Journal of Inequalities in Pure and Applied Mathematics

THE DISCRETE VERSION OF OSTROWSKI'S INEQUALITY IN NORMED LINEAR SPACES

S.S. DRAGOMIR

School of Communications and Informatics
Victoria University of Technology
PO Box 14428
Melbourne City MC
Victoria 8001, AUStralia.
sever@matilda.vu.edu.au
URL: http://rgmia.vu.edu.au/SSDragomirWeb.html

Received 14 May, 2001; accepted 02 July, 2001.
Communicated by R.P. Agarwal

AbSTRACT. Discrete versions of Ostrowski's inequality for vectors in normed linear spaces are given.

Key words and phrases: Discrete Ostrowski's Inequality.
2000 Mathematics Subject Classification. 26D15, 26D99.

1. Introduction

The following result is known in the literature as Ostrowski's inequality [10].
Theorem 1.1. Let $f:[a, b] \rightarrow \mathbb{R}$ be a differentiable mapping on (a, b) with the property that $\left|f^{\prime}(t)\right| \leq M$ for all $t \in(a, b)$. Then

$$
\begin{equation*}
\left|f(x)-\frac{1}{b-a} \int_{a}^{b} f(t) d t\right| \leq\left[\frac{1}{4}+\frac{\left(x-\frac{a+b}{2}\right)^{2}}{(b-a)^{2}}\right](b-a) M \tag{1.1}
\end{equation*}
$$

for all $x \in[a, b]$. The constant $\frac{1}{4}$ is the best possible in the sense that it cannot be replaced by a smaller constant.

A simple proof of this fact can be done by using the identity:

$$
\begin{equation*}
f(x)=\frac{1}{b-a} \int_{a}^{b} f(t) d t+\frac{1}{b-a} \int_{a}^{b} p(x, t) f^{\prime}(t) d t, x \in[a, b], \tag{1.2}
\end{equation*}
$$

[^0]where
\[

p(x, t):=\left\{$$
\begin{array}{lll}
t-a & \text { if } & a \leq t \leq x \\
t-b & \text { if } & x<t \leq b
\end{array}
$$\right.
\]

which also holds for absolutely continuous functions $f:[a, b] \rightarrow \mathbb{R}$.
The following Ostrowski type result for absolutely continuous functions holds (see [6] - [8]). Theorem 1.2. Let $f:[a, b] \rightarrow \mathbb{R}$ be absolutely continuous on $[a, b]$. Then, for all $x \in[a, b]$, we have:

$$
\begin{align*}
\mid f(x) & \left.-\frac{1}{b-a} \int_{a}^{b} f(t) d t \right\rvert\, \tag{1.3}\\
& \leq \begin{cases}{\left[\frac{1}{4}+\left(\frac{x-\frac{a+b}{2}}{b-a}\right)^{2}\right](b-a)\left\|f^{\prime}\right\|_{\infty}} & \text { if } f^{\prime} \in L_{\infty}[a, b] \\
\frac{1}{(p+1)^{\frac{1}{p}}}\left[\left(\frac{x-a}{b-a}\right)^{p+1}+\left(\frac{b-x}{b-a}\right)^{p+1}\right]^{\frac{1}{p}}(b-a)^{\frac{1}{p}}\left\|f^{\prime}\right\|_{q} & \text { if } \quad f^{\prime} \in L_{q}[a, b] \\
{\left[\frac{1}{2}+\left|\frac{x-\frac{a+b}{2}}{b-a}\right|\right]\left\|f^{\prime}\right\|_{1} ;} & \frac{1}{p}+\frac{1}{q}=1, p>1\end{cases}
\end{align*}
$$

where $\|\cdot\|_{r}(r \in[1, \infty])$ are the usual Lebesgue norms on $L_{r}[a, b]$, i.e.,

$$
\|g\|_{\infty}:=\text { ess } \sup _{t \in[a, b]}|g(t)|
$$

and

$$
\|g\|_{r}:=\left(\int_{a}^{b}|g(t)|^{r} d t\right)^{\frac{1}{r}}, r \in[1, \infty)
$$

The constants $\frac{1}{4}, \frac{1}{(p+1)^{\frac{1}{p}}}$ and $\frac{1}{2}$ respectively are sharp in the sense presented in Theorem 1.1
The above inequalities can also be obtained from the Fink result in [9] on choosing $n=1$ and performing some appropriate computations.

If one drops the condition of absolute continuity and assumes that f is Hölder continuous, then one may state the result (see [5]):
Theorem 1.3. Let $f:[a, b] \rightarrow \mathbb{R}$ be of $r-H$-Hölder type, i.e.,

$$
\begin{equation*}
|f(x)-f(y)| \leq H|x-y|^{r}, \text { for all } x, y \in[a, b] \tag{1.4}
\end{equation*}
$$

where $r \in(0,1]$ and $H>0$ are fixed. Then, for all $x \in[a, b]$, we have the inequality:

$$
\begin{equation*}
\left|f(x)-\frac{1}{b-a} \int_{a}^{b} f(t) d t\right| \leq \frac{H}{r+1}\left[\left(\frac{b-x}{b-a}\right)^{r+1}+\left(\frac{x-a}{b-a}\right)^{r+1}\right](b-a)^{r} . \tag{1.5}
\end{equation*}
$$

The constant $\frac{1}{r+1}$ is also sharp in the above sense.
Note that if $r=1$, i.e., f is Lipschitz continuous, then we get the following version of Ostrowski's inequality for Lipschitzian functions (with L instead of H) (see [4])

$$
\begin{equation*}
\left|f(x)-\frac{1}{b-a} \int_{a}^{b} f(t) d t\right| \leq\left[\frac{1}{4}+\left(\frac{x-\frac{a+b}{2}}{b-a}\right)^{2}\right](b-a) L \tag{1.6}
\end{equation*}
$$

Here the constant $\frac{1}{4}$ is also best.
Moreover, if one drops the condition of the continuity of the function, and assumes that it is of bounded variation, then the following result may be stated (see [2]).

