ from $R(z)=0.820 \ldots$ to $R(\infty)=1[=r(\infty)]$.

Thus, the upper bound V is quite close to the optimal Eaton-Pinelis bound $Q=B_{\mathrm{EP}}$ given by (1.3), exceeding it by a factor of at most $\frac{1}{R(z)}=1.218 \ldots$ In addition, V is asymptotic (at $\infty)$ to and as universal as Q. On the other hand, V is much more transparent and tractable than Q.

Proof of Theorem 3.1

1. Consider the function

$$
\begin{equation*}
\lambda(u):=\frac{c \mathbb{P}(|\nu| \geq u)}{\frac{1}{u^{2}}}=2 c u^{2} \bar{\Phi}(u) . \tag{3.3}
\end{equation*}
$$

Then

$$
\lambda^{\prime}(u)=2 c u h(u),
$$

where h is the same as in the beginning of the proof of Theorem 2.1 on page 3, with $h^{\prime}(u)=\left(u^{2}-3\right) \varphi(u)$, so that $\sqrt{3}$ is the only root of the equation $h^{\prime}(u)=0$. Since $h\left(\mu_{1}\right)=-0.06 \ldots<0, h(\sqrt{3})=-0.07 \ldots<0$, and $h(\infty)=0$, it follows that $h<0$ on $\left[\mu_{1}, \infty\right)$, and then so is λ^{\prime}. Hence, λ is decreasing on $\left[\mu_{1}, \infty\right)$ from $\lambda\left(\mu_{1}\right)=1.2 \ldots$ to $\lambda(\infty)=0$. Now part 1 of the theorem follows.
2. It also follows from the above that $\lambda \geq 1$ on $\left[\mu_{1}, z\right]$ and $\lambda \leq 1$ on $[z, \infty)$. In addition, by 3.3), 1.5 , and 1.4 , one has $\lambda=\frac{1}{r}$ on $\left[1, \mu_{1}\right]$, whence $\lambda>1$ on $\left[1, \mu_{1}\right]$ by 1.6 . Thus, $\lambda \geq 1$ on $[1, z]$ and $\lambda \leq 1$ on $[z, \infty)$; in particular, $c \mathbb{P}(|\nu| \geq 1)=\lambda(1) \geq 1$. Now part 2 of the theorem follows.
3. (a) Part 3(a) of the theorem is immediate from (1.4), (3.2 , and the inequality $z>\mu_{1}$.
(b) Of all the parts of the theorem, part 3(b) is the most difficult to prove. In view of (3.2), the inequalities $z>\mu_{1}>1,(2.6)$, and (2.9), one has

$$
\begin{equation*}
R(u)=u^{2} Q(u)=-\frac{C}{27} \frac{\gamma^{\prime}(t) \gamma^{\prime \prime}(t)^{2}}{\gamma(t)^{2}} \quad \forall u \in\left[\mu_{1}, z\right] ; \tag{3.4}
\end{equation*}
$$

here and to the rest of this proof, t again stands for $\mu^{-1}(u)$ and, equivalently, u for $\mu(t)$. It follows that for all $u \in\left[\mu_{1}, z\right]$ or, equivalently, for all $t \in\left[0, \mu^{-1}(z)\right]$,

$$
N(t, k):=-2 t k^{3}+\left(3 t^{2}-2\right) k^{2}+12 t k+9
$$

Next, for $t>0$,

$$
-\frac{1}{6 t} \frac{\partial N}{\partial k}=k^{2}-\left(t-\frac{2}{3 t}\right) k-2,
$$

which is a monic quadratic polynomial in k, the product of whose roots is -2 , negative, so that one has $k_{1}(t)<0<k_{2}(t)$, where $k_{1}(t)$ and $k_{2}(t)$ are the two roots. It follows that $\frac{\partial N}{\partial k}>0$ on $\left(0, k_{2}(t)\right)$ and $\frac{\partial N}{\partial k}<0$ on $\left(k_{2}(t), \infty\right)$.
Hence, $N(t, k)$ is increasing in $k \in\left(0, k_{2}(t)\right)$ and decreasing in $k \in\left(k_{2}(t), \infty\right)$. On the other hand, it follows from (3.7) and (2.2) that

$$
\begin{equation*}
\kappa(t)>0 \quad \forall t>0 . \tag{3.11}
\end{equation*}
$$

