Journal of Inequalities in Pure and Applied Mathematics

LITTLEWOOD'S INEQUALITY FOR p-BIMEASURES

NASSER M. TOWGHI

Raytheon System Company 528 Boston Post Road Mail Stop 2-142, Sudbury, MA 01776. *EMail*: Nasser_M_Towghi@res.raytheon.com

volume 3, issue 2, article 19, 2002.

Received 10 April, 2001; accepted 16 November, 2001. Communicated by: L. Losonczi

©2000 Victoria University ISSN (electronic): 1443-5756 031-01

Abstract

In this paper we extend an inequality of Littlewood concerning the higher variations of functions of bounded Fréchet variations of two variables (bimeasures) to a class of functions that are *p*-bimeasures, by using the machinery of vector measures. Using random estimates of Kahane-Salem-Zygmund, we show that the inequality is sharp.

2000 Mathematics Subject Classification: Primary 26B15, 26A42, Secondary 28A35, 28A25.
 Key words: Inequalities, Bimeasures, Fréchet variation, *p*-variations, Bounded variations.

Contents

1	Introduction	3
	1.1 Littlewood's Inequalities	4
2	Proof of Theorem 1.1	7
	2.1 4-level Radamacher System	10
3	Functions of Bounded <i>p</i> -Variations and Related Function	
	Spaces	12
References		

 $\label{eq:linear} \begin{array}{l} \mbox{Littlewood's Inequality for} \\ p - \mbox{Bimeasures} \end{array}$

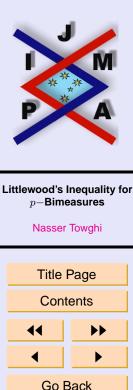
J. Ineq. Pure and Appl. Math. 3(2) Art. 19, 2002 http://jipam.vu.edu.au

1. Introduction

Let μ be a set function defined on the product $\sigma(\mathcal{B}_1) \times \sigma(\mathcal{B}_2)$ of 2 σ -fields, such that it is a finite complex measure in each coordinate. More precisely, for each fixed $A \in \sigma(\mathcal{B}_1)$ the set function $\mu(A, \cdot)$ is a complex measure defined on $\sigma(\mathcal{B}_2)$. Similarly for each $B \in \sigma(\mathcal{B}_2)$, the set function μ gives rise to a measure in the first coordinate. Such set functions dubbed *bimeasures* by Morse and Transue were studied extensively by these and other authors (see [1, 2, 3, 5, 6, 7, 10, 11, 12]). It is well known that such set functions need not be extendible to a measure on the σ -Algebra generated by $\sigma(\mathcal{B}_1) \times \sigma(\mathcal{B}_2)$. Now suppose that μ is a set function defined on $\sigma(\mathcal{B}_1) \times \sigma(\mathcal{B}_2)$, such that it has finite *semi-variation*; that is,

(1.1)
$$\|\mu\|_F = \sup\left\{\left\|\sum_{j,k} \mu(A_j \times B_k)r_j \otimes r_k\right\|_{\infty}\right\} < \infty,$$

where sup is taken over all measurable partitions $\{A_j\}$, $\{B_k\}$ of Ω_1 and Ω_2 , respectively. Here $\{r_j\}$ is the usual system of Rademachers, realized as functions on the interval [0, 1]. By a partition of Ω , we mean a finite collection of mutually disjoint measurable sets whose union is Ω . F in $|| \cdot ||_F$ is for Fréchet. It is clear that a set function μ with finite semi-variation is also a bimeasure. It is interesting that the converse also holds. That is, a bimeasure has finite semi-variation. This follows easily from the machinery of vector measure theory. On the other hand, it is well known that a set function which has finite semi-variation need not have finite total variation (in the sense of Vitali), hence it may not be extendible to a measure [2, 9]. However, all is not lost, in his 1930



J. Ineq. Pure and Appl. Math. 3(2) Art. 19, 2002 http://jipam.vu.edu.au

paper, Littlewood showed that a bimeasure has finite 4/3-variation. To make this precise we first introduce the notion of mixed variation of μ . Let p, q > 0, and define the mixed (p, q)-variation of μ to be

(1.2)
$$\|\mu\|_{p,q} = \sup\left\{\left(\sum_{k} \left(\sum_{j} |\mu(A_j \times B_k)|^p\right)^{\frac{q}{p}}\right)^{\frac{1}{q}}\right\},$$

where the sup is taken over all finite measurable partitions $\{A_j\}$ and $\{B_k\}$ of Ω_1 and Ω_2 respectively. In the case that p = q, we simply write $\|\mu\|_p$, that is $\|\mu\|_p = \|\mu\|_{p,p}$. We now state Littlewood's 4/3 inequalities.