Theorem 1.4. Assume that $f:[a, b] \rightarrow \mathbb{R}$ is of bounded variation and denote by $\bigvee_{a}^{b}(f)$ its total variation. Then

$$
\begin{equation*}
\left|f(x)-\frac{1}{b-a} \int_{a}^{b} f(t) d t\right| \leq\left[\frac{1}{2}+\left|\frac{x-\frac{a+b}{2}}{b-a}\right|\right] \bigvee_{a}^{b}(f) \tag{1.7}
\end{equation*}
$$

for all $x \in[a, b]$. The constant $\frac{1}{2}$ is the best possible.
If we assume more about f, i.e., f is monotonically increasing, then the inequality (1.7) may be improved in the following manner [3] (see also [1]).
Theorem 1.5. Let $f:[a, b] \rightarrow \mathbb{R}$ be monotonic nondecreasing. Then for all $x \in[a, b]$, we have the inequality:

$$
\begin{align*}
\mid f(x)- & \left.\frac{1}{b-a} \int_{a}^{b} f(t) d t \right\rvert\, \tag{1.8}\\
& \leq \frac{1}{b-a}\left\{[2 x-(a+b)] f(x)+\int_{a}^{b} \operatorname{sgn}(t-x) f(t) d t\right\} \\
& \leq \frac{1}{b-a}\{(x-a)[f(x)-f(a)]+(b-x)[f(b)-f(x)]\} \\
& \leq\left[\frac{1}{2}+\left|\frac{x-\frac{a+b}{2}}{b-a}\right|\right][f(b)-f(a)] .
\end{align*}
$$

All the inequalities in (1.8) are sharp and the constant $\frac{1}{2}$ is the best possible.
For other recent results including Ostrowski type inequalities for n-time differentiable functions, visit the RGMIA website at http://rgmia.vu.edu.au/database.html.

In this paper we point out some discrete Ostrowski type inequalities for vectors in normed linear spaces.

2. Some Identities

The following lemma holds.
Lemma 2.1. Let $x_{i}(i=1, \ldots, n)$ be vectors in X. Then we have the representation

$$
\begin{equation*}
x_{i}=\frac{1}{n} \sum_{j=1}^{n} x_{j}+\frac{1}{n} \sum_{j=1}^{n} p(i, j) \Delta x_{j}, \quad i \in\{1, \ldots, n\}, \tag{2.1}
\end{equation*}
$$

where

$$
\begin{equation*}
p(1, j)=j-n \text { if } 1 \leq j \leq n-1 ; \tag{2.2}
\end{equation*}
$$

and

$$
p(i, j)= \begin{cases}j & \text { if } \quad 1 \leq j \leq i-1 \tag{2.4}\\ j-n & \text { if } \quad i \leq j \leq n-1\end{cases}
$$

where $2 \leq i \leq n-1$ and $1 \leq j \leq n-1$.

Proof. For $i=1$, we have to prove that

$$
\begin{equation*}
x_{1}=\frac{1}{n} \sum_{j=1}^{n} x_{j}+\frac{1}{n} \sum_{j=1}^{n}(j-n) \Delta x_{j} . \tag{2.5}
\end{equation*}
$$

Using the summation by parts formula, we have

$$
\begin{aligned}
\sum_{j=1}^{n}(j-n) \Delta x_{j} & =\left.(j-n) x_{j}\right|_{j=1} ^{n}-\sum_{j=1}^{n-1} \Delta(j-n) x_{j+1} \\
& =(n-1) x_{1}-\sum_{j=1}^{n-1} x_{j+1} \\
& =n x_{1}-\sum_{j=1}^{n} x_{j}
\end{aligned}
$$

and the formula (2.5) is proved.
For $i=n$, we can prove similarly that

$$
\begin{equation*}
x_{n}=\frac{1}{n} \sum_{j=1}^{n} x_{j}+\frac{1}{n} \sum_{j=1}^{n-1} j \Delta x_{j} . \tag{2.6}
\end{equation*}
$$

Let $2 \leq i \leq n-1$. We have

$$
\begin{align*}
\sum_{j=1}^{n-1} p(i, j) \Delta x_{j} & =\sum_{j=1}^{i-1} p(i, j) \Delta x_{j}+\sum_{j=i}^{n-1} p(i, j) \Delta x_{j} \tag{2.7}\\
& =\sum_{j=1}^{i-1} i \Delta x_{j}+\sum_{j=i}^{n-1}(j-n) \Delta x_{j}
\end{align*}
$$

Using the summation by parts formula, we have

$$
\begin{align*}
\sum_{j=1}^{i-1} i \Delta x_{j} & =\left.j x_{j}\right|_{j=i} ^{n}-\sum_{j=1}^{i-1} \Delta(i) x_{j+1} \tag{2.8}\\
& =i x_{i}-x_{1}-\sum_{j=1}^{i-1} x_{j+1} \\
& =(i-1) x_{i}-\sum_{j=1}^{i-1} x_{j}
\end{align*}
$$

and

$$
\begin{align*}
\sum_{j=i}^{n-1}(j-n) \Delta x_{j} & =\left.(j-n) x_{j}\right|_{j=i} ^{n}-\sum_{j=i}^{n-1} \Delta(j-n) x_{j+1} \tag{2.9}\\
& =(n-i) x_{i}-\sum_{j=i}^{n-1} x_{j+1} \\
& =(n-i+1) x_{i}-\sum_{j=i}^{n} x_{j} .
\end{align*}
$$

Using (2.7) - (2.9), we deduce

$$
\begin{aligned}
\sum_{j=1}^{n-1} p(i, j) \Delta x_{j} & =(i-1) x_{i}-\sum_{j=1}^{i-1} x_{j}+(n-i+1) x_{i}-\sum_{j=i}^{n} x_{j} \\
& =n x_{i}-\sum_{j=1}^{n} x_{j}
\end{aligned}
$$

and the identity (2.1) is proved.
The following corollaries hold.
Corollary 2.2. We have the identity

$$
\begin{equation*}
\frac{x_{1}+x_{n}}{2}=\frac{1}{n} \sum_{j=1}^{n} x_{j}+\frac{1}{n} \sum_{j=1}^{n}\left(j-\frac{n}{2}\right) \Delta x_{j} . \tag{2.10}
\end{equation*}
$$

Corollary 2.3. Let $n=2 m+1$. Then we have

$$
\begin{equation*}
x_{m+1}=\frac{1}{2 m+1} \sum_{j=1}^{2 m+1} x_{j}+\frac{1}{2 m+1} \sum_{j=1}^{2 m} p_{m}(j) \Delta x_{j}, \tag{2.11}
\end{equation*}
$$

where

$$
p_{m}(j)= \begin{cases}j & \text { if } 1 \leq j \leq m \\ j-2 m-1 & \text { if } m+1 \leq j \leq 2 m\end{cases}
$$

3. Discrete Ostrowski's Inequality

The following discrete inequality of Ostrowski type holds.
Theorem 3.1. Let $(X,\|\cdot\|)$ be a normed linear space and $x_{i}(i=1, \ldots, n)$ be vectors in X. Then we have the inequality

$$
\begin{equation*}
\left\|x_{i}-\frac{1}{n} \sum_{k=1}^{n} x_{k}\right\| \leq \frac{1}{n}\left[\left(i-\frac{n+1}{2}\right)^{2}+\frac{n^{2}-1}{4}\right] \max _{k=1, \ldots, n-1}\left\|\Delta x_{k}\right\|, \tag{3.1}
\end{equation*}
$$

for all $i \in\{1, \ldots, n\}$. The constant $c=\frac{1}{4}$ in the right hand side is best in the sense that it cannot be replaced by a smaller one.

