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Abstract

A classical inequality of L. C. Young is extended to higher dimensions, and
using this extension sufficient conditions for the existence of integral

∫
[0,1]n fdg

are given, where both f and g are functions of finite higher variations.
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1. Introduction
In this paper we consider the existence of the integral

∫
[0,1]n

fdg, wheref andg
are functions of bounded higher variations. In the sequel we explain the mean-
ing of this integral and we will also define the higher variations of functions of
several variables. Such integrals occur naturally in the study of stochastic differ-
ential equations. In 1935 a paper that appeared in Acta Mathematica [6], L. C.
Young gave sufficient conditions for the existence of Riemann-Stieltjes integral∫ 1

0
f(x)dg(x), wheref is a function of boundedp-variation,g is a functions

of boundedq-variation, and1
p

+ 1
q

> 1 (see Theorem1.1). This result of L.
C. Young has received considerable attention to understand the Ito map, and to
develop a stochastic integration theory based on his techniques. Using Young’s
integral T. Lyon solved a differential equation drived by rough signals that are
of boundedp-variation withp < 2 [2, 3]. Since almost surely Brownian motion
paths are not functions of boundedp-variation forp < 2, it appears that stochas-
tic differential equations driven by white noise may be well beyond the setting of
Young’s theory. However, it turns out that a certain set function associated with
the Brownian motion process can be viewed as functions of bounded-p varia-
tion in two variables [4]. Therefore, Young’s ideas can still be used to construct
stochastic integrals with respect to processes with rough sample paths such as
the Brownian motion. In order to construct multiple stochastic integrals simi-
lar to the 1-dimensional construction described in [4], an exactn-dimensional
analogue of L. C. Young’s result is needed.

Although the motivation behind extended L. C. Young’s inequality to higher
dimension is to construct multiple stochastic integrals, the extension may be of
independent interest. Interested reader may consult [4, 2] and [3] for application
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of L. C. Young’s inequality in stochastic integration.
The key to Young’s integration theorem is a discrete inequality. On the main

we are interested in extending Young’s discrete inequality to higher dimensions.
Using the inequality one can establish an analogous Stieltjes type integration
theorem. In this paper we do not strive to find the most general integration
result, that is, we do not push the integration result to obtain Lebesgue-Stiletjes
type integrals by removing conditions on continuity of the functions. Interested
reader may consult Young’s original work [6] – [8] for further developing or
extending the integration theorems of this paper.

The main ingredients in the proof ofn-dimensional result are still the tech-
niques originally employed by L. C. Young to prove his one dimensional result.
However, some modification of his techniques and a judicious choice of ex-
ponents which appear in the proof is required. To underscore this point, we
should mention that, in his 1937 paper L. C. Young gave sufficient conditions
for the existence of double Stieltjes integral

∫ 1

0

∫ 1

0
f(x, y)dg(x, y) ([8, Theorem

6.3]). However, L. C. Young’s 2-dimensional result is not the exact analogue of
the one dimensional result, in the sense that, the conditions thatf andg must
satisfy in order for the double integral to exist (in Young-Stieltjes sense), are
somewhat complicated. In the appendix of this paper we have stated a version
of Young’s theorem in this paper (see Theorem3.1 in the Appendix). In par-
ticular, there is no obvious way of generalizing the two-dimensional version of
L. C. Young’s result to higher dimensions. Our main result is to prove an exact
n-dimensional version of L. C. Young’s one dimensional result. We also show
that L. C. Young’s 2-dimensional result follows from ourn-dimensional result.

Functions of finite higher variations seem to have been considered for the
first time by N. Wiener. His ideas were developed by L.C. Young and E. R.
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Love (for a complete detail see [1, 6, 7] and [8].
L.C. Young considered thep-th variation of a functionf(x), defined as

(1.1) Vp(f, [a, b]) = Vp(f) =

[
sup

τ

{
n∑

j=1

|f(tj)− f(tj−1)|p
}] 1

p

,

whereτ denotes the partitiona = t0 ≤ t1 ≤ · · · ≤ tn = b of [a, b]. Existence
proof of Riemann-Stieltjes integrals

∫ 1

0
fdg where bothf andg are functions

of finite higher variations, was given by Young [6]:

Theorem 1.1 (L.C. Young’s Theorem/Inequality). If Vp(f) < ∞, Vq(g) <
∞, 1

p
+ 1

q
> 1, andf andg have no common discontinuities, then the Riemann-

Stieltjes integral
∫ 1

0
fdg exists and

(1.2)

∣∣∣∣∫ 1

0

f dg

∣∣∣∣ ≤ (1 + ζ

(
1

p
+

1

q

))
[|f(0)|+ Vp(f)]Vq(g),

whereζ(s) =
∑∞

n=1
1
ns .

Multidimensional extension of Young’s theorem is the main result of this
paper. The multidimensional integral will be defined as limits ofStieltjessums,
and the integral will be referred to as theYoung-Stieltjes integral.

