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ABSTRACT. In this paper we establish two new integral inequalities similar to that of the Grüss
inequality by using a fairly elementary analysis.
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1. I NTRODUCTION

In 1935 (see [4, p. 296]), G. Grüss proved the following integral inequality which gives an
estimation for the integral of a product in terms of the product of integrals:∣∣∣∣ 1

b− a

∫ b

a

f (x) g (x) dx− 1

b− a

∫ b

a

f (x) dx · 1

b− a

∫ b

a

g (x) dx

∣∣∣∣
≤ 1

4
(M −m) (N − n) ,

provided thatf andg are two integrable functions on[a, b] and satisfying the condition

m ≤ f (x) ≤ M, n ≤ g (x) ≤ N,

for all x ∈ [a, b] , wherem,M, n,N are given real constants.
A great deal of attention has been given to the above inequality and many papers dealing

with various generalizations, extensions and variants have appeared in the literature, see [1] –
[6] and the references cited therein. The main purpose of the present paper is to establish two
new integral inequalities similar to that of the Grüss inequality involving functions and their
higher order derivatives. The analysis used in the proof is elementary and our results provide
new estimates on inequalities of this type.
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2 B.G. PACHPATTE

2. STATEMENT OF RESULTS

In this section, we state our results to be proved in this paper. In what follows, we denote by
R, the set of real numbers and[a, b] ⊂ R, a < b.

Our main results are given in the following theorems.

Theorem 2.1. Let f, g : [a, b] → R be functions such thatf (n−1), g(n−1) are absolutely contin-
uous on[a, b] andf (n), g(n) ∈ L∞ [a, b] . Then

(2.1)

∣∣∣∣ 1

b− a

∫ b

a

f (x) g (x) dx−
(

1

b− a

∫ b

a

f (x) dx

)(
1

b− a

∫ b

a

g (x) dx

)
− 1

2 (b− a)2

∫ b

a

[(
n−1∑
k=1

Fk (x)

)
g (x) +

(
n−1∑
k=1

Gk (x)

)
f (x)

]
dx

∣∣∣∣∣
≤ 1

2 (b− a)2

∫ b

a

(
|g (x)|

∥∥f (n)
∥∥
∞ + |f (x)|

∥∥g(n)
∥∥
∞

)
An (x) dx,

where

Fk (x) =

[
(b− x)k+1 + (−1)k (x− a)k+1

(k + 1)!

]
f (k) (x) ,(2.2)

Gk (x) =

[
(b− x)k+1 + (−1)k (x− a)k+1

(k + 1)!

]
g(k) (x) ,(2.3)

An (x) =

∫ b

a

|Kn (x, t)| dt,(2.4)

in whichKn : [a, b]2 → R is given by

(2.5) Kn (x, t) =


(t− a)n

n!
if t ∈ [a, x]

(t− b)n

n!
if t ∈ (x, b]

and ∥∥f (n)
∥∥
∞ = sup

t∈[a,b]

∣∣f (n) (t)
∣∣ < ∞,∥∥g(n)

∥∥
∞ = sup

t∈[a,b]

∣∣g(n) (t)
∣∣ < ∞,

for x ∈ [a, b] andn ≥ 1 a natural number.

Theorem 2.2.Letp, q : [a, b] → R be functions such thatp(n−1), q(n−1) are absolutely continu-
ous on[a, b] andp(n), q(n) ∈ L∞ [a, b] . Then

(2.6)

∣∣∣∣ 1

b− a

∫ b

a

p (x) q (x) dx− n

(
1

b− a

∫ b

a

p (x) dx

)(
1

b− a

∫ b

a

q (x) dx

)
+

1

2 (b− a)

∫ b

a

[(
n−1∑
k=1

Pk (x)

)
q (x) +

(
n−1∑
k=1

Qk (x)

)
p (x)

]
dx

∣∣∣∣∣
≤ 1

2 (n− 1)! (b− a)2

∫ b

a

(
|q (x)|

∥∥p(n)
∥∥
∞ + |p (x)|

∥∥q(n)
∥∥
∞

)
Bn (x) dx,
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where

Pk (x) =
(n− k)

k!
· p(k−1) (a) (x− a)k − p(k−1) (b) (x− b)k

b− a
,(2.7)

Qk (x) =
(n− k)

k!
· q(k−1) (a) (x− a)k − q(k−1) (b) (x− b)k

b− a
,(2.8)

Bn (x) =

∫ b

a

∣∣(x− t)n−1 r (t, x)
∣∣ dt,(2.9)

in which

r (t, x) =

 t− a, if a ≤ t ≤ x ≤ b,

t− b, if a ≤ x < t ≤ b,

and ∥∥p(n)
∥∥
∞ = sup

t∈[a,b]

∣∣p(n) (t)
∣∣ < ∞,∥∥q(n)

∥∥
∞ = sup

t∈[a,b]

∣∣q(n) (t)
∣∣ < ∞,

for x ∈ [a, b] andn ≥ 1 is a natural number.

