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ABSTRACT. An identity for the Chebychev functional is presented in which a Riemann-Stieltjes
integral is involved. This allows bounds for the functional to be obtained for functions that are
of bounded variation, Lipschitzian and monotone. Some applications are presented to produce
bounds for moments of functions about a general pointγ and for moment generating functions.
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1. I NTRODUCTION

For two measurable functionsf, g : [a, b] → R, define the functional, which is known in the
literature as Chebychev’s functional, by

(1.1) T (f, g) := M (fg)−M (f)M (g) ,

where the integral mean is given by

(1.2) M (f) =
1

b− a

∫ b

a

f (x) dx.

The integrals in (1.1) are assumed to exist.
Further, the weighted Chebychev functional is defined by

(1.3) T (f, g; p) := M (f, g; p)−M (f ; p) M (g; p) ,
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2 P. CERONE

where the weighted integral mean is given by

(1.4) M (f ; p) =

∫ b

a
p (x) f (x) dx∫ b

a
p (x) dx

.

We note that,
T (f, g; 1) ≡ T (f, g)

and
M (f ; 1) ≡M (f) .

It is the aim of this article to obtain bounds on the functionals (1.1) and (1.3) in terms of one
of the functions, sayf , being of bounded variation, Lipschitzian or monotonic nondecreasing.

This is accomplished by developing identities involving a Riemann-Stieltjes integral. These
identities seem to be new. The main results are obtained in Section 2, while in Section 3 bounds
for moments about a general pointγ are obtained for functions of bounded variation, Lips-
chitzian and monotonic. In a previous article, Cerone and Dragomir [2] obtained bounds in
terms of the‖f ′‖p, p ≥ 1 where it necessitated the differentiability of the functionf . There
is no need for such assumptions in the work covered by the current development. A further
application is given in Section 4 in which the moment generating function is approximated.

2. AN I DENTITY FOR THE CHEBYCHEV FUNCTIONAL

It is worthwhile noting that a number of identities relating to the Chebychev functional al-
ready exist. The reader is referred to [7] Chapters IX and X. Korkine’s identity is well known,
see [7, p. 296] and is given by

(2.1) T (f, g) =
1

2 (b− a)2

∫ b

a

∫ b

a

(f (x)− f (y)) (g (x)− g (y)) dxdy.

It is identity (2.1) that is often used to prove an inequality of Grüss for functions bounded above
and below, [7].

The Grüss inequality is given by

(2.2) |T (f, g)| ≤ 1

4
(Φf − φf ) (Φg − φg)

whereφf ≤ f (x) ≤ Φf for x ∈ [a, b].
If we let S (f) be an operator defined by

(2.3) S (f) (x) := f (x)−M (f) ,

which shifts a function by its integral mean, then the following identity holds. Namely,

(2.4) T (f, g) = T (S (f) , g) = T (f, S (g)) = T (S (f) , S (g)) ,

and so

(2.5) T (f, g) = M (S (f) g) = M (fS (g)) = M (S (f)S (g))

sinceM (S (f)) = M (S (g)) = 0.
For the last term in (2.4) or (2.5) only one of the functions needs to be shifted by its integral

mean. If the other were to be shifted by any other quantity, the identities would still hold. A
weighted version of (2.5) related toT (f, g) = M ((f (x)− κ)S (g)) for κ arbitrary was given
by Sonin [8] (see [7, p. 246]).

The interested reader is also referred to Dragomir [5] and Fink [6] for extensive treatments
of the Grüss and related inequalities.
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AN IDENTITY FOR THE CHEBYCHEV FUNCTIONAL 3

The following lemma presents an identity for the Chebychev functional that involves a Riemann-
Stieltjes integral.

Lemma 2.1. Let f, g : [a, b] → R, wheref is of bounded variation andg is continuous on
[a, b], then

(2.6) T (f, g) =
1

(b− a)2

∫ b

a

ψ (t) df (t) ,

where

(2.7) ψ (t) = (t− a)A (t, b)− (b− t)A (a, t)

with

(2.8) A (a, b) =

∫ b

a

g (x) dx.