1.1. Young-Stieltjes Integral of Functions

For the sake of clarity we define Young-Stieltjes integral of functions of two
variables. Letf andg be functions defined on[0, 1]2 andπ =: {xi}n

i=0×{yj}m
j=0
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be a partition of[0, 1]2. That is,π =: {xi}n
i=0 × {yj}m

j=0 with (xi, yj) ∈ [0, 1]2.
Let

(1.3) L(f, g, π) =
n∑

i=1

m∑
j=1

f(ηi, νj)∆
2
i,jπ(g),

where(ηi, νi) ∈ [xi−1, xi]× [yj−1, yj], and

∆2
i,jπ(g) = g(xi, yj)− g(xi−1, yj)− g(xi, yj−1) + g(xi−1, yj−1).

Note that the above sum depends on the choice of intermediate values(ηi, νj).
We say that theYoung-Stieltjes integral of f with respect tog exists, if there is a
scalarI(f, g) such that

(1.4) lim
||π||→0

|L(f, g, π)− I(f, g)| = 0.

Here ||π|| = sup{1≤i≤n,1≤j≤n} {max{|xi − xi−1|, |yj − yj−1|}}. That is, the
Young-Stieltjes integral exists if and only if there exists a scalarI(f, g), such
that|L(f, g, π)−I(f, g)| < ε for any given positiveε, provided that the partition
π has norm||π|| < δ, whereδ depends only onε. If (1.4) holds, we say that
I(f, g) is the Young-Stieltjes integral off with respect tog.

To state the 2-dimensional version of our result, we need to introduce the
notion ofp-variation and mixedp− q variation of functions of two variables.

Henceforth, whenever we deal withp−variation or mixedp − q-variations,
we always assume thatp’s andq’s are never smaller than 1. Letp, q ≥ 1, then
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theL(p− q)− variationof a functionf(x, y) on [0, 1]2 is defined to be

LV
(2)
(p,q)(f, [0, 1]2) = LV

(2)
(p,q)(f)(1.5)

= sup
π


 n∑

i=1

[
m∑

j=1

∣∣∆2
i,jπ(f)

∣∣p]( q
p)


1
q

 ,

whereπ =: {0 = x0 ≤ x1 ≤ · · · ≤ xn = 1} × {0 = y0 ≤ y1 ≤ · · · ≤ ym = 1}
is apartition of [0, 1]2, and

∆2
i,jπ(f) = f(xi, yj)− f(xi, yj−1)− f(xi−1, yj) + f(xi−1, yj−1).

Similarly R(p− q)-variationof a functionf(x, y) on [0, 1]2 is defined to be

RV
(2)
(p,q)(f, [0, 1]2) = RV

(2)
(p,q)(f)(1.6)

= sup
π


 n∑

j=1

[
m∑

i=1

∣∣∆2
i,jπ(f)

∣∣p]( q
p)


1
q

 .

We define the left and right Wiener class-p − q to be the space of functions
defined as follows,

LW
(2)
(p,q) = {f : [0, 1]2 → C : LV

(2)
(p,q)(f)

+ Vp(f(·, 0), [0, 1]) + Vq(f(0, ·), [0, 1]) < ∞},
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whereVp(f(·, 0), [0, 1]) is the p-th variation of the functionx → f(x, 0) as
defined by (1.1). Similarly

RW
(2)
(p,q) =

{
f : [0, 1]2 → C : RV

(2)
(p,q)(f)

+Vq(f(·, 0), [0, 1]) + Vp(f(0, ·), [0, 1]) < ∞} .

We define the left and rightp− q-Wiener norm off ∈ LW 2
(p,q) or f ∈ RW(p,q)

as follows:

(1.7) ‖f‖LW(p,q)
= LV

(2)
(p,q)(f)+Vp(f(·, 0), [0, 1])+Vq(f(0, ·), [0, 1])+|f(0, 0)|

and

(1.8) ‖f‖RW(p,q)

= RV
(2)
(p,q)(f) + Vq(f(·, 0), [0, 1]) + Vp(f(0, ·), [0, 1]) + |f(0, 0)|.

We also define the Wiener class-p of functions of one variable, that is,

(1.9) Wp[0, 1] = {f : [0, 1] → C : Vp(f, [0, 1])) < ∞}.

When p = q then LV(p,p) = RV(p,p), consequently we writeWp, Vp and p-
variation instead ofLW(p,p), LV(p,p) etc.

Before we can state our main result (Theorem1.2), we need to define the no-
tion of jump pointof functions of several variables. We stay in a two-dimensional
setting.
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Let f(x, y) be a function such thatV (2)
p (f) < ∞. For ~x = (x1, x2) and

~y = (y1, y2), we let

(1.10) d(~x, ~y) = max{|x1 − y1|, |x2 − y2|},

(1.11) ∆~yf(~x) = f(x1, x2)− f(x1, y2)− f(y1, x2) + f(y1, y2).

For~x ∈ [0, 1]2, we let

(1.12) J(f, ~x) = lim
δ→0

sup{∆~yf(~x) : d(~x, ~y) < δ}.