Proof. We use the representation (2.1) and the generalised triangle inequality to obtain

$$
\begin{aligned}
\left\|x_{i}-\frac{1}{n} \sum_{k=1}^{n} x_{k}\right\| & =\frac{1}{n}\left\|\sum_{k=1}^{n-1} p(i, k) \Delta x_{k}\right\| \\
& \leq \frac{1}{n} \sum_{k=1}^{n-1}|p(i, k)|\left\|\Delta x_{k}\right\| \\
& \leq \max _{k=1, \ldots, n-1}\left\|\Delta x_{k}\right\| \times \frac{1}{n} \sum_{k=1}^{n-1}|p(i, k)| .
\end{aligned}
$$

If $i=1$, then we have

$$
\sum_{k=1}^{n-1}|p(1, k)|=\sum_{k=1}^{n-1}|k-n|=\sum_{k=1}^{n-1} k=\frac{n(n-1)}{2}
$$

and as

$$
\left(1-\frac{n+1}{2}\right)^{2}+\frac{n^{2}-1}{4}=\frac{n(n-1)}{2}, \text { for } n \geq 1
$$

the inequality $\sqrt{3.1}$ is valid for $i=1$.
Let $2 \leq i \leq n-1$. Then

$$
\begin{aligned}
\sum_{k=1}^{n-1}|p(i, k)| & =\sum_{k=1}^{i-1}|p(i, k)|+\sum_{k=i}^{n-1}|p(i, k)| \\
& =\sum_{k=1}^{i-1} k+\sum_{k=i}^{n-1}(n-k) \\
& =\frac{(i-1) i}{2}+n(n-1-i+1)-\left(\sum_{k=1}^{n-1} k-\sum_{k=1}^{i-1} k\right) \\
& =\frac{(i-1) i}{2}+n(n-i)-\left(\frac{n(n-1)}{2}-\frac{i(i-1)}{2}\right) \\
& =\frac{1}{2}\left(2 i^{2}+n^{2}-2 n i+n\right) \\
& =\left(i-\frac{n+1}{2}\right)^{2}+\frac{n^{2}-1}{4}
\end{aligned}
$$

and the inequality (3.1) is also proved for $i \in\{2, \ldots, n-1\}$.
For $i=n$, we have $p(n, k)=k, k=1, \ldots, n-1$ giving

$$
\sum_{k=1}^{n-1}|p(n, k)|=\sum_{k=1}^{n-1} k=\frac{n(n-1)}{2}
$$

and as

$$
\left(n-\frac{n+1}{2}\right)^{2}+\frac{n^{2}-1}{4}=\frac{n(n-1)}{2}
$$

the inequality (3.2) is also valid for $i=n$.
To prove the sharpness of the constant $c=\frac{1}{4}$, assume that 3.1 holds with a constant $c>0$, i.e.,

$$
\begin{equation*}
\left\|x_{i}-\frac{1}{n} \sum_{k=1}^{n} x_{k}\right\| \leq \frac{1}{n}\left[\left(i-\frac{n+1}{2}\right)^{2}+c\left(n^{2}-1\right)\right] \max _{k=1, \ldots, n-1}\left\|\Delta x_{k}\right\| \tag{3.2}
\end{equation*}
$$

for any $x_{k}(k=1, \ldots, n)$ in X.
Let $x_{k}=x_{1}+(k-1) r, k=1, \ldots, n, r \in X, r \neq 0, x_{1} \neq 0$ and $i=1$ in (3.2). Then we get

$$
\begin{equation*}
\left\|x_{1}-\frac{1}{n} \sum_{k=1}^{n}\left(x_{1}+(k-1) r\right)\right\| \leq \frac{1}{n}\left[\frac{(n-1)^{2}}{4}+c\left(n^{2}-1\right)\right]\|r\| \tag{3.3}
\end{equation*}
$$

and as

$$
\sum_{k=1}^{n}\left(x_{1}+(k-1) r\right)=n x_{1}+\frac{n(n-1)}{2} r,
$$

then from (3.3) we deduce

$$
\left\|\left(\frac{n-1}{2}\right) \cdot r\right\| \leq \frac{1}{n}\left[\frac{(n-1)^{2}}{4}+c\left(n^{2}-1\right)\right]\|r\|
$$

from where we get

$$
\frac{1}{2} \leq \frac{1}{n}\left[\frac{n-1}{4}+c(n+1)\right]
$$

i.e.,

$$
n+1 \leq 4 c(n+1)
$$

which implies that $c \geq \frac{1}{4}$, and the theorem is proved.
Corollary 3.2. Under the above assumptions and if $n=2 m+1$, then we have the inequality

$$
\begin{equation*}
\left\|x_{m+1}-\frac{1}{2 m+1} \sum_{k=1}^{2 m+1} x_{k}\right\| \leq \frac{m(m+1)}{2 m+1} \max _{k=1, \ldots, 2 m}\left\|\Delta x_{k}\right\| . \tag{3.4}
\end{equation*}
$$

The proof is obvious by the above Theorem 3.1 for $i=m+1$.
The following corollary also holds.
Corollary 3.3. Under the above assumptions, we have:
a) If $n=2 k$, then

$$
\begin{equation*}
\left\|\frac{x_{1}+x_{2 k}}{2}-\frac{1}{2 k} \sum_{j=1}^{2 k} x_{j}\right\| \leq \frac{1}{2}(k-1) \max _{j=1, \ldots, 2 k-1}\left\|\Delta x_{j}\right\| . \tag{3.5}
\end{equation*}
$$

b) If $n=2 k+1$, then

$$
\begin{equation*}
\left\|\frac{x_{1}+x_{2 k+1}}{2}-\frac{1}{2 k+1} \sum_{j=1}^{2 k+1} x_{j}\right\| \leq \frac{2 k^{2}+2 k+1}{2(2 k+1)} \max _{j=1, \ldots, 2 k}\left\|\Delta x_{j}\right\| . \tag{3.6}
\end{equation*}
$$

