## Journal of Inequalities in Pure and Applied Mathematics

## LITTLEWOOD'S INEQUALITY FOR $p$-BIMEASURES

## NASSER M. TOWGHI

Raytheon System Company
528 Boston Post Road Mail Stop 2-142,
Sudbury, MA 01776.
EMail: Nasser_M_Towghi@res.raytheon.com
volume 3 , issue 2 , article 19, 2002.

Received 10 April, 2001; accepted 16 November, 2001. Communicated by: L. Losonczi

| Abstract |
| :---: |
| Contents |
| Gome Page |
| Go Back |
| Close |

## Abstract

In this paper we extend an inequality of Littlewood concerning the higher varia-tions of functions of bounded Fréchet variations of two variables (bimeasures)to a class of functions that are $p$-bimeasures, by using the machinery of vectormeasures. Using random estimates of Kahane-Salem-Zygmund, we show thatthe inequality is sharp.
2000 Mathematics Subject Classification: Primary 26B15, 26A42, Secondary 28A35, 28A25.
Key words: Inequalities, Bimeasures, Fréchet variation, $p$-variations, Bounded vari- ations.
Contents
1 Introduction ..... 3
1.1 Littlewood's Inequalities ..... 4
2 Proof of Theorem 1.1 ..... 7
2.1 4-level Radamacher System ..... 10
3 Functions of Bounded $p$-Variations and Related Function Spaces ..... 12
References


Littlewood's Inequality for
$p$-Bimeasures
Nasser Towghi

J. Ineq. Pure and Appl. Math. 3(2) Art. 19, 2002 http://jipam.vu.edu.au

## 1. Introduction

Let $\mu$ be a set function defined on the product $\sigma\left(\mathcal{B}_{1}\right) \times \sigma\left(\mathcal{B}_{2}\right)$ of $2 \sigma$-fields, such that it is a finite complex measure in each coordinate. More precisely, for each fixed $A \in \sigma\left(\mathcal{B}_{1}\right)$ the set function $\mu(A, \cdot)$ is a complex measure defined on $\sigma\left(\mathcal{B}_{2}\right)$. Similarly for each $B \in \sigma\left(\mathcal{B}_{2}\right)$, the set function $\mu$ gives rise to a measure in the first coordinate. Such set functions dubbed bimeasures by Morse and Transue were studied extensively by these and other authors (see [1, 2, 3, 5, 6, $7,10,11,12]$ ). It is well known that such set functions need not be extendible to a measure on the $\sigma$-Algebra generated by $\sigma\left(\mathcal{B}_{1}\right) \times \sigma\left(\mathcal{B}_{2}\right)$. Now suppose that $\mu$ is a set function defined on $\sigma\left(\mathcal{B}_{1}\right) \times \sigma\left(\mathcal{B}_{2}\right)$, such that it has finite semi-variation; that is,

$$
\begin{equation*}
\|\mu\|_{F}=\sup \left\{\left\|\sum_{j, k} \mu\left(A_{j} \times B_{k}\right) r_{j} \otimes r_{k}\right\|_{\infty}\right\}<\infty \tag{1.1}
\end{equation*}
$$

where sup is taken over all measurable partitions $\left\{A_{j}\right\},\left\{B_{k}\right\}$ of $\Omega_{1}$ and $\Omega_{2}$, respectively. Here $\left\{r_{j}\right\}$ is the usual system of Rademachers, realized as functions on the interval $[0,1]$. By a partition of $\Omega$, we mean a finite collection of mutually disjoint measurable sets whose union is $\Omega . F$ in $\|\cdot\|_{F}$ is for Fréchet. It is clear that a set function $\mu$ with finite semi-variation is also a bimeasure. It is interesting that the converse also holds. That is, a bimeasure has finite semi-variation. This follows easily from the machinery of vector measure theory. On the other hand, it is well known that a set function which has finite semi-variation need not have finite total variation (in the sense of Vitali), hence it may not be extendible to a measure [2, 9]. However, all is not lost, in his 1930