We say thatf has ajump at~x if J(f, ~x) > 0. It can be shown that ifV (2)
p (f) <

∞ thenf has at most a countable number of jump points. Iff is continuous at
~x then~x cannot be a jump point off , but the converse is not true. Our main
result is

Theorem 1.2 (a).Let f ∈ W
(2)
p , V

(2)
q (g) < ∞ and 1

p
+ 1

q
> 1. If f andg do

not have any common jump points then the Young-Stieltjes integral off with
respect tog exists, and

(1.13)

∣∣∣∣∫ 1

0

∫ 1

0

f(x, y)dg(x, y)

∣∣∣∣ ≤ c(p, q) ‖f‖Wp
V (2)

q (g),

where

(1.14) c(p, q) ≤ 2

(
1 + ζ

(
1

p
+

1

q

))
+ inf

{
(1 + ζ(α))

(
1 + ζ

(
1

αp
+

1

αq

))α

: 1 < α <
1

p
+

1

q

}
.

http://jipam.vu.edu.au/
mailto:Nasser_M_Towghi@res.raytheon.com
http://jipam.vu.edu.au/


Multidimensional Extension of
L.C. Young’s Inequality

Nasser Towghi

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 10 of 30

J. Ineq. Pure and Appl. Math. 3(2) Art. 22, 2002

http://jipam.vu.edu.au

We also have the following result.

Theorem 1.2 (b). Let f ∈ RW
(2)
(p1,p2), RV

(2)
(q1,q2)(g) < ∞ and for i = 1, 2,

1
pi

+ 1
qi

> 1. If f andg do not have any common jump points then the Young-
Stieltjes integral off with respect tog exists, and

(1.15)

∣∣∣∣∫ 1

0

∫ 1

0

f(x, y)dg(x, y)

∣∣∣∣ ≤ c ‖f‖RW(p1,p2)
RV

(2)
(q1,q2)(g),

where

(1.16) c ≤
(

1 + ζ

(
1

p1

+
1

q1

))
+

(
1 + ζ

(
1

p2

+
1

q2

))

+ min

 inf{
1<α< 1

p2
+ 1

q2

}
{

(1 + ζ(α))

(
1 + ζ

(
1

αp1

+
1

αq1

))α

1

}

+ inf

{
(1 + ζ(α))

(
1 + ζ

(
1

αp2

+
1

αq2

))α

: 1 < α <
1

p1

+
1

q1

}}
.

The theorem holds if we replaceRW andRV with LW andLV throughout.

Note that, whenp1 = p2 andq1 = q2, 1.2(b) reduces to1.2(a). And finally
to state then-dimensional version, we define the correspondingW n

p andV n
p

classes of functions ofn-variables.
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Let p ≥ 1 andf be a function defined on[0, 1]n. Let

V (n)
p (f, [0, 1]n) =

(
sup

π1,...,πn

∑
i1,i2,···in

|∆π1,...,πn

i1,...,in
f |p
)1/p

.

Hereπi is a partition of[0, 1] and∆π1,...,πn

i1,...,in
f is thenth-difference off . The

nth-difference is a straightforward generalization of the 2nd-difference intro-
duced prior to the statement of Theorem1.2. Let W (n)

p ([0, 1]n) = W
(n)
p denote

the class of functionsf on [0, 1]n, such that,V (n)
p (f, [0, 1]n) < ∞, and for

each positive integerk less thann; the function on[0, 1]n−k obtained by keep-
ing any k coordinates of arguments off to the fixed value of 0, belongs to
W n−k

p ([0, 1]n−k). For instance whenn = 3, f ∈ W
(3)
p ([0, 1]3) if and only if

‖f‖W 3
p

= V (3)
p (f, [0, 1]3) + V (2)

p (f(0, ·, ·), [0, 1]2) + V (2)
p (f(·, 0, ·), [0, 1]2)

+ V (2)
p (f(·, ·, 0), [0, 1]2) + Vp(f(·, 0, 0), [0, 1]) + Vp(f(0, ·, 0), [0, 1])

+ Vp(f(0, 0, ·), [0, 1]) + |f(0, 0, 0)|

is finite. Stated below is then-dimensional version of Theorem1.2(a).

Theorem 1.2 (c).Let f ∈ W
(n)
p , V

(n)
q (g) < ∞ and 1

p
+ 1

q
> 1. If f andg do

not have any common jump points then the Young-Stieltjes integral off with
respect tog exists, and

(1.17)

∣∣∣∣∫
[0,1]n

f(x1, · · · , xn)dg(x1, · · · , xn)

∣∣∣∣ ≤ c(p, q) ‖f‖W n
p

V (n)
q (g),
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where

c(p, q) ≤ 2n−1

(
1 + ζ

(
1

p
+

1

q

))
(1.18)

+ 2n−2

[
(1 + ζ(α1))

(
1 + ζ

(
1

α1p
+

1

α1q

))α1
]

+ 2n−3

[
(1 + ζ(α1))(1 + ζ(α2))

α1

×
(

1 + ζ

(
1

α1α2p
+

1

α1α2q

))α1α2
]

+ · · ·

+

[
(1 + ζ(α1))(1 + ζ(α2))

α1 · · · (1 + ζ(αn−1))
α1···αn−2

×
(

1 + ζ

(
1

α1α2 · · ·αn−1p

+
1

α1α2 · · ·αn−1q

))α1α2···αn−1
]

where for each1 ≤ j ≤ n− 1, 1 < αj, andα1α2 · · ·αn−1 < 1
p

+ 1
q
.
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2. Higher Variations of Sequences
In this section we will prove a discrete version of Theorem1.2. We define the
p-th variation of sequence of scalars.