Proof. The proof is as follows.
a) If $n=2 k$, then by Corollary 2.2, we have

$$
\begin{aligned}
\left\|\frac{x_{1}+x_{2 k}}{2}-\frac{1}{2 k} \sum_{j=1}^{2 k} x_{j}\right\| & \leq \frac{1}{2 k} \sum_{j=1}^{2 k-1}|j-k|\left\|\Delta x_{j}\right\| \\
& \leq \frac{1}{2 k} \max _{j=1, \ldots, 2 k-1}\left\|\Delta x_{j}\right\| \sum_{j=1}^{2 k-1}|j-k| \\
& =\frac{1}{2 k} \max _{j=1, \ldots, 2 k-1}\left\|\Delta x_{j}\right\|\left(\sum_{j=1}^{k}(k-j)+\sum_{j=k+1}^{2 k-1}(j-k)\right) \\
& =\frac{1}{k} \max _{j=1, \ldots, 2 k-1}\left\|\Delta x_{j}\right\| \frac{(k-1) k}{2} \\
& =\frac{1}{2}(k-1) \max _{j=1, \ldots, 2 k-1}\left\|\Delta x_{j}\right\|,
\end{aligned}
$$

and the inequality (3.5) is proved.
b) If $n=2 k+1$, then by Corollary 2.2 , we have

$$
\begin{aligned}
& \left\|\frac{x_{1}+x_{2 k+1}}{2}-\frac{1}{2 k+1} \sum_{j=1}^{2 k+1} x_{j}\right\| \\
& \quad \leq \frac{1}{2 k+1} \sum_{j=1}^{2 k+1}\left|j-\frac{2 k+1}{2}\right|\left\|\Delta x_{j}\right\| \\
& \quad \leq \frac{1}{2 k+1} \max _{j=1, \ldots, 2 k}\left\|\Delta x_{j}\right\| \sum_{j=1}^{2 k+1}\left|j-k-\frac{1}{2}\right| \\
& \quad=\frac{1}{2 k+1} \max _{j=1, \ldots, 2 k}\left\|\Delta x_{j}\right\|\left[\sum_{j=1}^{k}\left(k+\frac{1}{2}-j\right)+\sum_{j=k+1}^{2 k+1}\left(j-k-\frac{1}{2}\right)\right] \\
& \quad=\frac{1}{2 k+1} \max _{j=1, \ldots, 2 k}\left\|\Delta x_{j}\right\|\left[\frac{1}{2} k+\sum_{j=1}^{k}(k-j)-\frac{1}{2}(k+1)+\sum_{j=k+1}^{2 k+1}(j-k)\right] \\
& \quad=\frac{1}{2 k+1} \max _{j=1, \ldots, 2 k}\left\|\Delta x_{j}\right\|\left[\frac{k^{2}-k+k^{2}+3 k+2-1}{2}\right] \\
& \quad=\max _{j=1, \ldots, 2 k}\left\|\Delta x_{j}\right\| \frac{2 k^{2}+2 k+1}{2(2 k+1)}
\end{aligned}
$$

and the inequality (3.6) is proved.

The following result including a version of a discrete Ostrowski inequality for $l_{p}-$ norms of $\left\{\Delta x_{i}\right\}_{i=\overline{1, n-1}}$ also holds.
Theorem 3.4. Let $(X,\|\cdot\|)$ be a normed linear space and $x_{i}(i=1, \ldots, n)$ be vectors in X. Then we have the inequality

$$
\begin{equation*}
\left\|x_{i}-\frac{1}{n} \sum_{k=1}^{n} x_{k}\right\| \leq \frac{1}{n}\left[s_{\alpha}(i-1)+s_{\alpha}(n-i)\right]^{\frac{1}{\alpha}}\left[\sum_{k=1}^{n-1}\left\|\Delta x_{k}\right\|^{\beta}\right]^{\frac{1}{\beta}} \tag{3.7}
\end{equation*}
$$

for all $\alpha>1, \frac{1}{\alpha}+\frac{1}{\beta}=1$, where $s_{\alpha}(\cdot)$ denotes the sum:

$$
s_{\alpha}(m):=\sum_{j=1}^{m} j^{\alpha} .
$$

When $m=0$, the sum is assumed to be zero.
Proof. Using representation (2.2) and the generalised triangle inequality, we have:

$$
\begin{align*}
\left\|x_{i}-\frac{1}{n} \sum_{k=1}^{n} x_{k}\right\| & =\frac{1}{n}\left\|\sum_{k=1}^{n-1} p(i, k) \Delta x_{k}\right\| \tag{3.8}\\
& \leq \frac{1}{n} \sum_{k=1}^{n-1}|p(i, k)|\left\|\Delta x_{k}\right\|=: B
\end{align*}
$$

Using Hölder's discrete inequality, we have

$$
\begin{equation*}
B \leq \frac{1}{n}\left(\sum_{k=1}^{n-1}|p(i, k)|^{\alpha}\right)^{\frac{1}{\alpha}}\left(\sum_{k=1}^{n-1}\left\|\Delta x_{k}\right\|^{\beta}\right)^{\frac{1}{\beta}} . \tag{3.9}
\end{equation*}
$$

However,

$$
\begin{aligned}
\sum_{k=1}^{n-1}|p(i, k)|^{\alpha} & =\sum_{k=1}^{i-1}|p(i, k)|^{\alpha}+\sum_{k=i}^{n-1}|p(i, k)|^{\alpha} \\
& =\sum_{k=1}^{i-1} k^{\alpha}+\sum_{k=i}^{n-1}(n-k)^{\alpha} \\
& =1^{\alpha}+\cdots+(i-1)^{\alpha}+(n-i)^{\alpha}+\cdots+1^{\alpha} \\
& =s_{\alpha}(i-1)+s_{\alpha}(n-i)
\end{aligned}
$$

and the inequality (3.7) then follows by (3.8) and (3.9).
The case of $\alpha=\beta=2$ can be useful in practical applications.
Corollary 3.5. With the assumptions of Theorem 3.4 we have

$$
\begin{equation*}
\left\|x_{i}-\frac{1}{n} \sum_{k=1}^{n} x_{k}\right\| \leq \frac{1}{\sqrt{n}}\left[\left(i-\frac{n+1}{2}\right)^{2}+\frac{n^{2}-1}{12}\right]^{\frac{1}{2}}\left[\sum_{k=1}^{n-1}\left\|\Delta x_{k}\right\|^{2}\right]^{\frac{1}{2}} . \tag{3.10}
\end{equation*}
$$