3. PROOF OF THEOREM 2.1

From the hypotheses onf, we have the following integral identity (see [1, p. 52]):

(3.1)
∫ b

a

f (t) dt =
n−1∑
k=0

[
(b− x)k+1 + (−1)k (x− a)k+1

(k + 1)!

]
f (k) (x)

+ (−1)n

∫ b

a

Kn (x, t) f (n) (t) dt,

for x ∈ [a, b] . In [1] the identity (3.1) is proved by mathematical induction. For a different
proof, see [6]. The identity (3.1) can be rewritten as

(3.2) f (x) =
1

b− a

∫ b

a

f (t) dt− 1

b− a

n−1∑
k=1

Fk (x)− (−1)n

b− a

∫ b

a

Kn (x, t) f (n) (t) dt.

Similarly, from the hypotheses ong we have the identity

(3.3) g (x) =
1

b− a

∫ b

a

g (t) dt− 1

b− a

n−1∑
k=1

Gk (x)− (−1)n

b− a

∫ b

a

Kn (x, t) g(n) (t) dt.
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Multiplying (3.2) byg (x) and (3.3) byf (x) and summing the resulting identities and integrat-
ing froma to b and rewriting we have

(3.4)
1

b− a

∫ b

a

f (x) g (x) dx =

(
1

b− a

∫ b

a

f (x) dx

)(
1

b− a

∫ b

a

g (x) dx

)
− 1

2 (b− a)2

∫ b

a

[(
n−1∑
k=1

Fk (x)

)
g (x) +

(
n−1∑
k=1

Gk (x)

)
f (x)

]
dx

− 1

2 (b− a)2

[∫ b

a

g (x)

{
(−1)n

b− a

∫ b

a

Kn (x, t) f (n) (t) dt

}
dx

+

∫ b

a

f (x)

{
(−1)n

b− a

∫ b

a

Kn (x, t) g(n) (t) dt

}
dx

]
.

From (3.4) we observe that∣∣∣∣ 1

b− a

∫ b

a

f (x) g (x) dx−
(

1

b− a

∫ b

a

f (x) dx

)(
1

b− a

∫ b

a

g (x) dx

)
− 1

2 (b− a)2

∫ b

a

[(
n−1∑
k=1

Fk (x)

)
g (x) +

(
n−1∑
k=1

Gk (x)

)
f (x)

]
dx

∣∣∣∣∣
≤ 1

2 (b− a)2

∫ b

a

(
|g (x)|

(∫ b

a

|Kn (x, t)|
∣∣f (n) (t)

∣∣ dt

)
+ |f (x)|

(∫ b

a

|Kn (x, t)|
∣∣g(n) (t)

∣∣ dt

))
dx

≤ 1

2 (b− a)2

∫ b

a

(
|g (x)|

∥∥f (n)
∥∥
∞ + |f (x)|

∥∥g(n)
∥∥
∞

)
An (x) ,

which is the required inequality in (2.1). The proof is complete.

4. PROOF OF THEOREM 2.2

From the hypotheses onp we have the following integral identity (see [2, p. 291]):

(4.1)
1

n

(
p (x) +

n−1∑
k=1

Pk (x)

)
− 1

b− a

∫ b

a

p (y) dy

=
1

n! (b− a)

∫ b

a

(x− t)n−1 r (t, x) p(n) (t) dt,

for x ∈ [a, b] . The identity (4.1) can be rewritten as

(4.2) p (x) =
n

b− a

∫ b

a

p (x) dx−
n−1∑
k=1

Pk (x)

+
1

(n− 1)! (b− a)

∫ b

a

(x− t)n−1 r (t, x) p(n) (t) dt.
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Similarly, from the hypotheses onq we have the identity

(4.3) q (x) =
n

b− a

∫ b

a

q (x) dx−
n−1∑
k=1

Qk (x)

+
1

(n− 1)! (b− a)

∫ b

a

(x− t)n−1 r (t, x) q(n) (t) dt.

Multiplying (4.2) byq (x) and (4.3) byp (x) and summing the resulting identities and integrat-
ing froma to b and rewriting we have

(4.4)
1

b− a

∫ b

a

p (x) q (x) dx = n

(
1

b− a

∫ b

a

p (x) dx

)(
1

b− a

∫ b

a

q (x) dx

)
− 1

2 (b− a)

∫ b

a

[(
n−1∑
k=1

Pk (x)

)
q (x) +

(
n−1∑
k=1

Qk (x)

)
p (x)

]
dx

+
1

2 (n− 1)! (b− a)2

[∫ b

a

q (x)

{∫ b

a

(x− t)n−1 r (t, x) p(n) (t) dt

}
dx

+

∫ b

a

p (x)

{∫ b

a

(x− t)n−1 r (t, x) q(n) (t) dt

}
dx

]
.

From (4.4) and following the similar arguments as in the last part of the proof of Theorem 2.1,
we get the desired inequality in (2.6). The proof is complete.
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