Let θ =: {ki}n
i=0 be a increasing sequence of positive integers. Apartition

of θ denoted byπ(θ) is an increasing sequence of integers{ji}m
i=0 such that

{ji}m
i=0 ⊂ {ki}n

i=0, j0 = k0 andjm = kn. We note that ifθ =: {ki}n
i=0 is a

increasing sequence of integers andπ(θ) is partition ofθ, then any partition of
π(θ) is also a partition ofθ. If θ =: {0, 1, 2, ..., n}, then we writeπ(n) instead of
π(θ). That is,π(n) denotes a partition of{0, 1, 2, ..., n}. For a given sequence
a = {ai}n

i=0 and a partitionπ =: {ji}m
i=1 of {0, 1, 2, ..., n}, π(a) denotes the

sequence{aji
}m

i=0.

2.1. p−variation of Sequences

Let a =: {ai}n
i=0 be a finite sequence of scalars. For any partitionπ = π(n) =

{ji}k
i=0, where{ji}m

i=0 ⊂ {0, 1, 2, ..., n}, we defineπ(a) to be the sequence
{aji

}k
i=0, and∆i(π(a)) = aji

− aji−1
. Let ∆π(a) denote the sequence{aji

−
aji−1

}k
i=1. Let p > 0 and Vp(a, π) = [

∑
i |∆i(π(a))|p]

1
p . We define thep-

variation of{ai} to beVp(a) = supπ Vp(a, π).
We now consider the variation of two-dimensional sequences.

Definition 2.1. Letθ =: {kj}m
j=0 ×{lj}n

j=0, where{kj}m
j=0 and{lj}n

j=0 are two
increasing sequences of positive integers. A partition ofθ denoted byπ(θ) is
a two-dimensional sequence{k′j}m′

j=0 × {l′j}n′
j=0 such that{k′j}m′

j=0 is a partition
of {kj}m

j=0 as defined above in2.1and{l′j}n′
j=0 is a partition of{lj}n

j=0. If θ =
{0, 1, ..., n} × {0, 1, ...,m}, then a partition ofθ will be denoted byπ(n×m).

http://jipam.vu.edu.au/
mailto:Nasser_M_Towghi@res.raytheon.com
http://jipam.vu.edu.au/


Multidimensional Extension of
L.C. Young’s Inequality

Nasser Towghi

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 14 of 30

J. Ineq. Pure and Appl. Math. 3(2) Art. 22, 2002

http://jipam.vu.edu.au

2.2. Variation of 2-Dimensional Sequences

Let a = {ai,j}i=n,j=m
i=0,j=0 be a two dimensional sequence of scalars andπ =:

{kj}m′
j=0×{lj}n′

j=0 be a partition. Thenπ(a) denotes the sequence{aki,lj}
i=m′,j=n′

i=0,j=0 .
In particular,π(a)i,j = aki,lj .

We define∆1,i,jπ(a) = aki,lj − aki−1,lj , ∆2,i,jπ(a) = aki,lj − aki,lj−1
, and

∆2
i,jπ(a) = aki,lj − aki−1,lj − aki,lj−1

+ aki−1,lj−1
.

Let ∆2π(a) denote the sequence{∆2
i,jπ(a)}i=m′,j=n′

i=0,j=0 , ∆1,jπ(a) denote the se-
quence
{∆1,i,jπ(a)}m′

i=1, and ∆2,iπ(a) denote the sequence{∆2
2,i,jπ(a)}n′

j=1. For

p > 0, we defineV (2)
p (a, π) = [

∑
i,j |∆2

i,j(π(a))|p]
1
p .

We define thep-variation of{ai,j}i=n,j=m
i=0,j=0 to beV

(2)
p (a) = supπ V

(2)
p (a, π),

and thep-variation normof {ai,j}i=n,j=m
i=0,j=0 to be

(2.1) ‖a‖Wp
= V (2)

p (a) + Vp({a0,j}j) + Vp({ai,0}i) + |a0,0|.

Given two partitionsπ andθ, we sayθ refinesπ, if π is a partition ofθ, and we
write θ < π. Let

(2.2) V
(2)
p,θ(π)(a) = sup

θ<τ<π
V (2)

p (a, τ).