Proof. From (2.6) integrating the Riemann-Stieltjes integral by parts produces

1

(b− a)2

∫ b

a

ψ (t) df (t) =
1

(b− a)2

{
ψ (t) f (t)

]b
a

−
∫ b

a

f (t) dψ (t)

}

=
1

(b− a)2

{
ψ (b) f (b)− ψ (a) f (a)−

∫ b

a

f (t)ψ′ (t) dt

}
sinceψ (t) is differentiable. Thus, from (2.7),ψ (a) = ψ (b) = 0 and so

1

(b− a)2

∫ b

a

ψ (t) df (t) =
1

(b− a)2

∫ b

a

[(b− a) g (t)− A (a, b)] f (t) dt

=
1

b− a

∫ b

a

[g (t)−M (g)] f (t) dt

= M (fS (g))

from which the result (2.6) is obtained on noting identity (2.5). �

The following well known lemmas will prove useful and are stated here for lucidity.

Lemma 2.2. Letg, v : [a, b] → R be such thatg is continuous andv is of bounded variation on
[a, b]. Then the Riemann-Stieltjes integral

∫ b

a
g (t) dv (t) exists and is such that

(2.9)

∣∣∣∣∫ b

a

g (t) dv (t)

∣∣∣∣ ≤ sup
t∈[a,b]

|g (t)|
b∨
a

(v) ,

where
∨b
a (v) is the total variation ofv on [a, b].

Lemma 2.3. Let g, v : [a, b] → R be such thatg is Riemann-integrable on[a, b] and v is
L−Lipschitzian on[a, b]. Then

(2.10)

∣∣∣∣∫ b

a

g (t) dv (t)

∣∣∣∣ ≤ L

∫ b

a

|g (t)| dt

with v isL−Lipschitzian if it satisfies

|v (x)− v (y)| ≤ L |x− y|

for all x, y ∈ [a, b].
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4 P. CERONE

Lemma 2.4. Let g, v : [a, b] → R be such thatg is continuous on[a, b] and v is monotonic
nondecreasing on[a, b]. Then

(2.11)

∣∣∣∣∫ b

a

g (t) dv (t)

∣∣∣∣ ≤ ∫ b

a

|g (t)| dv (t) .

It should be noted that ifv is nonincreasing then−v is nondecreasing.

Theorem 2.5. Let f, g : [a, b] → R, wheref is of bounded variation andg is continuous on
[a, b]. Then

(2.12) (b− a)2 |T (f, g)| ≤



sup
t∈[a,b]

|ψ (t)|
b∨
a

(f) ,

L
∫ b

a
|ψ (t)| dt, for f L− Lipschitzian,∫ b

a
|ψ (t)| df (t) , for f monotonic nondecreasing,

where
b∨
a

(f) is the total variation off on [a, b].

Proof. Follows directly from Lemmas 2.1 – 2.4. That is, from the identity (2.6) and (2.9) –
(2.11). �

The following lemma gives an identity for the weighted Chebychev functional that involves
a Riemann-Stieltjes integral.

Lemma 2.6. Let f, g, p : [a, b] → R, wheref is of bounded variation andg, p are continuous
on [a, b]. Further, letP (b) =

∫ b

a
p (x) dx > 0, then

(2.13) T (f, g; p) =
1

P 2 (b)

∫ b

a

Ψ (t) df (t) ,

whereT (f, g; p) is as given in (1.3),

(2.14) Ψ (t) = P (t) Ḡ (t)− P̄ (t)G (t)

with

(2.15)

 P (t) =
∫ t

a
p (x) dx, P̄ (t) = P (b)− P (t)

and
G (t) =

∫ t

a
p (x) g (x) dx, Ḡ (t) = G (b)−G (t) .