Littlewood's Inequality for $p$-Bimeasures

Nasser Towghi

Title Page
Contents

| Go Back |
| :---: | :---: |
| Close |
| Quit |

Page 3 of 15
J. Ineq. Pure and Appl. Math. 3(2) Art. 19, 2002
paper, Littlewood showed that a bimeasure has finite $4 / 3$-variation. To make this precise we first introduce the notion of mixed variation of $\mu$. Let $p, q>0$, and define the mixed $(p, q)$-variation of $\mu$ to be

$$
\begin{equation*}
\|\mu\|_{p, q}=\sup \left\{\left(\sum_{k}\left(\sum_{j}\left|\mu\left(A_{j} \times B_{k}\right)\right|^{p}\right)^{\frac{q}{p}}\right)^{\frac{1}{q}}\right\} \tag{1.2}
\end{equation*}
$$

where the sup is taken over all finite measurable partitions $\left\{A_{j}\right\}$ and $\left\{B_{k}\right\}$ of $\Omega_{1}$ and $\Omega_{2}$ respectively. In the case that $p=q$, we simply write $\|\mu\|_{p}$, that is $\|\mu\|_{p}=\|\mu\|_{p, p}$. We now state Littlewood's $4 / 3$ inequalities.

### 1.1. Littlewood's Inequalities

$$
\begin{equation*}
\|\mu\|_{2,1}+\|\mu\|_{1,2}+\|\mu\|_{4 / 3} \leq c\|\mu\|_{F}, \tag{1.3}
\end{equation*}
$$

where $c$ is a fixed universal constant. The result is sharp in the sense that, there exists $\mu \in$ such that $\|\mu\|_{p}$ and $\|\mu\|_{q, 1 / q}$ are infinite for all $p<4 / 3$ and for all $q<2$. Extension of Littlewood's inequality to a larger class of functions of two variables is the main result of this paper.

Definition 1.1. A set function $\mu$ defined on product of two algebras $\mathcal{B}_{1} \times \mathcal{B}_{2}$ is called a pre-p-bimeasure, if it is finitely additive in each coordinate, and for each fixed $A \in \mathcal{B}_{1}$, the quantity

$$
B V_{p}(\mu(A, \cdot)):=\sup \left\{\sum_{k} \mid \mu\left(A \times\left. B_{k}\right|^{p}\right\}\right.
$$

is finite, and for each fixed $B \in \mathcal{B}_{2}, B V_{p}(\mu(\cdot, B))$ is finite. Here sup is taken over all finite measurable partitions of $\Omega_{2}$.

If the set function is defined on the product of two $\sigma$-algebras with above properties, then it is called a $p$-bimeasure.

Definition 1.2. A pre-p-bimeasure $\mu$ defined on product of two algebras $\mathcal{B}_{1} \times \mathcal{B}_{2}$, is said to be bounded, if there exists a positive constant $M$ such that $B V_{p}(\mu(A, \cdot))+$ $B V_{p}(\mu(\cdot, B)) \leq M$, for all $A \in \mathcal{B}_{1}$ and for all $B \in \mathcal{B}_{2}$.

We prove the following result.
Theorem 1.1. Suppose that either $\mu$ is a p-bimeasure defined on $\sigma\left(\mathcal{B}_{1}\right) \times \sigma\left(\mathcal{B}_{2}\right)$, or that it is a bounded pre-p-bimeasure defined on $\mathcal{B}_{1} \times \mathcal{B}_{2}$. If $1 \leq p \leq 2$ then

$$
\begin{equation*}
\|\mu\|_{2, p}+\|\mu\|_{p, 2}+\|\mu\|_{\frac{4 p}{2+p}}<\infty \tag{1.4}
\end{equation*}
$$

In the case that $p \geq 2$, then

$$
\begin{equation*}
\|\mu\|_{p}<\infty \tag{1.5}
\end{equation*}
$$

Furthermore, the result is sharp, in the sense that, there exists a p-bimeasure such that $\|\mu\|_{q}=\infty$, for all $q<\frac{4 p}{2+p}$.