Suppose(a) = {ai,j}i=n′,j=m′

i=0,j=0 is a sequence of scalars andπ = {ki}n
i=0×{lj}m

j=0

a partition of{0, 1, ..., n} × {0, 1, 2, ...,m}. Let θ < π, then every subdivision
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point of π is also a subdivision point ofθ. Therefore,θ can be viewed as a
product of two, two-dimensional sequences, that is,

θ =: {ci,j}i=n,j=ri

i=0,j=0 × {di,j}i=m,j=si

i=0,j=0 ,

where for each fixedi ≥ 1,

ki−1 = ci,0 ≤ ci,1 ≤ · · · ≤ ci,ri
= ki,

li−1 = di,0 ≤ di,1 ≤ · · · ≤ di,si
= li.

We now prove a discrete version of Theorem1.2(a).

Theorem 2.1. Let a =: {ai,j}i=n,j=m
i=0,j=0 andb =: {bi,j}i=n,j=m

i=0,j=0 be two sequences
of scalars. Letp, q > 0, 1

p
+ 1

q
> 1. Let

(2.3) L(a, b) =
n∑

i=1

m∑
j=1

ai,j∆
2
i,jb.

Then

(2.4) |L(a, b)− a0,0(bn,m − b0,m − bn,0 + b0,0)| ≤ c(p, q) ‖a‖Wp
V (2)

q (b),

wherec(p, q) ≤ inf
{

(1 + ζ(α))
(
1 + ζ

(
1

αp
+ 1

αq

))α

: 1 < α < 1
p

+ 1
q

}
.
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Proof. By consecutive application of summation by parts we obtain
n∑

i=1

m∑
j=1

ai,j∆
2
i,jb(2.5)

=
n∑

i=1

m∑
j=1

i∑
k=1

j∑
l=1

∆2
k,la∆2

i,jb

+
n∑

i=1

n∑
l=i

(al,0 − al−1,0)(bi,m − bi,0 − bi−1,m + bi−1,0)

+
m∑

j=1

m∑
l=j

(a0,l − a0,l−1)(bn,j − b0,j − bn,j−1 + b0,j−1)

+ a0,0(bn,m − b0,m − bn,0 + b0,0)

= I + II + III + IV.

We now estimateI. For each1 ≤ i ≤ n, let

(2.6) Q(0, i) =
m∑

j=1

j∑
l=1

∆2
i+1,l(a)∆2

i,j(b),

(2.7) S(0) =
n∑

i=1

m∑
j=1

i∑
k=1

j∑
l=1

∆2
k,l(a)∆2

i,j(b).

Choosei0 with 1 ≤ i0 ≤ n− 1 so that for eachi ≤ n− 1, the following holds:

(2.8) |Q(0, i0)| ≤ |Q(0, i)|.
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For each1 ≤ i ≤ n− 1, let

(2.9) c1
i =


i if i < i0

i + 1 if i0 ≤ i ≤ n− 1.

Let π1 =: {c1
i }n−1

i=0 × {j}m
j=0 be a partition of{0, 1, ..., n} × {0, 1, 2, ...m} and

let

(2.10) S(1) =
n−1∑
i=1

m∑
j=1

i∑
k=1

j∑
l=1

∆2
k,lπ1(a)∆2

i,jπ1(b).

The following equation is verified:

(2.11) S(0) = S(1)−Q(0, i0).

We now estimate|Q(0, i0)|. Let 1 < α < 1
p

+ 1
q
. By (2.8)

|Q(0, i0)| ≤

(∏
i6=i0

|Q(0, i)|

) 1
n−1

.

An application of geometric-arithmetic mean inequality gives us

(2.12) |Q(0, i0)| ≤
(

1

n− 1

)α
(∑

i6=i0

|Q(0, i)|
1
α

)α

.
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For each1 ≤ j, let U(0, i, j) = ∆2
i+1,j+1π1(a)∆2

i,jπ1(b). For1 ≤ j ≤ n− 1, let

W (a, p, j) =

(
n−1∑
i=1

|∆2
i,j+1π1(a)|p

) 1
αp

, W (b, q, j) =

(
n−1∑
i=1

|∆2
i,jπ1(b)|q

) 1
αq

,

and

(2.13) Ũ(0, j) = W (b, q, j)W (a, p, j).

Choosej0 with 1 ≤ j0 ≤ m−1 so that for eachj ≤ m−1, the following holds:

(2.14) |Ũ(0, j0)| ≤ |Ũ(0, j)|.

For0 ≤ j ≤ m− 1, let

(2.15) d1
j =


j if j < j0

j + 1 if j0 ≤ j ≤ m− 1.

Now π2 =: {ci}n
i=0 × {d1

j}m−1
j=1 , is a partition which refinesπ1. Let

(2.16) Q(1, i) =
m−1∑
j=1

j∑
l=1

∆2
i+1,lπ1(a)∆2

i,jπ1(b).

The following equation can be verified:

(2.17) Q(1, i) = Q(0, i)− U(0, i, j0).
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Therefore, by Minkowski’s inequality and the fact thatα > 1, we obtain

(2.18)
n−1∑
i=1

|Q(1, i)|
1
α ≤

n−1∑
i=1

|Q(1, i)|
1
α +

n−1∑
i=1

|U(0, i, j0, )|
1
α .