Proof. The proof follows closely that of Lemma 2.1.
We first note thatΨ (t) may be represented in terms of onlyP (·) andG (·). Namely,

(2.16) Ψ (t) = P (t)G (b)− P (b)G (t) .
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AN IDENTITY FOR THE CHEBYCHEV FUNCTIONAL 5

It may further be noticed thatΨ (a) = Ψ (b) = 0. Thus, integrating from (2.13) and using either
(2.14) or (2.16) gives

1

P 2 (b)

∫ b

a

Ψ (t) df (t) =
−1

P 2 (b)

∫ b

a

f (t) dΨ (t)

=
1

P 2 (b)

∫ b

a

[P (b)G′ (t)− P ′ (t)G (b)] f (t) dt

=
1

P (b)

∫ b

a

[
p (t) g (t)− G (b)

P (b)
p (t)

]
f (t) dt

=
1

P (b)

∫ b

a

p (t) g (t) f (t) dt− G (b)

P (b)
· 1

P (b)

∫ b

a

p (t) f (t) dt

= M (f, g; p)−M (g; p) M (f ; p)

= T (f, g; p) ,

where we have used the fact that
G (b)

P (b)
= M (g; p) .

�

Theorem 2.7.Let the conditions of Lemma 2.6 onf , g andp continue to hold. Then

(2.17) P 2 (b) |T (f, g; p)| ≤



sup
t∈[a,b]

|Ψ (t)|
b∨
a

(f) ,

L
∫ b

a
|Ψ (t)| dt, for f L− Lipschitzian,∫ b

a
|Ψ (t)| df (t) , for f monotonic nondecreasing.

whereT (f, g; p) is as given by (1.3) andΨ (t) = P (t)G (b) − P (b)G (t), with P (t) =∫ t

a
p (x) dx,G (t) =

∫ t

a
p (x) g (x) dx.

Proof. The proof uses Lemmas 2.1 – 2.4 and follows closely that of Theorem 2.5. �

Remark 2.8. If we takep (x) ≡ 1 in the above results involving the weighted Chebychev func-
tional, then the results obtained earlier for the unweighted Chebychev functional are recaptured.

Grüss type inequalities obtained from bounds on the Chebychev functional have been applied
in a variety of areas including in obtaining perturbed rules in numerical integration, see for
example [4]. In the following section the above work will be applied to the approximation of
moments. For other related results see also [1] and [3].

Remark 2.9. If f is differentiable then the identity (2.6) would become

(2.18) T (f, g) =
1

(b− a)2

∫ b

a

ψ (t) f ′ (t) dt

and so

(b− a)2 |T (f, g)| ≤


‖ψ‖1 ‖f ′‖∞ , f ′ ∈ L∞ [a, b] ;

‖ψ‖q ‖f ′‖p , f ′ ∈ Lp [a, b] ,
p > 1, 1

p
+ 1

q
= 1;

‖ψ‖∞ ‖f ′‖1 , f ′ ∈ L1 [a, b] ;
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6 P. CERONE

where the Lebesgue norms‖·‖ are defined in the usual way as

‖g‖p :=

(∫ b

a

|g (t)|p dt
) 1

p

, for g ∈ Lp [a, b] , p ≥ 1,
1

p
+

1

q
= 1

and
‖g‖∞ := ess sup

t∈[a,b]

|g (t)| , for g ∈ L∞ [a, b] .

The identity for the weighted integral means (2.13) and the corresponding bounds (2.17) will
not be examined further here.

Theorem 2.10.Letg : [a, b] → R be absolutely continuous on[a, b] then for

(2.19) D (g; a, t, b) := M (g; t, b)−M (g; a, t) ,

(2.20) |D (g; a, t, b)| ≤



(
b− a

2

)
‖g′‖∞ , g′ ∈ L∞ [a, b] ;

[
(t− a)q + (b− t)q

q + 1

] 1
q

‖g′‖p , g′ ∈ Lp [a, b] ,

p > 1, 1
p

+ 1
q

= 1;

‖g′‖1 , g′ ∈ L1 [a, b] ;∨b
a (g) , g of bounded variation;(
b− a

2

)
L, g isL− Lipschitzian.

Proof. Let the kernelr (t, u) be defined by

(2.21) r (t, u) :=


u− a

t− a
, u ∈ [a, t] ,

b− u

b− t
, u ∈ (t, b]

then a straight forward integration by parts argument of the Riemann-Stieltjes integral over each
of the intervals[a, t] and(t, b] gives the identity

(2.22)
∫ b

a

r (t, u) dg (u) = D (g; a, t, b) .