1.1. Littlewood's Inequalities

(1.3)
$$\|\mu\|_{2,1} + \|\mu\|_{1,2} + \|\mu\|_{4/3} \le c \|\mu\|_{F},$$

where c is a fixed universal constant. The result is sharp in the sense that, there exists $\mu \in$ such that $\|\mu\|_p$ and $\|\mu\|_{q,1/q}$ are infinite for all p < 4/3 and for all q < 2. Extension of Littlewood's inequality to a larger class of functions of two variables is the main result of this paper.

Definition 1.1. A set function μ defined on product of two algebras $\mathcal{B}_1 \times \mathcal{B}_2$ is called a pre-*p*-bimeasure, if it is finitely additive in each coordinate, and for each fixed $A \in \mathcal{B}_1$, the quantity

$$BV_p(\mu(A,\cdot)) := \sup\left\{\sum_k |\mu(A \times B_k)|^p\right\}$$

J. Ineq. Pure and Appl. Math. 3(2) Art. 19, 2002 http://jipam.vu.edu.au

is finite, and for each fixed $B \in \mathcal{B}_2$, $BV_p(\mu(\cdot, B))$ is finite. Here sup is taken over all finite measurable partitions of Ω_2 .

If the set function is defined on the product of two σ -algebras with above properties, then it is called a *p*-bimeasure.

Definition 1.2. A pre-*p*-bimeasure μ defined on product of two algebras $\mathcal{B}_1 \times \mathcal{B}_2$, is said to be bounded, if there exists a positive constant M such that $BV_p(\mu(A, \cdot)) + BV_p(\mu(\cdot, B)) \leq M$, for all $A \in \mathcal{B}_1$ and for all $B \in \mathcal{B}_2$.

We prove the following result.

Theorem 1.1. Suppose that either μ is a *p*-bimeasure defined on $\sigma(\mathcal{B}_1) \times \sigma(\mathcal{B}_2)$, or that it is a bounded pre-*p*-bimeasure defined on $\mathcal{B}_1 \times \mathcal{B}_2$. If $1 \le p \le 2$ then

(1.4)
$$\|\mu\|_{2,p} + \|\mu\|_{p,2} + \|\mu\|_{\frac{4p}{2+p}} < \infty.$$

In the case that $p \ge 2$, then

$$\|\mu\|_p < \infty$$

Furthermore, the result is sharp, in the sense that, there exists a p-bimeasure such that $\|\mu\|_q = \infty$, for all $q < \frac{4p}{2+p}$.

To prove Theorem 1.1 we collect some definitions and results about vector measures. Much of the following can be found in Chapter 1 of [4].

Definition 1.3. A function μ from a field \mathcal{B} of a set Ω to a Banach space is called a finitely additive vector measure, or simply a vector measure, if whenever A_1

Title	Title Page		
Con	Contents		
••	••		
•			
Go	Go Back		
CI	Close		
Q	Quit		
Page	Page 5 of 15		

J. Ineq. Pure and Appl. Math. 3(2) Art. 19, 2002 http://jipam.vu.edu.au

and A_2 are disjoint members of \mathcal{B} then $\mu(A_1 \bigcup A_2) = \mu(A_1) + \mu(A_2)$. The variation of a vector measure μ is the extended nonnegative function $|\mu|$ whose value on the set E is given by

$$|\mu|(A) = \sup_{\pi} \sum_{A \in \pi} ||\mu(A)||,$$

where the sup is taken over all partitions π of A into a finite number of disjoint members of \mathcal{B} . If $|\mu|(\Omega)$ is finite, then μ will be called a measure of bounded variation.