We now estimate
∑n−1

i=1 |U(0, i, j0, )|
1
α . By (2.13) and Hölder’s inequality with

exponentsαp andαq, we obtain

n−1∑
i=1

|U(0, i, j0, )|
1
α =

n−1∑
i=1

|∆2
i+1,j0+1π1(a)∆2

i,j0
π1(b)|

1
α .

≤

[
n−1∑
i=1

|∆2
i+1,j0+1π1(a)|p

] 1
αp
[

n−1∑
i=1

|∆2
i,j0

π2(b)|q
] 1

αq

= |Ũ(0, j0)|.

Therefore, by (2.14)

n−1∑
i=1

|U(0, i, j0)|
1
α ≤

(∏
j 6=j0

Ũ(0, j)

) 1
m−1

(2.19)

=

(∏
j 6=j0

W (b, q, j)

) 1
m−1

(∏
j 6=j0

W (a, p, j)

) 1
m−1

.

Applying geometric-arithmetic mean inequality to right side of the previous
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inequality, we obtain

n−1∑
i=1

|U(0, i, j0)|
1
α

≤
(

1

m− 1

)( 1
αp

+ 1
αq )
[∑

j 6=j0

(W (b, q, j))αq

] 1
αq
[

m−1∑
j 6=j0

(W (a, p, j))αp

] 1
αp

.

Now [∑
j 6=j0

(W (b, q, j))αq

] 1
αq

≤

[
m−1∑
j=1

n−1∑
i=1

|∆2
i,jπ2(b)|q

] 1
αq

≤
(
V (2)

q (b)
) 1

α .

Similarly [∑
j 6=j0

(W (a, p, j))αp

] 1
αp

≤
(
V (2)

p (a)
) 1

α .

Combining (2.19) and the last three inequalities, we obtain

(2.20)
n−1∑
i=1

|U(0, i, j0)|
1
α ≤

(
1

m− 1

) 1
αp

+ 1
αq (

V (2)
q (b)

) 1
α
(
V (2)

p (a)
) 1

α .

Combining inequalities (2.18) and (2.20), we obtain

(2.21)
n−1∑
i=1

|Q(0, i)|
1
α ≤

n−1∑
i=1

|Q(1, i)|
1
α +

(
1

m− 1

) 1
αp

+ 1
αq [

V (2)
q (b)V (2)

p (a)
] 1

α .

http://jipam.vu.edu.au/
mailto:Nasser_M_Towghi@res.raytheon.com
http://jipam.vu.edu.au/


Multidimensional Extension of
L.C. Young’s Inequality

Nasser Towghi

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 21 of 30

J. Ineq. Pure and Appl. Math. 3(2) Art. 22, 2002

http://jipam.vu.edu.au

By a similar argument we break upQ(1, i) as the difference of two quantities
(compare with the equation following (2.17)), that is

(2.22) Q(2, i) = Q(1, i)− U(1, i, j1),

where for each1 ≤ j ≤ n− 2,

U(1, i, j) = ∆2
i+1,j+1π2(a)∆2

i,jπ2(b),

andj1 is chosen so that for eachj ≤ m− 2,(
n−1∑
i=1

|∆2
i,j1+1π2(a)|p

) 1
αp
(

n−1∑
i=1

|∆2
i,j1

π2(b)|q
) 1

αq

≤

(
n−1∑
i=1

|∆2
i,j+1π2(a)|p

) 1
αp
(

n−1∑
i=1

|∆2
i,jπ2(b)|q

) 1
αq

.

(This last inequality is to be compared with (2.13) and (2.14)). By Minkowski’s
inequality

(2.23)
n−1∑
i=1

|Q(1, i)|
1
α ≤

n−1∑
i=1

|Q(2, i)|
1
α +

n−1∑
i=1

|U(1, i, j1|
1
α .

The quantity
∑n−1

i=1 |U(1, i, j1|
1
α is estimated in exactly the same manner as we

estimated∑n−1
i=1 |U(0, i, j0|

1
α . We obtain

(2.24)
n−1∑
i=1

|U(1, i, j1|
1
α ≤

(
1

m− 2

)( 1
αp

+ 1
αq ) [

V (2)
q (b)V (2)

p (a)
] 1

α .
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Combining (2.21), (2.22), (2.23) and (2.24) we obtain that,

(2.25)
n−1∑
i=1

|Q(0, i)|
1
α

≤
n−1∑
i=1

|Q(2, i)|
1
α +

(
1

m− 1

)( 1
αp

+ 1
αq ) [

V (2)
q (b)V (2)

p (a)
] 1

α

+

(
1

m− 2

)( 1
αp

+ 1
αq ) [

V (2)
q (b)V (2)

p (a)
] 1

α .

Continuing this process by breaking up the expressionQ(2, i) and so on, we
obtain

(2.26)
n−1∑
i=1

|Q(0, i)|
1
α ≤ ζ

(
1

αp
+

1

αq

)[
V (2)

q (b)V (2)
p (a)

] 1
α .

Consequently by (2.11), (2.12) and (2.26), we obtain

(2.27) |S(0)| ≤ |S(1)|+
(

1

n− 1

)α

ζ

(
1

αp
+

1

αq

)α

V (2)
q (b)V (2)

p (a).