Now for g absolutely continuous then

(2.23) D (g; a, t, b) =

∫ b

a

r (t, u) g′ (u) du

and so

|D (g; a, t, b)| ≤ ess sup
u∈[a,b]

|r (t, u)|
∫ b

a

|g′ (u)| du, for g′ ∈ L1 [a, b] ,

where from (2.21)

(2.24) ess sup
u∈[a,b]

|r (t, u)| = 1

J. Inequal. Pure and Appl. Math., 3(1) Art. 4, 2002 http://jipam.vu.edu.au/

http://jipam.vu.edu.au/


AN IDENTITY FOR THE CHEBYCHEV FUNCTIONAL 7

and so the third inequality in (2.20) results. Further, using the Hölder inequality gives

|D (g; a, t, b)| ≤
(∫ b

a

|r (t, u)|q du
) 1

q
(∫ b

a

|g′ (t)|p dt
) 1

p

(2.25)

for p > 1,
1

p
+

1

q
= 1,

where explicitly from (2.21)(∫ b

a

|r (t, u)|q du
) 1

q

=

[∫ t

a

(
u− a

t− a

)q

du+

∫ b

t

(
b− u

b− t

)q

du

] 1
q

(2.26)

= [(t− a)q + (b− t)q]
1
q

(∫ 1

0

uqdu

) 1
q

=

[
(t− a)q + (b− t)q

q + 1

] 1
q

.

Also

(2.27) |D (g; a, t, b)| ≤ ess sup
u∈[a,b]

|g′ (u)|
∫ b

a

|r (t, u)| du,

and so from (2.26) withq = 1 gives the first inequality in (2.20).
Now, forg (u) of bounded variation on[a, b] then from Lemma 2.2, equation (2.9) and identity

(2.22) gives

|D (g; a, t, b)| ≤ ess sup
u∈[a,b]

|r (t, u)|
b∨
a

(g)

producing the fourth inequality in (2.20) on using (2.24). From (2.10) and (2.22) we have, by
associatingg with v andr (t, ·) with g (·),

|D (g; a, t, b)| ≤ L

∫ b

a

|r (t, u)| du

and so from (2.26) withq = 1 gives the final inequality in (2.20). �

Remark 2.11. The results of Theorem 2.10 may be used to obtain bounds onψ (t) since from
(2.7) and (2.19)

ψ (t) = (t− a) (b− t)D (g; a, t, b) .

Hence, upper bounds on the Chebychev functional may be obtained from (2.12) and (2.18)
for general functionsg. The following two sections investigate the exact evaluation (2.12) for
specific functions forg (·).

3. RESULTS I NVOLVING M OMENTS

In this section bounds on thenth moment about a pointγ are investigated. Define forn a
nonnegative integer,

(3.1) Mn (γ) :=

∫ b

a

(x− γ)n h (x) dx, γ ∈ R.

If γ = 0 thenMn (0) are the moments about the origin while takingγ = M1 (0) gives the
central moments. Further the expectation of a continuous random variable is given by

(3.2) E (X) =

∫ b

a

h (x) dx,
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8 P. CERONE

whereh (x) is the probability density function of the random variableX and soE (X) =
M1 (0). Also, the variance of the random variableX, σ2 (X) is given by

(3.3) σ2 (X) = E
[
(X − E (X))2] =

∫ b

a

(x− E (X))2 h (x) dx,

which may be seen to be the second moment about the mean, namely

σ2 (X) = M2 (M1 (0)) .

The following corollary is valid.