A different type of variation related to a vector measure μ is the so called *semi-variation* of μ . More precisely, the semi-variation of μ is the extended nonnegative function $\|\mu\|_F$ whose value on a measurable set A is given by

$$\|\mu\|_{F}(A) = \sup \left\{ |x^{*}(\mu)|(A) : x^{*} \in X^{*}, \|x^{*}\| \leq 1 \right\}$$

where $|x^*(\mu)|$ is the variation of the real-valued measure (finitely additive measure) $x^*(\mu)$. If $||\mu||_F(\Omega)$ is finite, then μ will be called a *measure of bounded* semi-variation.

Page 6 of 15

J. Ineq. Pure and Appl. Math. 3(2) Art. 19, 2002 http://jipam.vu.edu.au

2. Proof of Theorem 1.1

We now prove Theorem 1.1. Suppose that $1 \le p < 2$. Let X_1 be the space of finitely additive set functions defined on $\sigma(\mathcal{B}_1)$, which have finite *p*-variations. Similarly let X_2 be the set finitely additive functions defined on $\sigma(\mathcal{B}_2)$ which have finite *p*-variations. It can be shown that equipped with *p*-variation norm, X_1 and X_2 are Banach spaces. Let *L* be the X_1 -valued function defined on $\sigma(\mathcal{B}_2)$ as follows: $L(A) = \mu(\cdot, A)$, where $A \in \sigma(\mathcal{B}_2)$. Let *R* be the X_2 -valued function defined on $\sigma(\mathcal{B}_1)$ as follows: $R(A) = \mu(A, \cdot)$, where $A \in \sigma(\mathcal{B}_1)$. If μ is a *p*-bimeasure then by the Nikodym Boundedness Theorem (see [4, Theorem 1, page 14]), *L* and *R* have finite semi-variations. If μ is a bounded pre-*p*bimeasure then by general properties of vector measures (see e.g., [4, Proposition 11, page 4]), *L* and *R* have finite semi-variations. Let $\{A_n\}$ be a finite measurable partition of Ω_2 and $\{B_k\}$ be a finite measurable partition of Ω_1 , then

(2.1)

$$\infty > ||L||_{F}(\Omega_{2})$$

$$\geq \left\| BV_{p}\left(\sum_{n} r_{n}\mu(A_{n}, \cdot)\right) \right\|_{\infty}$$

$$\geq \left\| \left(\sum_{k} \left|\sum_{n} r_{n}\mu(A_{n}, B_{k})\right|^{p}\right)^{\frac{1}{p}} \right\|_{\infty}$$

$$\geq \left(\int_{0}^{1} \sum_{k} \left|\sum_{n} r_{n}(x)\mu(A_{n}, B_{k})\right|^{p} dx\right)^{\frac{1}{p}}$$

J. Ineq. Pure and Appl. Math. 3(2) Art. 19, 2002 http://jipam.vu.edu.au

(Khinchin's inequality)
$$\Rightarrow \geq c \left(\sum_{k} \left(\sum_{n} |\mu(A_n, B_k)|^2 \right)^{\frac{p}{2}} \right)^{\frac{1}{p}}.$$

Similarly,

(2.2)
$$\infty > ||R||_F(\Omega_1) \ge c \left(\sum_n \left(\sum_k |\mu(A_n, B_k)|^2 \right)^{\frac{p}{2}} \right)^{\frac{1}{p}}.$$

(2.2) and (2.3) imply that, $\|\mu\|_{2,p}$ is finite. Applying Minkowski's inequality we obtain $\|\mu\|_{p,2} \leq \|\mu\|_{2,p} < \infty$. We now show that $\|\mu\|_{\frac{4p}{2+p}}$ is finite. Let $a_{n,k} = \mu(A_n, B_k)$. Applying Hölder's inequality with exponents $\frac{2+p}{p}$ and $\frac{2+p}{2}$, we obtain