Now expressionS(1) is similar toS(0), thus it can be estimated in the same
manner, i.e., we can write

(2.28) S(1) = S(2)−Q(1, i1),
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whereS(2) andQ(1, i1) are obtained in the same manner asS(1) andQ(0, i0)
were obtained fromS(0). Furthermore eachi ≤ n − 2, Q(1, i1) satisfies the
following inequality (compare with (2.8)),

(2.29) |Q(1, i1)| ≤ |Q(1, i)|.

Estimating|Q(1, i1)| the way we estimated|Q(0, i0)|, we obtain

(2.30) |Q(1, i1)| ≤
(

1

n− 2

)α

ζ

(
1

αp
+

1

αq

)α

V (2)
q (b)V (2)

p (a).

Consequently by (2.27), (2.28) and (2.30), we obtain

(2.31) |S(0)| ≤ |S(2)|+
(

1

n− 2

)α

ζ

(
1

αp
+

1

αq

)α

V (2)
q (b)V (2)

p (a)

+

(
1

n− 2

)α

ζ

(
1

αp
+

1

αq

)α

V (2)
q (b)V (2)

p (a).

Continuing the above process by breaking upS(2), we obtain

(2.32) |S(0)| ≤ ζ(α)ζ

(
1

αp
+

1

αq

)α

V (2)
q (b)V (2)

p (a).

This gives the estimate onI. To estimateII andIII, we note thatII andIII
are one dimensional version ofI. It can be shown that (see e.g. [6]),

II ≤ ζ

(
1

p
+

1

q

)
V (1)

p ({ai,0}n
i=1})V (1)

q ({bi,m − bi,0}n
i=1),(2.33)

III ≤ ζ

(
1

p
+

1

q

)
V (1)

p ({a0,j}m
j=1})V (1)

q ({bn,j − b0,j}m
j=1).(2.34)
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It is easy to see that

V (1)
q ({bn,j − b0,j}m

j=1) ≤ V (2)
q (b),

V (1)
q ({bi,m − bi,0}n

i=1) ≤ V (2)
q (b).

ConsequentlyI + II + III ≤ c(p, q) ‖a‖Wp
V 2

q (b). This completes the proof
of the Theorem2.1.

To prove Theorem1.2(a), a more general version of Theorem2.1 must be
proved, the proof of which parallels the proof of Theorem2.1. This theorem is
needed to show that the Young-Stieltjes sums approximating the integral off
with respect tog form a Cauchy net.

Theorem 2.2. Let a =: {ai,j}i=n,j=m
i=0,j=0 andb =: {bi,j}i=n,j=m

i=0,j=0 be two sequences
of scalars. Letπ =: {ei}n1

i=0 × {fj}m1
j=0 be a partition of

{0, 1, ..., n} × {0, 1, 2, ...m}.

This meansπ =: {0 = e0 < e1 < · · · < en1 = n} × {0 = f0 < f1 < · · · <
fm1 = m}, whereei’s andfj ’s are integers. LetL(a, b) =

∑n1

i=1

∑m1

j=1 ai,j∆i,j(b),
and

L(a, b, π) =
∑

i

∑
j

πi,j(a)∆i,j(π(b)).

(Recall∆i,j(π(b)) = bei,fj
− bei,fj−1

− bei−1,fj
+ bei−1,fj−1

andπi,j(a) = aei,fj
).
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If 1
p

+ 1
q

> 1, then

|L(a, b)− L(a, b, π)|(2.35)

≤ c(p, q)V (2)
p,π (a)V (2)

q,π (b)

+

∣∣∣∣∣
n1∑
i=1

m∑
j=1

aei,j(bei,j − be(i−1),j − bei,j−1 + be(i−1),j−1)

∣∣∣∣∣
+

∣∣∣∣∣
m1∑
j=1

n∑
i=1

ai,fj
(bi,fj

− bi−1,fj
− bi,f(j−1)

+ bi−1,f(j−1)
)

∣∣∣∣∣
= I + II + III,

wherec(p, q) ≤ inf
{

(1 + ζ(α))
(
1 + ζ

(
1

αp
+ 1

αq

))α

: 1 < α < 1
p

+ 1
q

}
.

Using Theorems2.1and2.2, Theorems1.2(a) through1.2(c) can be proved
following closely the proof of L. C. Young’s original result.
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3. Appendix
As it was pointed out, in [8] Young considered the higher variations of functions
of two variables defined on[0, 1]2 and gave existence proof of the double Young
-Stieltjes integral

∫ 1

0

∫ 1

0
fdg. In this appendix we show that Theorem1.2 (by

Theorem1.2we mean Theorems1.2(a) and1.2(b).).
In his paper, Young considered the more general type of variation in terms of