Corollary 3.1. Letf : [a, b] → R be integrable on[a, b], then

(3.4)

∣∣∣∣Mn (γ)− Bn+1 − An+1

n+ 1
M (f)

∣∣∣∣

≤



sup
t∈[a,b]

|φ (t)| · 1
n+1

b∨
a

(f) , for f of bounded variation on[a, b] ,

L

n+ 1

∫ b

a
|φ (t)| dt, for f L− Lipschitzian,

1

n+ 1

∫ b

a
|φ (t)| df (t) , for f monotonic nondecreasing.

whereMn (γ) is as given by (3.1),M (f) is the integral mean off as defined in (1.2),

B = b− γ, A = a− γ

and

(3.5) φ (t) = (t− γ)n −
[(

t− a

b− a

)
(b− γ)n+1 +

(
b− t

b− a

)
(a− γ)n+1

]
.

Proof. From (2.12) takingg (t) = (t− γ)n then using (1.1) and (1.2) gives

(b− a) |T (f, (t− γ)n)| =
∣∣∣∣Mn (γ)− Bn+1 − An+1

n+ 1
M (f)

∣∣∣∣ .
The right hand side is obtained on noting that forg (t) = (t− γ)n, φ (t) = −ψ(t)

b−a . �

Remark 3.2. It should be noted here that Cerone and Dragomir [2] obtained bounds on the left
hand expression forf ′ ∈ Lp [a, b], p ≥ 1. They obtained the following Lemmas which will
prove useful in procuring expressions for the bounds in (3.4) in a more explicit form.

Lemma 3.3. Letφ (t) be as defined by (3.5), then

(3.6) φ (t)



< 0


n odd, anyγ andt ∈ (a, b)

n even

{
γ < a, t ∈ (a, b)
a < γ < b, t ∈ [c, b)

> 0, n even

{
γ > b, t ∈ (a, b)
a < γ < b, t ∈ (a, c)
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AN IDENTITY FOR THE CHEBYCHEV FUNCTIONAL 9

whereφ (c) = 0, a < c < b and

c


> γ, γ < a+b

2

= γ, γ = a+b
2

< γ, γ > a+b
2
.

Lemma 3.4. For φ (t) as given by (3.5) then

(3.7)
∫ b

a

|φ (t)| dt

=



B−A
2

[Bn+1 − An+1]− Bn+2−An+2

n+2
,

{
n odd and anyγ
n even andγ < a

;

2Cn+2−Bn+2−An+2

n+2
+ 1

2(b−a)

{[
(b− a)2 − 2 (c− a)2]Bn+1

+
[
2 (b− c)2 − (b− a)2]}An+1, n even anda < γ < b;

Bn+2−An+2

n+2
− B−A

2
[Bn+1 − An+1] , n even andγ > b,

where

(3.8)


B = b− γ, A = a− γ, C = c− γ,

C1 =
∫ c

a
C (t) dt, C2 =

∫ b

c
C (t) dt,

with C (t) =
(
t−a
b−a

)
Bn+1 +

(
b−t
b−a

)
An+1

andφ (c) = 0 with a < c < b.

Lemma 3.5. For φ (t) as defined by (3.5), then

(3.9) sup
t∈[a,b]

∣∣∣φ̃ (t)
∣∣∣ =



C (t∗)− Bn+1−An+1

(n+1)(B−A)
, n odd,n even andγ < a;

Bn+1−An+1

(n+1)(B−A)
− C (t∗) n even andγ > b;

m1+m2

2
+

∣∣m1−m2

2

∣∣ n even anda < γ < b,

where

(3.10) (t∗ − γ)n =
Bn+1 − An+1

(n+ 1) (B − A)
,

C (t) is as defined in (3.8),m1 = φ̃ (t∗1),m2 = −φ̃ (t∗2) andt∗, t∗1, t
∗
2 satisfy (3.10) witht∗1 < t∗2.