To prove Theorem 1.1 we collect some definitions and results about vector measures. Much of the following can be found in Chapter 1 of [4].

Definition 1.3. A function $\mu$ from a field $\mathcal{B}$ of a set $\Omega$ to a Banach space is called a finitely additive vector measure, or simply a vector measure, if whenever $A_{1}$


Littlewood's Inequality for $p$-Bimeasures

Nasser Towghi

Title Page
Contents


Go Back
Close
Quit
Page 5 of 15
and $A_{2}$ are disjoint members of $\mathcal{B}$ then $\mu\left(A_{1} \bigcup A_{2}\right)=\mu\left(A_{1}\right)+\mu\left(A_{2}\right)$. The variation of a vector measure $\mu$ is the extended nonnegative function $|\mu|$ whose value on the set $E$ is given by

$$
|\mu|(A)=\sup _{\pi} \sum_{A \in \pi}\|\mu(A)\|,
$$

where the sup is taken over all partitions $\pi$ of $A$ into a finite number of disjoint members of $\mathcal{B}$. If $|\mu|(\Omega)$ is finite, then $\mu$ will be called a measure of bounded variation.

A different type of variation related to a vector measure $\mu$ is the so called semi-variation of $\mu$. More precisely, the semi-variation of $\mu$ is the extended nonnegative function $\|\mu\|_{F}$ whose value on a measurable set $A$ is given by

$$
\|\mu\|_{F}(A)=\sup \left\{\left|x^{*}(\mu)\right|(A): x^{*} \in X^{*},\left\|x^{*}\right\| \leq 1\right\}
$$

where $\left|x^{*}(\mu)\right|$ is the variation of the real-valued measure (finitely additive measure) $x^{*}(\mu)$. If $\|\mu\|_{F}(\Omega)$ is finite, then $\mu$ will be called a measure of bounded semi-variation.


Littlewood's Inequality for $p$-Bimeasures

Nasser Towghi

J. Ineq. Pure and Appl. Math. 3(2) Art. 19, 2002

## 2. Proof of Theorem $\mathbf{1 . 1}$

We now prove Theorem 1.1. Suppose that $1 \leq p<2$. Let $X_{1}$ be the space of finitely additive set functions defined on $\sigma\left(\mathcal{B}_{1}\right)$, which have finite $p$-variations. Similarly let $X_{2}$ be the set finitely additive functions defined on $\sigma\left(\mathcal{B}_{2}\right)$ which have finite $p$-variations. It can be shown that equipped with $p$-variation norm, $X_{1}$ and $X_{2}$ are Banach spaces. Let $L$ be the $X_{1}$-valued function defined on $\sigma\left(\mathcal{B}_{2}\right)$ as follows: $L(A)=\mu(\cdot, A)$, where $A \in \sigma\left(\mathcal{B}_{2}\right)$. Let $R$ be the $X_{2}$-valued function defined on $\sigma\left(\mathcal{B}_{1}\right)$ as follows: $R(A)=\mu(A, \cdot)$, where $A \in \sigma\left(\mathcal{B}_{1}\right)$. If $\mu$ is a $p$-bimeasure then by the Nikodym Boundedness Theorem (see [4, Theorem 1 , page 14]), $L$ and $R$ have finite semi-variations. If $\mu$ is a bounded pre- $p$ bimeasure then by general properties of vector measures (see e.g., [4, Proposition 11, page 4]), $L$ and $R$ have finite semi-variations. Let $\left\{A_{n}\right\}$ be a finite measurable partition of $\Omega_{2}$ and $\left\{B_{k}\right\}$ be a finite measurable partition of $\Omega_{1}$, then