Proof. For $\alpha=2$, we have

$$
s_{2}(i-1)=\sum_{k=1}^{i-1} k^{2}=\frac{i(i-1)(2 i-1)}{6}
$$

and

$$
s_{2}(n-i)=\sum_{k=1}^{n-i} k^{2}=\frac{(n-i)(n-i+1)[2(n-i)+1]}{6} .
$$

As simple algebra proves that

$$
s_{2}(i-1)+s_{2}(n-i)=n\left[\left(i-\frac{n+1}{2}\right)^{2}+\frac{n^{2}-1}{12}\right],
$$

then, by (3.7) we deduce the desired inequality (3.10).
Corollary 3.6. Under the above assumptions and if $n=2 m+1$, then we have the inequality:

$$
\begin{equation*}
\left\|x_{m+1}-\frac{1}{2 m+1} \sum_{k=1}^{2 m+1} x_{k}\right\| \leq \frac{2^{\frac{1}{\alpha}}}{2 m+1}\left[s_{\alpha}(m)\right]^{\frac{1}{\alpha}}\left[\sum_{k=1}^{2 m}\left\|\Delta x_{k}\right\|^{\beta}\right]^{\frac{1}{\beta}} \tag{3.11}
\end{equation*}
$$

for $\alpha>1, \frac{1}{\alpha}+\frac{1}{\beta}=1$.
In particular, for $\alpha=\beta=2$, we have

$$
\begin{equation*}
\left\|x_{m+1}-\frac{1}{2 m+1} \sum_{k=1}^{2 m+1} x_{k}\right\| \leq \sqrt{\frac{m(m+1)}{3(2 m+1)}}\left[\sum_{k=1}^{2 m}\left\|\Delta x_{k}\right\|^{2}\right]^{\frac{1}{2}} . \tag{3.12}
\end{equation*}
$$

The following result providing an upper bound in terms of the $l_{1}-$ norm of $\left(\Delta x_{k}\right)_{k=\overline{1, n-1}}$ also holds.

Theorem 3.7. Let $(X,\|\cdot\|)$ be a normed linear space and $x_{i}(i=1, \ldots, n)$ be vectors in X. Then we have the inequality

$$
\begin{equation*}
\left\|x_{i}-\frac{1}{n} \sum_{k=1}^{n} x_{k}\right\| \leq \frac{1}{n}\left[\frac{1}{2}(n-1)+\left|i-\frac{n+1}{2}\right|\right] \sum_{k=1}^{n-1}\left\|\Delta x_{k}\right\| \tag{3.13}
\end{equation*}
$$

for all $i \in\{1, \ldots, n\}$.
Proof. As in Theorem 3.4, we have

$$
\begin{equation*}
\left\|x_{i}-\frac{1}{n} \sum_{k=1}^{n} x_{k}\right\| \leq B \tag{3.14}
\end{equation*}
$$

where

$$
B:=\frac{1}{n} \sum_{k=1}^{n-1}|p(i, k)|\left\|\Delta x_{k}\right\| .
$$

It is obvious that

$$
\begin{aligned}
B & =\frac{1}{n}\left[\sum_{k=1}^{i-1} k\left\|\Delta x_{k}\right\|+\sum_{k=i}^{n-1}(n-k)\left\|\Delta x_{k}\right\|\right] \\
& \leq \frac{1}{n}\left[(i-1) \sum_{k=1}^{i-1}\left\|\Delta x_{k}\right\|+(n-i) \sum_{k=i}^{n-1}\left\|\Delta x_{k}\right\|\right] \\
& =\frac{1}{n} \max \{i-1, n-i\}\left[\sum_{k=1}^{i-1}\left\|\Delta x_{k}\right\|+\sum_{k=i}^{n-1}\left\|\Delta x_{k}\right\|\right] \\
& =\frac{1}{n}\left[\frac{1}{2}(n-1)+\frac{1}{2}|n-i-i+1|\right] \sum_{k=1}^{n-1}\left\|\Delta x_{k}\right\| \\
& =\frac{1}{n}\left[\frac{1}{2}(n-1)+\left|i-\frac{n+1}{2}\right|\right] \sum_{k=1}^{n-1}\left\|\Delta x_{k}\right\|
\end{aligned}
$$

and the inequality (3.13) is proved.
The following corollary contains the best inequality we can get from (3.13).
Corollary 3.8. Let $(X,\|\cdot\|)$ be as above and $n=2 m+1$. Then we have the inequality

$$
\begin{equation*}
\left\|x_{m+1}-\frac{1}{2 m+1} \sum_{k=1}^{2 m+1} x_{k}\right\| \leq \frac{m}{2 m+1} \sum_{k=1}^{2 m}\left\|\Delta x_{k}\right\| . \tag{3.15}
\end{equation*}
$$

4. Weighted Ostrowski Inequality

We start with the following theorem.

Theorem 4.1. Let $(X,\|\cdot\|)$ be a normed linear space, $x_{i} \in X(i=1, \ldots, n)$ and $p_{i} \geq 0$ $(i=1, \ldots, n)$ with $\sum_{i=1}^{n} p_{i}=1$. Then we have the inequality:

$$
\begin{align*}
\| x_{i}- & \sum_{j=1}^{n} p_{j} x_{j} \| \tag{4.1}\\
& \leq \sum_{j=1}^{n} p_{j}|j-i| \cdot \max _{k=\overline{1, n-1}}\left\|\Delta x_{k}\right\| \\
& \leq \max _{k=1, n-1}\left\|\Delta x_{k}\right\| \times\left\{\begin{array}{l}
\frac{n-1}{2}+\left|i-\frac{n+1}{2}\right|, \\
\left(\sum_{j=1}^{n}|j-i|^{p}\right)^{\frac{1}{p}}\left(\sum_{j=1}^{n} p_{j}^{q}\right)^{\frac{1}{q}} \quad \text { if } p>1, \frac{1}{p}+\frac{1}{q}=1, \\
{\left[\frac{n^{2}-1}{4}+\left(i-\frac{n+1}{2}\right)^{2}\right] \max _{j=1, n}\left\{p_{j}\right\}}
\end{array}\right.
\end{align*}
$$