The following lemma is required to determine the bound in (3.4) whenf is monotonic non-
decreasing. This was not covered in Cerone and Dragomir [2] since they obtained bounds
assuming thatf were differentiable.
Lemma 3.6. The following result holds forφ (t) as defined by (3.5),

(3.11)
1

n+ 1

∫ b

a

|φ (t)| df =


χn (a, b) , n odd orn even andγ < a,

−χn (a, b) , n even andγ > b,

χn (c, b)− χn (a, c) , n even anda < γ < b
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10 P. CERONE

and forf : [a, b] → R, monotonic nondecreasing

(3.12)
1

n+ 1

∫ b

a

|φ (t)| df

≤



B (Bn − 1)− A (An − 1)

n+ 1
f (b) , n odd orn even

andγ < a;
A (An − 1)−B (Bn − 1)

n+ 1
f (b) , n even andγ > b;

[
Bn+1 − Cn+1 − (Bn − An)

b− a
(b− c)

]
f (b)

n+ 1
n even and

+

[
(Bn − An)

b− a
(c− a)− (Cn+1 − An+1)

]
f (a)

n+ 1
, a < γ < b,

where

χn (a, b) =

∫ b

a

[
(t− γ)n − (Bn − An)

(n+ 1) (b− a)

]
f (t) dt,(3.13)

A = a− γ, B = b− γ, C = c− γ.

Proof. Let α, β ∈ [a, b] and

χn (α, β) =
1

n+ 1

∫ β

α

|φ (t)| df

=
φ (α) f (α)− φ (β) f (β)

n+ 1
−

∫ β

α

[
(t− γ)n − (Bn − An)

(n+ 1) (b− a)

]
f (t) dt

andχn (a, b) is as given by (3.13) sinceφ (a) = φ (b) = 0.
Further, using the results of Lemma 3.3 as represented in (3.6), and, the fact that

1

n+ 1

∫ β

α

|φ (t)| df =

 χ (α, β) , φ (t) < 0, t ∈ [α, β]

−χ (α, β) , φ (t) > 0, t ∈ [α, β]

gives the results as stated.
We now use the fact thatf is monotonic nondecreasing so that from (3.13)

χn (a, b) ≤ f (b)

∫ b

a

[
(t− γ)n − Bn − An

(n+ 1) (b− a)

]
dt.

Further,

χn (c, b) ≤ f (b)

∫ b

c

[
(t− γ)n − Bn − An

(n+ 1) (b− a)

]
dt

= f (b)

[
Bn+1 − Cn+1

n+ 1
− (Bn − An) (b− c)

(n+ 1) (b− a)

]
and

χn (a, c) ≥ f (a)

∫ c

a

[
(t− γ)n − Bn − An

(n+ 1) (b− a)

]
dt

=

[
Cn+1 − An+1

n+ 1
− (Bn − An) (c− a)

(n+ 1) (b− a)

]
f (a)

so that the proof of the lemma is now complete. �
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The following corollary gives bounds for the expectation.
Corollary 3.7. Let f : [a, b] → R+ be a probability density function associated with a random
variableX. Then the expectationE (X) satisfies the inequalities

(3.14)

∣∣∣∣E (X)− a+ b

2

∣∣∣∣ ≤



(b− a)3

6

b∨
a

(f) , f of bounded variation,

(
b− a

2

)2

· L
2
, f L− Lipschitzian,

b− a

2
[a+ b− 1] f (b) , f monotonic nondecreasing.

Proof. Takingn = 1 in Corollary 3.1 and using Lemmas 3.3 – 3.6 gives the results after some
straightforward algebra. In particular,

φ (t) = t2 − (a+ b) t+ ab =

(
t− a+ b

2

)2

+

(
b− a

2

)2

andt∗ the one solution ofφ′ (t) = 0 is t∗ = a+b
2

. �

The following corollary gives bounds for the variance.
We shall assume thata < γ = E [X] < b.

Corollary 3.8. Let f : [a, b] → R+ be a p.d.f. associated with a random variableX. The
varianceσ2 (X) is such that

(3.15)
∣∣σ2 (X)− S

∣∣

≤



[m1 +m2 + |m2 −m1|]
∨b

a(f)

6
, f of bounded variation,{

C2

4
− 1

b−a

[
(c− a)3B3 − (b− c)2A3

]
+ (B2 + A2)

(
b−a
2

)2 − (AB)2

2

}
· L

3
, f isL− Lipschitzian,

[B3 − C3 − (a+ b) (b− c)] f(b)
3

+ [(a+ b) (c− a)− (C3 − A3)] f(a)
3
, f monotonic nondecreasing.

where

S =
(b− E (X))3 + (E (X)− a)3

3 (b− a)
,

m1 = φ
(
E (X)− S

1
2

)
, m2 = φ

(
E (X) + S

1
2

)
,

φ (t) = (t− γ)3 +

(
b− t

b− a

)
(γ − a)3 −

(
t− a

b− a

)
(b− γ)3 ,

A = a− γ, B = b− γ, C = c− γ, φ (c) = 0, a < c < b

andγ = E (X).