$$(2.3) \qquad \sum_{n,k} |a_{n,k}|^{\frac{4p}{2+p}} = \sum_{n,k} |a_{n,k}|^{\frac{2p}{2+p}} |a_{n,k}|^{\frac{2p}{2+p}} \\ \leq \sum_{n} \left[\sum_{k} |a_{n,k}|^{2} \right]^{\frac{p}{2+p}} \left[\sum_{k} |a_{n,k}|^{p} \right]^{\frac{2}{p+2}} \\ \leq \left[\sum_{n} (\sum_{k} |a_{n,k}|^{2})^{\frac{p}{2}} \right]^{\frac{2}{2+p}} \left[\sum_{n} \left(\sum_{k} |a_{n,k}|^{p} \right)^{\frac{2}{p}} \right]^{\frac{p}{2+p}} \\ \leq \left(\|\mu\|_{2,p} \|\mu\|_{p,2} \right)^{\frac{2p}{p+2}} < \infty.$$

Go Back Close

Quit

Page 8 of 15

J. Ineq. Pure and Appl. Math. 3(2) Art. 19, 2002 http://jipam.vu.edu.au

This proves inequality (1.5). If $p \ge 2$ then $p/2 \ge 1$, consequently

(2.4)
$$||R||_{F}(\Omega_{1}) \geq c \left(\sum_{n} \left(\sum_{k} |\mu(A_{n}, B_{k})|^{2}\right)^{\frac{p}{2}}\right)^{\frac{1}{p}}$$
$$\geq c \left(\sum_{k} \left(\sum_{n} |\mu(A_{n}, B_{k})|^{p}\right)\right)^{\frac{1}{p}}.$$

Similarly

$$||L||_F(\Omega_2) \ge c \left(\sum_k \left(\sum_n |\mu(A_n, B_k)|^p\right)\right)^{\frac{1}{p}}$$

This proves inequality (2.1).

We now show that the exponent $\frac{4p}{p+2}$ is sharp. We only consider the case 1 . Sharpness of Theorem 1.1 for the case <math>p = 1 is known [9]. Sharpness of Theorem 1.1 for $p \ge 2$ is trivial.

We need the following result, which is a consequence of Kahane-Salem-Zygmund estimates (see [8, Theorem 3, p. 70]).

Lemma 2.1. Let $X_{n_1,n_2,...n_s}$ be a subnormal collection of independent random variables. Given complex numbers $c_{n_1,n_2,...,n_s}$, where the multi-index $(n_1, n_2, ..., n_s)$ satisfies $|n_1| + |n_2| + \cdots + |n_s| \le N$, then

(2.5)
$$\Pr\left\{\sup_{t_1,\dots,t_s} \left| \sum X_{n_1,n_2,\dots,n_s} c_{n_1,n_2,\dots,n_s} e^{i(n_1 t_1 + \dots + n_s t_s)} \right| \right\}\right\}$$

 $\label{eq:linear} \begin{array}{c} \mbox{Littlewood's Inequality for} \\ p - \mbox{Bimeasures} \end{array}$

J. Ineq. Pure and Appl. Math. 3(2) Art. 19, 2002 http://jipam.vu.edu.au

$$\geq C \left[s \sum |c_{n_1, n_2, \dots, n_s}|^2 \log N \right]^{\frac{1}{2}} \right\} \leq N^{-2} e^{-s},$$

where C is an independent constant.

To apply Lemma 2.1, we will need to construct an appropriate sequence of independent subnormal random variables. We will construct a Radamacher type of system, which we will call the 4-level Radamacher system.

2.1. 4-level Radamacher System

4-level Radamacher system is the sequence of independent random variables, $\{w_j(x)\}_{j=1}^{\infty}$, defined on the unit interval [0, 1], such that each w_j takes on 4 discrete values $\{2, -2, 1, -1\}$, each with probability $\frac{1}{4}$. Such a system can be constructed similar to the usual Radamacher system. Observe that, M 4-level Radamacher system generate 4^M distinct vectors of length M. On the other hand the set $\{1, 2, ..., M\}$ has 2^M distinct subsets.