Therefore,

$$
\begin{equation*}
\left(\kappa(t)<\kappa^{*}(t) \quad \forall t>0\right) \Longrightarrow\left(N(t, \kappa(t))>\min \left(N(t, 0), N\left(t, \kappa^{*}(t)\right)\right) \quad \forall t>0\right) ; \tag{3.12}
\end{equation*}
$$

at this point, κ^{*} may be any function which majorizes κ on $(0, \infty)$.
Let us now show the function $\kappa^{*}(t):=t+2$ is such a majorant of $\kappa(t)$. Toward this end, introduce

$$
\gamma^{(-1)}(t):=-\frac{1}{4} \int_{t}^{\infty}(s-t)^{4} e^{-s^{2} / 2} d s
$$

so that

$$
\left(\gamma^{(-1)}\right)^{\prime}=\gamma
$$

Similarly to (3.6) and (3.8),

$$
\begin{equation*}
\kappa(t)=-\frac{\gamma^{\prime}(t)}{\gamma(t)}=-4 \frac{\gamma^{(-1)}(t)}{\gamma(t)}+t . \tag{3.13}
\end{equation*}
$$

Again with $\gamma^{(0)}:=\gamma$, one has for $t>0$

$$
\frac{\left(-\gamma^{(j-1)}\right)^{\prime}}{\left(\gamma^{(j)}\right)^{\prime}}=\frac{-\gamma^{(j)}}{\gamma^{(j+1)}} \quad \forall j \in\{0,1, \ldots\}
$$

and, in view of 2.4, $\frac{-\gamma^{(4)}(t)}{\gamma^{(5)}(t)}=\frac{1}{t}$ is decreasing in $t>0$. In addition, 2.3) implies that $\gamma^{(j)}(t) \rightarrow 0$ as $t \rightarrow \infty$, for every $j \in\{-1,0,1, \ldots\}$. Using now Proposition 1.1 repeatedly, 5 times, one sees that $\frac{-\gamma^{(-1)}}{\gamma}$ is decreasing on $(0, \infty)$,
whence $\forall t>0$

$$
\frac{-\gamma^{(-1)}(t)}{\gamma(t)}<\frac{-\gamma^{(-1)}(0)}{\gamma(0)}=\frac{3 \sqrt{2 \pi}}{16}<\frac{1}{2} .
$$

This and (3.13) imply that

$$
\kappa(t)<t+2 \quad \forall t>0 .
$$

Hence, in view of (3.12),

$$
N(t, \kappa(t))>\min (N(t, 0), N(t, t+2)) \quad \forall t>0 .
$$

But $N(t, 0)=9>0$ and $N(t, t+2)=\left(t^{2}-1\right)^{2} \geq 0$ for all t. Therefore, $N(t, \kappa(t))>0 \quad \forall t>0$. Recalling now (3.5), 3.10 and 3.11, one concludes that R is decreasing on $\left[\mu_{1}, z\right]$. To compute $R(z)$, use (3.4). Now part 3(b) of the theorem is proved.
(c) In view of 1.5) and (3.2), one has $R=r$ on $[z, \infty)$. Part 3(c) of the theorem now follows from part 2(c) of Theorem 2.1 and inequalities $d<\mu_{1}<z$.

References

[1] J.-M. DUFOUR And M. HALLIN, Improved Eaton bounds for linear combinations of bounded random variables, with statistical applications, JASA, 88 (1993), 1026-1033.
[2] M. EATON, A probability inequality for linear combinations of bounded random variables, Ann. Stat., 2 (1974), 609-613.
[3] I. PINELIS, Extremal probabilistic problems and Hotelling's T^{2} test under symmetry condition, Preprint (1991).
[4] I. PINELIS, Extremal probabilistic problems and Hotelling's T^{2} test under a symmetry condition. Ann. Stat., 22 (1994), 357-368.
[5] I. PINELIS, Optimal tail comparison based on comparison of moments. High dimensional probability (Oberwolfach, 1996), 297-314, Progr. Probab., 43, Birkhäuser, Basel, 1998.
[6] I. PINELIS, Fractional sums and integrals of r-concave tails and applications to comparison probability inequalities. Advances in stochastic inequalities (Atlanta, GA, 1997), 149-168, Contemp. Math., 234, Amer. Math. Soc., Providence, RI, 1999.
[7] I. PINELIS, On exact maximal Khinchine inequalities. High dimensional probability II (University of Washington, 1999), 49-63, Progr. Probab., 47, Birkhäuser, Boston, 2000.
[8] I. PINELIS, L'Hospital type rules for monotonicity, with applications, J. Ineq. Pure \& Appl. Math., 3(1) (2002), Article 5. (http://jipam.vu.edu.au/v3n1/010_01.html).
[9] I. PINELIS, Monotonicity properties of the relative error of a Pade approximation for Mills' ratio, J. Ineq. Pure \& Appl. Math., 3(2) (2002), Article 20. (http://jipam.vu.edu.au/v3n2/012_01.html).
[10] I. PINELIS, L’Hospital type rules for oscillation, with applications, J. Ineq. Pure \& Appl. Math., 2(3) (2001), Article 33. (http://jipam.vu.edu.au/v2n3/011_01.html).