Proof. Takingn = 2 in Corollary 3.1 gives from (3.5)

φ (t) = (t− γ)3 +

(
b− t

b− a

)
A3 −

(
t− a

b− a

)
B3

wherea < γ = E (X) < b.
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From Lemma 3.5 and the third inequality in (3.9) withn = 2 gives

t∗1 = E [X]− S
1
2 , t∗2 = E [X] + S

1
2 ,

and hence the first inequality is shown from the first inequality in (3.4).
Now, if f is Lipschitzian, then from the second inequality in (3.4) and sincen = 2 and

a < γ = E (X) < b, the second identity in (3.7) produces the reported result given in (3.15)
after some simplification.

The last inequality is obtained from (3.12) of Lemma 3.6 withn = 2 and hence the corollary
is proved. �

4. APPROXIMATIONS FOR THE M OMENT GENERATING FUNCTION

LetX be a random variable on[a, b] with probability density functionh (x) then the moment
generating functionMX (p) is given by

(4.1) MX (p) = E
[
epX

]
=

∫ b

a

epxh (x) dx.

The following lemma will prove useful, in the proof of the subsequent corollary, as it exam-
ines the behaviour of the functionθ (t)

(4.2) (b− a) θ (t) = tAp (a, b)− [aAp (t, b) + bAp (a, t)] ,

where

(4.3) Ap (a, b) =
ebp − eap

p
.

Lemma 4.1. Let θ (t) be as defined by (4.2) and (4.3) then for anya, b ∈ R, θ (t) has the
following characteristics:

(i) θ (a) = θ (b) = 0,
(ii) θ (t) is convex forp < 0 and concave forp > 0,

(iii) there is one turning point att∗ = 1
p
ln

(
Ap(a,b)

b−a

)
anda ≤ t∗ ≤ b.

Proof. The result (i) is trivial from (4.2) using standard properties of the definite integral to give
θ (a) = θ (b) = 0.

Now,

(4.4) θ′ (t) =
Ap (a, b)

b− a
− ept, θ′′ (t) = −pept

giving θ′′ (t) > 0 for p < 0 andθ′′ (t) < 0 for p > 0 and (ii) holds.
Further, from (4.4)θ′ (t∗) = 0 where

t∗ =
1

p
ln

(
Ap (a, b)

b− a

)
.

To show thata ≤ t∗ ≤ b it suffices to show that

θ′ (a) θ′ (b) < 0

since the exponential is continuous. Hereθ′ (a) is the right derivative ata andθ′ (b) is the left
derivative atb.

Now,

θ′ (a) θ′ (b) =

(
Ap (a, b)

b− a
− eap

) (
Ap (a, b)

b− a
− ebp

)
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but
Ap (a, b)

b− a
=

1

b− a

∫ b

a

eptdt,

the integral mean over[a, b] so thatθ′ (a) > 0, andθ′ (b) < 0 for p > 0 andθ′ (a) < 0 and
θ′ (b) > 0 for p < 0, giving that there is a pointt∗ ∈ [a, b] whereθ (t∗) = 0.

Thus the lemma is now completely proved. �

Corollary 4.2. Letf : [a, b] → R be of bounded variation on[a, b] then

(4.5)

∣∣∣∣∫ b

a

eptf (t) dt− Ap (a, b)M (f)

∣∣∣∣

≤



(
m (ln (m)− 1) +

beap − aebp

b− a

) ∨b
a (f)

|p|
,

(b− a)m

[(
b− a

2

)
p− 1

]
L

|p|
for f L− Lipschitzian on[a, b] ,

p

|p|
(b− a)m [f (b)− f (a)] , f monotonic nondecreasing,

where

(4.6) m =
Ap (a, b)

b− a
=
ebp − eap

p (b− a)
.