for all $i \in\{1, \ldots, n\}$.
Proof. Using the properties of the norm, we have

$$
\begin{align*}
\sum_{j=1}^{n} p_{j}\left\|x_{i}-x_{j}\right\| & \geq\left\|\sum_{j=1}^{n} p_{j}\left(x_{i}-x_{j}\right)\right\| \tag{4.2}\\
& =\left\|x_{i} \sum_{j=1}^{n} p_{j}-\sum_{j=1}^{n} p_{j} x_{j}\right\| \\
& =\left\|x_{i}-\sum_{j=1}^{n} p_{j} x_{j}\right\|
\end{align*}
$$

for all $i \in\{1, \ldots, n\}$.
On the other hand,

$$
\begin{align*}
\sum_{j=1}^{n} p_{j}\left\|x_{i}-x_{j}\right\| & =\sum_{j=1}^{i-1} p_{j}\left\|x_{i}-x_{j}\right\|+\sum_{j=i+1}^{n} p_{j}\left\|x_{i}-x_{j}\right\| \tag{4.3}\\
& =\sum_{j=1}^{i-1} p_{j}\left\|\sum_{k=j}^{i-1}\left(x_{k+1}-x_{k}\right)\right\|+\sum_{j=i+1}^{n} p_{j}\left\|\sum_{l=i}^{j-1}\left(x_{l+1}-x_{l}\right)\right\| \\
& \leq \sum_{j=1}^{i-1} p_{j}\left(\sum_{k=j}^{i-1}\left\|\Delta x_{k}\right\|\right)+\sum_{j=i+1}^{n} p_{j}\left(\sum_{l=i}^{j-1}\left\|\Delta x_{l}\right\|\right)=: A
\end{align*}
$$

Now, as

$$
\sum_{k=j}^{i-1}\left\|\Delta x_{k}\right\| \leq(i-j) \max _{k=\overline{j, i-1}}\left\|\Delta x_{k}\right\| \quad(\text { where } j \leq i-1)
$$

and

$$
\sum_{l=i}^{s-1}\left\|\Delta x_{l}\right\| \leq(s-i) \max _{l=\overline{i, n-1}}\left\|\Delta x_{l}\right\| \quad(\text { where } i \leq s-1)
$$

then we deduce that

$$
\begin{aligned}
A & \leq \sum_{j=1}^{i-1} p_{j}(i-j) \cdot \max _{k=\overline{j, i-1}}\left\|\Delta x_{k}\right\|+\sum_{j=i+1}^{n} p_{j}(j-i) \cdot \max _{l=\overline{i, n-1}}\left\|\Delta x_{l}\right\| \\
& \leq \max _{k=\overline{1, n-1}}\left\|\Delta x_{k}\right\|\left[\sum_{j=1}^{i-1} p_{j}(i-j)+\sum_{j=i+1}^{n} p_{j}(j-i)\right] \\
& =\max _{k=1, n-1}\left\|\Delta x_{k}\right\| \cdot \sum_{j=1}^{n} p_{j}|i-j|
\end{aligned}
$$

and the first inequality in (4.1) is proved.
Now, we observe that

$$
\begin{aligned}
\sum_{j=1}^{n} p_{j}|i-j| & \leq \max _{j=1, n}|i-j| \sum_{j=1}^{n} p_{j} \\
& =\max _{j=1, n}|i-j| \\
& =\max \{i-1, n-i\} \\
& =\frac{n-1}{2}+\left|i-\frac{n+1}{2}\right|
\end{aligned}
$$

which proves the first part of the second inequality in (4.1).
By Hölder's discrete inequality, we also have

$$
\sum_{j=1}^{n} p_{j}|i-j| \leq\left(\sum_{j=1}^{n} p_{j}^{q}\right)^{\frac{1}{q}}\left(\sum_{j=1}^{n}|i-j|^{p}\right)^{\frac{1}{p}}
$$

where $p>q$ and $\frac{1}{p}+\frac{1}{q}=1$, and the second part of the second inequality in 4.1 holds.
Finally, we also have

$$
\sum_{j=1}^{n} p_{j}|i-j| \leq \max _{j=1, n}\left|p_{j}\right| \sum_{j=1}^{n}|i-j| .
$$

Now, let us observe that

$$
\begin{aligned}
\sum_{j=1}^{n}|i-j| & =\sum_{j=1}^{i}|i-j|+\sum_{j=i+1}^{n}|i-j| \\
& =\sum_{j=1}^{i}(i-j)+\sum_{j=i+1}^{n}(j-i) \\
& =i^{2}-\frac{i(i+1)}{2}+\sum_{j=1}^{n} j-\sum_{j=1}^{i} j-i(n-i) \\
& =\frac{n^{2}-1}{4}+\left(i-\frac{n+1}{2}\right)^{2}
\end{aligned}
$$

and the last part of the second inequality in (4.1) is proved.

Remark 4.2. In some practical applications the case $p=q=2$ in the second part of the second inequality may be useful. As

$$
\begin{aligned}
\sum_{j=1}^{n}(j-i)^{2} & =\sum_{j=1}^{n} j^{2}-2 i \sum_{j=1}^{n} j+n i^{2} \\
& =n\left[\frac{n^{2}-1}{12}+\left(i-\frac{n+1}{2}\right)^{2}\right]
\end{aligned}
$$

then we may state the inequality

$$
\begin{equation*}
\left\|x_{i}-\sum_{j=1}^{n} p_{j} x_{j}\right\| \leq \sqrt{n}\left[\frac{n^{2}-1}{12}+\left(i-\frac{n+1}{2}\right)^{2}\right]^{\frac{1}{2}}\left(\sum_{j=1}^{n} p_{j}^{2}\right)^{\frac{1}{2}} \max _{k=1, n-1}\left\|\Delta x_{k}\right\| \tag{4.4}
\end{equation*}
$$

for all $i \in\{1, \ldots, n\}$.
The following particular case was proved in a different manner in Theorem 3.1 .
Corollary 4.3. If $x_{i}(i=1, \ldots, n)$ are vectors in the normed linear space $(X,\|\cdot\|)$, then we have

$$
\begin{equation*}
\left\|x_{i}-\frac{1}{n} \sum_{j=1}^{n} x_{j}\right\| \leq \frac{1}{n}\left[\frac{n^{2}-1}{4}+\left(i-\frac{n+1}{2}\right)^{2}\right] \max _{k=\overline{1, n-1}}\left\|\Delta x_{k}\right\| . \tag{4.5}
\end{equation*}
$$