Orlicz functions rather thanp or p − q variation and he uses the concept ofp−
andq−bivariations. However, Young’s generalization of Theorem1.1, is not
the exact analogue of Theorem1.1. In particular, the condition1/p + 1/q > 1
in the statement of Theorems1.1 and1.2 are replaced by a stronger condition,
roughly given by1/p + 1/2q ≥ 1. For the precise statement of Young’s two
dimensional extension we refer the reader to Theorem 6.3 in [8]. Below we
state a special case of Young’s 2-dimensional result, so the reader can compare
the result with Theorem1.2. Young’s result can be obtained from1.2. We
first define the concept ofp and q-bivariation of a function of two variables.
We say thatf(x, y) is function of boundedp andq− bivariation if there exists
a pair of constantsP andQ such that, for each fixed pairy1, y2 ∈ [0, 1], the
total p−variation of the function of one variablef(·, y1) − f(·, y2) is less than
P and for each fixed pairx1, x2 ∈ [0, 1], the totalq-variation of the function
f(x1, ·)− f(x2, ·) is less thanQ.

Theorem 3.1 (Special version of Theorem 6.3 in [8]). Let f be a function of
boundedp1− andp2−bivariation such that for eachx andy in [0, 1] f(x, 0) =
f(0, y) = 0. And for fixedx1, x2, y1, y2,

(A1) |g(x1, y1)− g(x1, y2)− g(x2, y1) + g(x2, y2)| ≤ |x1 − x2|
1
q1 |y2 − y1|

1
q2 .
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Then the Young-Stieltjes integral off with respect tog exists, provided that
there exist positive strictly increasing functionsh andk, such that

(*) h(x)k(x) = x and
∑

n

h

(
1

n
1

p1

)(
1

n
1
q1

)
+
∑

n

k

(
1

n
1

p2

)(
1

n
1
q2

)
< ∞.

To show that Theorem1.2 implies Theorem3.1, we must relate the concept of
p- and q-bivariation to the concept ofp − q variation as defined by equations
(1.5) and (1.6). Following theorem is the consequence of the results proven in
[5] (see Theorem 1.4 and Corollary 3.1 in [5]).

Theorem 3.2. [5]. If f is a function ofp1 andp2-bivariation, then

(A2) LV(2,p1)(f) + RV(2,p2)(f) < ∞.

Further more ifp1 ≤ 2 thenRV(p1,2)(f) is finite. Ifp1 > 2 thenVp1(f) is finite.
Similarly if p2 ≤ 2 thenLV(p2,2)(f) is finite. If p2 > 2 thenVp2(f) is finite. If
p1 = p2 = p ≤ 2 thenV( 4p

2+p
)(f) is finite. If p1 = p2 = p > 2 thenVp(f) is

finite.

W now examine the conditions given in Theorem3.1. Condition ong, that
is,

|g(x1, y1)− g(x1, y2)− g(x2, y1) + g(x2, y2)| ≤ |x1 − x2|
1
q1 |y2 − y1|

1
q2

implies that
LV(q1,q2)(g) + RV(q1,q2)(g) < ∞.
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The fact thatf vanishes on each axis implies that

‖f‖LW(·,·)
= LV(·,·)(f), ‖f‖RW(·,·)

= RV(·,·)(f),

and‖f‖W(·)
= V(·)(f). Sinceh andk are decreasing functions, (* ) implies that

(A3) h
(
n
− 1

p2

)
≤ c

(
1

n

)(
p1
p2
− p1

q1p2

)
,

wherec is a fixed universal constant. We also have,

(A4) k
(
n
− 1

p1

)
≤ c

(
1

n

)(
p2
p1
− p2

q2p1

)
.

Sinceh(x)k(x) = x, (* ) and the previous set of inequalities imply that,

(A5)
∑
n=1

(
1

n

)(
1

p1
+ 1

q1
+

p2
p1q2

− p2
p1

)
+
∑
n=1

(
1

n

)(
1

p2
+ 1

q2
+

p1
p2q1

− p1
p2

)
< ∞.

On the other hand theorem (A2) implies that

(A6) LV(2,p1)(f) + RV(2,p2)(f) < ∞.

Consequently, if we want to use Theorem1.2 to establish the existence of the
Young-Stieltjes integral off with respect tog, we must show that either

(A7)
1

p1

+
1

q1

> 1 and
1

2
+

1

q2

> 1;
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or

(A8)
1

p2

+
1

q2

> 1 and
1

2
+

1

q1

> 1.

Sinceq1 ≥ andq2 ≥ 1, (A5) implies that 1
pi

+ 1
qi

> 1 for i = 1, 2. If p1 ≥ 2

then (A8) holds and ifp2 ≥ 2 then (A7) holds. Also if 1
2

+ 1
q1

> 1, then (A8)
holds. Suppose thatpi < 2 for i = 1, 2 and 1

2
+ 1

q1
≤ 1. Now (A5) implies that

(A9)
1

p1

+
1

q1

+
p2

p1q2

− p2

p1

> 1.

This last inequality and the assumptions onp1, p2 andq1 (i.e., 1 ≤ pi ≤ 2 and
1
2

+ 1
q1
≤ 1), imply that 1

2
+ 1

q2
> 1. Therefore (A7) holds. This shows that

Theorem1.2 implies Theorem3.1.
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