$$
\begin{align*}
\infty & >\|L\|_{F}\left(\Omega_{2}\right)  \tag{2.1}\\
& \geq\left\|B V_{p}\left(\sum_{n} r_{n} \mu\left(A_{n}, \cdot\right)\right)\right\|_{\infty} \\
& \geq\left\|\left(\sum_{k}\left|\sum_{n} r_{n} \mu\left(A_{n}, B_{k}\right)\right|^{p}\right)^{\frac{1}{p}}\right\|_{\infty} \\
& \geq\left(\int_{0}^{1} \sum_{k}\left|\sum_{n} r_{n}(x) \mu\left(A_{n}, B_{k}\right)\right|^{p} d x\right)^{\frac{1}{p}}
\end{align*}
$$



Littlewood's Inequality for $p$-Bimeasures

Nasser Towghi

Title Page
Contents


Go Back
Close
Quit
Page 7 of 15

$$
\text { (Khinchin's inequality) } \Rightarrow \geq c\left(\sum_{k}\left(\sum_{n}\left|\mu\left(A_{n}, B_{k}\right)\right|^{2}\right)^{\frac{p}{2}}\right)^{\frac{1}{p}} .
$$

Similarly,

$$
\begin{equation*}
\infty>\|R\|_{F}\left(\Omega_{1}\right) \geq c\left(\sum_{n}\left(\sum_{k}\left|\mu\left(A_{n}, B_{k}\right)\right|^{2}\right)^{\frac{p}{2}}\right)^{\frac{1}{p}} . \tag{2.2}
\end{equation*}
$$

(2.2) and (2.3) imply that, $\|\mu\|_{2, p}$ is finite. Applying Minkowski's inequality we obtain $\|\mu\|_{p, 2} \leq\|\mu\|_{2, p}<\infty$. We now show that $\|\mu\|_{\frac{4 p}{2+p}}$ is finite. Let $a_{n, k}=\mu\left(A_{n}, B_{k}\right)$. Applying Hölder's inequality with exponents $\frac{2+p}{p}$ and $\frac{2+p}{2}$, we obtain

$$
\begin{align*}
\sum_{n, k}\left|a_{n, k}\right|^{\frac{4 p}{2+p}} & =\sum_{n, k}\left|a_{n, k}\right|^{\frac{2 p}{2+p}}\left|a_{n, k}\right|^{\frac{2 p}{2+p}}  \tag{2.3}\\
& \leq \sum_{n}\left[\sum_{k}\left|a_{n, k}\right|^{2}\right]^{\frac{p}{2+p}}\left[\sum_{k}\left|a_{n, k}\right|^{p}\right]^{\frac{2}{p+2}} \\
& \leq\left[\sum_{n}\left(\sum_{k}\left|a_{n, k}\right|^{2}\right)^{\frac{p}{2}}\right]^{\frac{2}{2+p}}\left[\sum_{n}\left(\sum_{k}\left|a_{n, k}\right|^{p}\right)^{\frac{2}{p}}\right]^{\frac{p}{2+p}} \\
& \leq\left(\|\mu\|_{2, p}\|\mu\|_{p, 2}\right)^{\frac{2 p}{p+2}}<\infty
\end{align*}
$$

This proves inequality (1.5). If $p \geq 2$ then $p / 2 \geq 1$, consequently

$$
\begin{align*}
\|R\|_{F}\left(\Omega_{1}\right) & \geq c\left(\sum_{n}\left(\sum_{k}\left|\mu\left(A_{n}, B_{k}\right)\right|^{2}\right)^{\frac{p}{2}}\right)^{\frac{1}{p}}  \tag{2.4}\\
& \geq c\left(\sum_{k}\left(\sum_{n}\left|\mu\left(A_{n}, B_{k}\right)\right|^{p}\right)\right)^{\frac{1}{p}} .
\end{align*}
$$

Similarly

$$
\|L\|_{F}\left(\Omega_{2}\right) \geq c\left(\sum_{k}\left(\sum_{n}\left|\mu\left(A_{n}, B_{k}\right)\right|^{p}\right)\right)^{\frac{1}{p}}
$$

This proves inequality (2.1).
We now show that the exponent $\frac{4 p}{p+2}$ is sharp. We only consider the case $1<p<2$. Sharpness of Theorem 1.1 for the case $p=1$ is known [9]. Sharpness of Theorem 1.1 for $p \geq 2$ is trivial.