The following result also holds.
Theorem 4.4. Let $(X,\|\cdot\|)$ be a normed linear space, $x_{i} \in X(i=1, \ldots, n)$ and $p_{i} \geq 0$ $(i=1, \ldots, n)$ with $\sum_{i=1}^{n} p_{i}=1$. Then, for $\alpha>1, \frac{1}{\alpha}+\frac{1}{\beta}=1$, we have the inequality:

$$
\begin{align*}
\| x_{i}- & \sum_{j=1}^{n} p_{j} x_{j} \| \tag{4.6}\\
\leq & \sum_{j=1}^{n}|i-j|^{\frac{1}{\beta}} p_{j}\left(\sum_{k=1}^{n-1}\left\|\Delta x_{k}\right\|^{\alpha}\right)^{\frac{1}{\alpha}} \\
& \left(\begin{array}{l}
{\left[\frac{1}{2}(n-1)+\left|i-\frac{n+1}{2}\right|\right]^{\frac{1}{\beta}},} \\
\leq\left(\sum_{k=1}^{n-1}\left\|\Delta x_{k}\right\|^{\alpha}\right)^{\frac{1}{\alpha}} \times\left\{\begin{array}{l}
\left(\sum_{j=1}^{n}|i-j|^{\frac{\delta}{\beta}}\right)^{\frac{1}{\delta}}\left(\sum_{j=1}^{n} p_{j}^{\gamma}\right)^{\frac{1}{\gamma}} \text { if } \gamma>1, \frac{1}{\gamma}+\frac{1}{\delta}=1, \\
\sum_{j=1}^{n}|i-j|^{\frac{1}{\beta}} \max _{j=1, n}\left\{p_{j}\right\}
\end{array}\right.
\end{array} .\right.
\end{align*}
$$

for all $i \in\{1, \ldots, n\}$.
Proof. Using Hölder's discrete inequality, we may write that

$$
\sum_{k=j}^{i-1}\left\|\Delta x_{k}\right\| \leq(i-j)^{\frac{1}{\beta}}\left(\sum_{k=j}^{i-1}\left\|\Delta x_{k}\right\|^{\alpha}\right)^{\frac{1}{\alpha}}
$$

and

$$
\sum_{l=i}^{s-1}\left\|\Delta x_{l}\right\| \leq(s-i)^{\frac{1}{\beta}}\left(\sum_{l=i}^{s-1}\left\|\Delta x_{l}\right\|^{\alpha}\right)^{\frac{1}{\alpha}}
$$

which implies for A, as defined in the proof of Theorem 4.1, that

$$
\begin{aligned}
A & \leq \sum_{j=1}^{i-1}(i-j)^{\frac{1}{\beta}}\left(\sum_{k=j}^{i-1}\left\|\Delta x_{k}\right\|^{\alpha}\right)^{\frac{1}{\alpha}} p_{j}+\sum_{s=i+1}^{n}(s-i)^{\frac{1}{\beta}}\left(\sum_{l=i}^{s-1}\left\|\Delta x_{l}\right\|^{\alpha}\right)^{\frac{1}{\alpha}} p_{s} \\
& \leq\left(\sum_{k=1}^{i-1}\left\|\Delta x_{k}\right\|^{\alpha}\right)^{\frac{1}{\alpha}} \sum_{j=1}^{i-1}(i-j)^{\frac{1}{\beta}} p_{j}+\left(\sum_{l=i}^{n-1}\left\|\Delta x_{l}\right\|^{\alpha}\right)^{\frac{1}{\alpha}} \sum_{s=i+1}^{n}(s-i)^{\frac{1}{\beta}} p_{s} \\
& \leq\left(\sum_{k=1}^{n-1}\left\|\Delta x_{k}\right\|^{\alpha}\right)^{\frac{1}{\alpha}}\left[\sum_{j=1}^{i-1}(i-j)^{\frac{1}{\beta}} p_{j}+\sum_{s=i+1}^{n}(s-i)^{\frac{1}{\beta}} p_{s}\right] \\
& =\left(\sum_{k=1}^{n-1}\left\|\Delta x_{k}\right\|^{\alpha}\right)^{\frac{1}{\alpha}} \sum_{j=1}^{n}|i-j|^{\frac{1}{\beta}} p_{j}
\end{aligned}
$$

which proves the first inequality in (4.6).
Now it is obvious that

$$
\begin{aligned}
\sum_{j=1}^{n}|i-j|^{\frac{1}{\beta}} p_{j} & \leq \max _{j=1, n}|i-j|^{\frac{1}{\beta}} \sum_{j=1}^{n} p_{j} \\
& =\max \left\{(i-1)^{\frac{1}{\beta}},(n-i)^{\frac{1}{\beta}}\right\} \\
& =\left[\frac{1}{2}(n-1)+\left|i-\frac{n+1}{2}\right|\right]^{\frac{1}{\beta}}
\end{aligned}
$$

proving the first part of the second inequality in 4.6.
For $\gamma, \delta>1$ with $\frac{1}{\gamma}+\frac{1}{\delta}=1$, we have

$$
\sum_{j=1}^{n}|i-j|^{\frac{1}{\beta}} p_{j} \leq\left(\sum_{j=1}^{n} p_{j}^{\gamma}\right)^{\frac{1}{\gamma}}\left(\sum_{j=1}^{n}|i-j|^{\frac{\delta}{\beta}}\right)^{\frac{1}{\delta}}
$$

obtaining the second part of the second inequality in (4.6).
Finally, we observe that

$$
\sum_{j=1}^{n}|i-j|^{\frac{1}{\beta}} p_{j} \leq \max _{j=1, n}\left\{p_{j}\right\} \sum_{j=1}^{n}|i-j|^{\frac{1}{\beta}},
$$

and the theorem is proved.
Corollary 4.5. If $x_{i}(i=1, \ldots, n)$ are vectors in the normed space $(X,\|\cdot\|)$, then for all $i \in$ $\{1, \ldots, n\}$ we have:

$$
\begin{equation*}
\left\|x_{i}-\frac{1}{n} \sum_{j=1}^{n} x_{j}\right\| \leq \frac{1}{n} \sum_{j=1}^{n}|i-j|^{\frac{1}{\beta}}\left(\sum_{k=1}^{n-1}\left\|\Delta x_{k}\right\|^{\alpha}\right)^{\frac{1}{\alpha}}, \quad \alpha>1, \frac{1}{\alpha}+\frac{1}{\beta}=1 . \tag{4.7}
\end{equation*}
$$

Finally, we may state the following result as well.