By Lemma 2.1, for j, k = 1, ..., M, there exists a vector $\vec{t} = (t_1, t_2)$ and choice of scalers $\{b_{jk}\}_{j,k=1}^{M}$ (approximately as many as $(1 - \frac{1}{M^2}) 4^{M^2} - 2^{M^2}$), such that $b_{jk} \in \{2, -2, 1, -1\}$, and for any subset A of $\{1, 2, ..., M\}$,

(2.6)
$$\left|\sum_{j\in A} b_{jk} e^{i(kt_1+jt_2)}\right| \le C[4M\log(2M)]^{\frac{1}{2}},$$

and

(2.7)
$$\left|\sum_{k\in A} b_{jk} e^{i(kt_1+jt_2)}\right| \le C[4M\log(2M)]^{\frac{1}{2}}.$$

J. Ineq. Pure and Appl. Math. 3(2) Art. 19, 2002 http://jipam.vu.edu.au

Let

(2.8)
$$(a) = \{a_{jk}\}_{j,k} = \{b_{jk}e^{i(jt_1+kt_2)}\}_{j,k=1}^M.$$

Let $A,B \subset \{1,2,...,M\}$ and define

(2.9)
$$a(A,B) = \sum_{j \in A} \sum_{k \in B} a_{jk},$$

then by virtue of inequalities (2.7) and (2.8),

(2.10)
$$||a||_F \le C_p M^{\frac{1}{2} + \frac{1}{p}} \sqrt{\log(2M)}.$$

On the other hand for any r > 0,

(2.11)
$$||a||_{r} = \left[\sum_{j=1}^{M} \sum_{k=1}^{M} |a_{jk}|^{r}\right]^{\frac{1}{r}} \ge M^{\frac{2}{r}}.$$

We see that if $r < \frac{4p}{p+2}$,

(2.12)
$$\lim_{M \to \infty} \frac{||a||_r}{||a||_F} = \infty.$$

This shows that $\frac{4p}{p+2}$ is sharp. The proof for the case that μ is a bounded-prebimeasure is similar.

Littlewood's Inequality for p-Bimeasures

J. Ineq. Pure and Appl. Math. 3(2) Art. 19, 2002 http://jipam.vu.edu.au

3. Functions of Bounded *p*-Variations and Related Function Spaces

Let $p \ge 1$ and f be a function defined on $[0, 1]^2$. Let

$$V_p^{(2)}(f, [0, 1]^2) = \left(\sup_{\pi_1, \pi_2} \sum_{i, j} |\Delta_{i, j}^{\pi_1, \pi_2} f|^p\right)^{1/p}$$

Here $\pi_1 = \{0 = x_0 < x_1, < \cdots < x_m = 1\}$, and $\pi_2 = \{0 = y_0 < y_1, < \cdots < y_n = 1\}$, are partitions of [0, 1] and

$$\Delta_{i,j}^{\pi_1,\pi_2}(f) = f(x_i, y_j) - f(x_i, y_{j-1}) - f(x_{i-1}, y_j) + f(x_{i-1}, y_{j-1})$$

Let $W_p^{(2)}([0,1]^2) = W_p^{(2)}$ denote the class of functions f on $[0,1]^2$ such that,

$$\begin{split} ||f||_{W_p^2} &= V_p^{(2)}(f, [0, 1]^2) + V_p^{(2)}(f(0, \cdot), [0, 1]) \\ &+ V_p^{(1)}(f(\cdot, 0), [0, 1]) + |f(0, 0, 0)| \\ &< \infty. \end{split}$$

Let $\vec{x} = (x_1, x_2), \ \vec{y} = (y_1, y_2) \in [0, 1]^2$, and f be a function defined on $[0, 1]^2$. Let

$$f_{\vec{y}}(\vec{x}) = f(x_1, x_2) - f(x_1, y_2) - f(y_1, x_2) + f(y_1, y_2)$$

We say that f is a Lipschitz function of order α of first type, if there exists a constant C such that for all \vec{x} and \vec{y} in $[0, 1]^2$,

(3.1) $|f(\vec{x}) - f(\vec{y})| \le C ||\vec{x} - \vec{y}||_2^{\alpha}.$

Quit

Page 12 of 15

J. Ineq. Pure and Appl. Math. 3(2) Art. 19, 2002 http://jipam.vu.edu.au

Here $||\cdot||_2$ refers to the usual l_2 -norm. The class of Lipschitz functions of order α of first type is denoted by $\Lambda^1_{\alpha}(2)$. We say that f is a Lipschitz function of order α of second type, if there exists a constant C such that for all \vec{x} and \vec{y} in $[0, 1]^2$,