Proof. From (2.12) takingg (t) = ept and using (1.1) and (1.2) gives

(b− a)
∣∣T (

f, ept
)∣∣(4.7)

=

∣∣∣∣∫ b

a

eptf (t) dt− Ap (a, b)M (f)

∣∣∣∣
≤


sup
t∈[a,b]

|θ (t)|
∨b
a (f) , for f of bounded variation on[a, b] ,

L
∫ b

a
|θ (t)| dt, for f L− Lipschitzian on[a, b] ,∫ b

a
|θ (t)| df (t) , f monotonic nondecreasing on[a, b] ,

where the bounds are obtained from (2.12) on noting that forg (t) = ept, θ (t) = ψ(t)
b−a is as given

by (4.2) – (4.3).
Now, using the properties ofθ (t) as expounded in Lemma 4.1 will aid in obtaining explicit

bounds from (4.7).
Firstly, from (4.2), (4.3) and (4.6)

sup
t∈[a,b]

|θ (t)| = |θ (t∗)|

=

∣∣∣∣t∗m−
[
a
Ap (t∗, b)

b− a
+ b

Ap (a, t∗)

b− a

]∣∣∣∣
=

∣∣∣∣mp ln (m)− a

p

(
ebp −m

b− a

)
− b

p

(
m− eap

b− a

)∣∣∣∣
=

∣∣∣∣mp (ln (m)− 1) +
beap − aebp

p (b− a)

∣∣∣∣ .
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In the above we have used the fact thatm ≥ 0 and thatpt∗ = ln (m). Using from Lemma 4.1
the result thatθ (t) is positive or negative fort ∈ [a, b] depending on whetherp > 0 or p < 0
respectively, the first inequality in (4.5) results.

For the second inequality we have that from (4.2), (4.3) and Lemma 4.1,∫ b

a

|θ (t)| dt =
1

|p|

∫ b

a

[
pmt−

a
(
ebp − etp

)
+ b (etp − eap)

b− a

]
dt

=
1

|p|

[
pm

(
b2 − a2

2

)
−

(
aebp − beap

)
−

∫ b

a

eptdt

]
=

1

|p|

[
pm

(
b2 − a2

2

)
−

(
aebp − beap

)
− (b− a)m

]
=

1

|p|

[
(b− a)m

(
a+ b

2
p− 1

)
−

(
aebp − beap

)]
=

1

|p|

[
ebp − eap

p

(
a+ b

2
p− 1

)
−

(
aebp − beap

)]
=

1

|p|
(
ebp − eap

) (
b− a

2
− 1

p

)
.

Using (4.6) gives the second result in (4.5) as stated.
For the final inequality in (4.5) we need to determine

∫ b

a
|θ (t)| df (t) for f monotonic nonde-

creasing. Now, from (4.2) and (4.3)∫ b

a

|θ (t)| df (t) =

∫ b

a

[
mt− beap − aebp

p (b− a)
− ept

p

]
df (t)

=
1

|p|

∫ b

a

[
pmt+

beap − aebp

b− a
− ept

]
df (t) ,

where we have used the fact thatsgn (θ (t)) = sgn (p).
Integration by parts of the Riemann-Stieltjes integral gives∫ b

a

|θ (t)| df (t)(4.8)

=
1

|p|

{(
pmt+

beap − aebp

b− a
− ept

)
f (t)

]b
a

− p

∫ b

a

[
m− ept

]
f (t) dt

}
=

p

|p|

∫ b

a

(
ept −m

)
f (t) dt.

Now, ∫ b

a

etpf (t) dt ≤ f (b)

∫ b

a

etpdt =
ebp − eap

p
f (b) = (b− a)mf (b)

and

−m
∫ b

a

f (t) dt ≤ −m (b− a) f (a)

so that combining with (4.8) gives the inequalities forf monotonic nondecreasing. �

Remark 4.3. If f is a probability density function thenM (f) = 1
b−a andf is non-negative.
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