Theorem 4.6. Let X, x_{i} and $p_{i}(i=1, \ldots, n)$ be as in Theorem 4.4. Then we have the inequality:

$$
\begin{align*}
\left\|x_{i}-\sum_{j=1}^{n} p_{j} x_{j}\right\| & \leq\left\{\begin{array}{l}
\max \left\{P_{i-1}, 1-P_{i}\right\} \sum_{k=1}^{n-1}\left\|\Delta x_{k}\right\| \\
\left(1-p_{i}\right) \max \left\{\sum_{k=1}^{i-1}\left\|\Delta x_{k}\right\|, \sum_{k=i}^{n-1}\left\|\Delta x_{k}\right\|\right\}
\end{array}\right. \tag{4.8}\\
& \leq\left(1-p_{i}\right) \sum_{j=1}^{n-1}\left\|\Delta x_{k}\right\|
\end{align*}
$$

for all $i \in\{1, \ldots, n\}$, where

$$
P_{m}:=\sum_{i=1}^{m} p_{i}, m=1, \ldots, n
$$

and $P_{0}:=0$.
Proof. It is obvious that

$$
\sum_{k=j}^{i-1}\left\|\Delta x_{k}\right\| \leq \sum_{k=1}^{i-1}\left\|\Delta x_{k}\right\|
$$

and

$$
\sum_{l=i}^{s-1}\left\|\Delta x_{l}\right\| \leq \sum_{l=i}^{n-1}\left\|\Delta x_{l}\right\|
$$

Then, for A as defined in the proof of Theorem 4.1, we have that

$$
\begin{aligned}
A & \leq \sum_{k=1}^{i-1}\left\|\Delta x_{k}\right\| \sum_{j=1}^{i-1} p_{j}+\sum_{l=i}^{n-1}\left\|\Delta x_{l}\right\| \sum_{j=i+1}^{n} p_{j} \\
& =: B \\
& \leq \max \left\{P_{i-1}, 1-P_{i}\right\}\left[\sum_{j=1}^{i-1}\left\|\Delta x_{j}\right\|+\sum_{j=i+1}^{n-1}\left\|\Delta x_{j}\right\|\right] \\
& =\max \left\{P_{i-1}, 1-P_{i}\right\} \sum_{k=1}^{n-1}\left\|\Delta x_{k}\right\| .
\end{aligned}
$$

Also, we observe that

$$
\begin{aligned}
B & \leq \max \left\{\sum_{j=1}^{i-1}\left\|\Delta x_{j}\right\|, \sum_{j=i+1}^{n-1}\left\|\Delta x_{j}\right\|\right\}\left(P_{i-1}+1-P_{i}\right) \\
& =\left(1-p_{i}\right) \max \left\{\sum_{k=1}^{i-1}\left\|\Delta x_{k}\right\|, \sum_{k=i}^{n-1}\left\|\Delta x_{k}\right\|\right\}
\end{aligned}
$$

and the theorem is thus proved.

Corollary 4.7. Let X and $x_{i}(i=1, \ldots, n)$ be as in Corollary 4.5. Then

$$
\left\|x_{i}-\frac{1}{n} \sum_{j=1}^{n} x_{j}\right\| \leq\left\{\begin{array}{l}
\frac{1}{n}\left[\frac{1}{2}(n-1)+\left|i-\frac{n+1}{2}\right|\right] \sum_{k=1}^{n-1}\left\|\Delta x_{k}\right\| \tag{4.9}\\
\frac{n-1}{n} \max \left\{\sum_{k=1}^{i-1}\left\|\Delta x_{k}\right\|, \sum_{k=i}^{n-1}\left\|\Delta x_{k}\right\|\right\}
\end{array}\right.
$$

for all $i \in\{1, \ldots, n\}$.

REFERENCES

[1] P. CERONE and S.S. DRAGOMIR, Midpoint type rules from an inequalities point of view, in Analytic-Computational Methods in Applied Mathematics, G.A. Anastassiou (Ed), CRC Press, New York, 2000, 135-200.
[2] S.S. DRAGOMIR, On the Ostrowski's inequality for mappings of bounded variation and applications, Math. Ineq. \& Appl., 4(1) (2001), 59-66. Preprint on line: RGMIA Res. Rep. Coll., 2(1) (1999), Article 7, http://rgmia.vu.edu.au/v2n1.html
[3] S.S. DRAGOMIR, Ostrowski's inequality for monotonous mappings and applications, J. KSIAM, 3(1) (1999), 127-135.
[4] S.S. DRAGOMIR, The Ostrowski's integral inequality for Lipschitzian mappings and applications, Comp. and Math. with Appl., 38 (1999), 33-37.
[5] S.S. DRAGOMIR, P. CERONE, J. ROUMELIOTIS and S. WANG, A weighted version of Ostrowski inequality for mappings of Hölder type and applications in numerical analysis, Bull. Math. Soc. Sci. Math. Roumanie, 42(90)(4) (1992), 301-314.
[6] S.S. DRAGOMIR and S. WANG, A new inequality of Ostrowski's type in L_{1}-norm and applications to some special means and to some numerical quadrature rules, Tamkang J. of Math., 28 (1997), 239-244.
[7] S.S. DRAGOMIR AND S. WANG, A new inequality of Ostrowski's type in L_{p}-norm, Indian J. of Math., 40(3) (1998), 245-304.
[8] S.S. DRAGOMIR AND S. WANG, Applications of Ostrowski's inequality to the estimation of error bounds for some special means and some numerical quadrature rules, Appl. Math. Lett., 11 (1998), 105-109.
[9] A.M. FINK, Bounds on the derivation of a function from its averages, Czech. Math. J., 42(117) (1992), 289-310.
[10] A. OSTROWSKI, Uber die Absolutabweichung einer differentienbaren Funktionen von ihren Integralmittelwert, Comment. Math. Hel, 10 (1938), 226-227.

[^0]: ISSN (electronic): 1443-5756
 (c) 2002 Victoria University. All rights reserved.

 042-01