(3.2)
$$|f_{\vec{y}}(\vec{x})| \le C ||\vec{x} - \vec{y}||_2^{\alpha}$$

The class of Lipschitz functions of order α of second type is denoted by $\Lambda^2_{\alpha}(2)$. If $f \in \Lambda^1_{\alpha}(2)$ then

$$|f_{\vec{y}}(\vec{x})| \le 4C \min\{|x_j - y_j|^{\alpha} : 1 \le j \le 2\} \le C_2 ||\vec{x} - \vec{y}||_2^{\alpha}\}.$$

Therefore, $\Lambda^1_{\alpha}(2) \subset \Lambda^2_{\alpha}(2)$. Using Theorem 1.1 we obtain

Corollary 3.1. Let f be a function defined on $[0,1]^2$. Suppose that for any $1 \le j \le n$ and for any fixed partitions π_1 and π_2 of the interval [0,1], we have

(3.3)
$$\sup_{\pi} \left[\sum_{i,j} |\Delta_{i,j}^{\pi_1,\pi} f|^p \right]^{1/p} + \sup_{\pi} \left[\sum_{i,j} |\Delta_{i,j}^{\pi,\pi_2} f|^p \right]^{1/p} \le M < \infty,$$

then $f \in W^{(2)}_{\frac{4p}{2+p}}$.

J. Ineq. Pure and Appl. Math. 3(2) Art. 19, 2002 http://jipam.vu.edu.au

References

- [1] R.C. BLEI, Fractional dimensions and bounded fractional forms, *Mem. Amer. Math. Soc.*, **57** (1985), No. 331.
- [2] R.C. BLEI, Multilinear measure theory and the Grothendieck factorization theorem, *Proc. London Math. Soc.*, **56**(3) (1988), 529–546.
- [3] R.C. BLEI, An Extension theorem concerning Fréchet measures, *Can. Math. Bull.*, **38** (1995), 278–285.
- [4] J. DIESTEL AND J.J. UHL, Jr., Vector Measures, *Math Surveys* **15**, Amer. Math. Soc., Providence, (1977).
- [5] M. FRÉCHET, Sur les fonctionnelles bilinéaires, *Trans. Amer. Math. Soc.*, 16 (1915), 215–234.
- [6] A. GROTHENDIECK, Résumé de la théorie métirque des produits tensoriels topologiques, *Bol. Soc. Matem. São Paulo*, 8 (1956), 1–79.
- [7] C.C. GRAHAM AND B.M. SCHREIBER, Bimeasure algebras on LCA groups, *Pacific Journal of Math.*, **115** (1984), 91–127.
- [8] J.P. KAHANE, Some Random Series of Functions, 2nd edition, Cambridge University Press, Heath (1986).
- [9] J.E. LITTLEWOOD, On bounded bilinear forms in an infinite number of variables, *Quart. J. Math. Oxford*, **1** (1930), 164–174.
- [10] M. MORSE AND W. TRANSUE, Functionals of bounded Fréchet variation, *Canad. J. Math.*, 1 (1949), 153–165.

 $\label{eq:linear} \begin{array}{l} \mbox{Littlewood's Inequality for} \\ p - \mbox{Bimeasures} \end{array}$

J. Ineq. Pure and Appl. Math. 3(2) Art. 19, 2002 http://jipam.vu.edu.au

- [11] M. MORSE AND W. TRANSUE, Integral representations of bilinear functionals, Proc. Nat. Acad. Sci., 35 (1949), 136–143.
- [12] M. MORSE AND W. TRANSUE, C-bimeasures Λ and their integral extensions, Ann. Math., 64 (1956), 89–95.

 $\label{eq:linear} \begin{array}{l} \mbox{Littlewood's Inequality for} \\ p - \mbox{Bimeasures} \end{array}$

J. Ineq. Pure and Appl. Math. 3(2) Art. 19, 2002 http://jipam.vu.edu.au