We need the following result, which is a consequence of Kahane-SalemZygmund estimates (see [8, Theorem 3, p. 70]).

Lemma 2.1. Let $X_{n_{1}, n_{2}, \ldots n_{s}}$ be a subnormal collection of independent random variables. Given complex numbers $c_{n_{1}, n_{2}, \ldots, n_{s}}$, where the multi-index $\left(n_{1}, n_{2}, \ldots, n_{s}\right)$ satisfies $\left|n_{1}\right|+\left|n_{2}\right|+\cdots+\left|n_{s}\right| \leq N$, then

Littlewood's Inequality for $p$-Bimeasures

Nasser Towghi

Title Page
Contents

| $\mathbf{4 s}$ |  |
| :---: | :---: |
| $\mathbf{~ G o ~ B a c k}$ |  |
| Close |  |
| Quit |  |

Page 9 of 15

$$
\begin{equation*}
\operatorname{Pr}\left\{\sup _{t_{1}, \ldots, t_{s}}\left|\sum X_{n_{1}, n_{2}, \ldots n_{s}} c_{n_{1}, n_{2}, \ldots, n_{s}} e^{i\left(n_{1} t_{1}+\cdots n_{s} t_{s}\right)}\right|\right. \tag{2.5}
\end{equation*}
$$

$$
\left.\geq C\left[s \sum\left|c_{n_{1}, n_{2}, \ldots, n_{s}}\right|^{2} \log N\right]^{\frac{1}{2}}\right\} \leq N^{-2} e^{-s}
$$

where $C$ is an independent constant.
To apply Lemma 2.1, we will need to construct an appropriate sequence of independent subnormal random variables. We will construct a Radamacher type of system, which we will call the 4-level Radamacher system.

### 2.1. 4-level Radamacher System

4-level Radamacher system is the sequence of independent random variables, $\left\{w_{j}(x)\right\}_{j=1}^{\infty}$, defined on the unit interval $[0,1]$, such that each $w_{j}$ takes on 4 discrete values $\{2,-2,1,-1\}$, each with probability $\frac{1}{4}$. Such a system can be constructed similar to the usual Radamacher system. Observe that, $M$ 4-level Radamacher system generate $4^{M}$ distinct vectors of length $M$. On the other hand the set $\{1,2, \ldots, M\}$ has $2^{M}$ distinct subsets.

By Lemma 2.1, for $j, k=1, \ldots, M$, there exists a vector $\vec{t}=\left(t_{1}, t_{2}\right)$ and choice of scalers $\left\{b_{j k}\right\}_{j, k=1}^{M}$ (approximately as many as $\left(1-\frac{1}{M^{2}}\right) 4^{M^{2}}-2^{M^{2}}$ ), such that $b_{j k} \in\{2,-2,1,-1\}$, and for any subset $A$ of $\{1,2, \ldots, M\}$,

$$
\begin{equation*}
\left|\sum_{j \in A} b_{j k} e^{i\left(k t_{1}+j t_{2}\right)}\right| \leq C[4 M \log (2 M)]^{\frac{1}{2}}, \tag{2.6}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|\sum_{k \in A} b_{j k} e^{i\left(k t_{1}+j t_{2}\right)}\right| \leq C[4 M \log (2 M)]^{\frac{1}{2}} \tag{2.7}
\end{equation*}
$$

Littlewood's Inequality for
$p$-Bimeasures
Nasser Towghi

Title Page
Contents

| Title Page |
| :---: |
| Contents |
| Go Back |
| Close |
| Quit |

Page 10 of 15


$$
\begin{equation*}
(a)=\left\{a_{j k}\right\}_{j, k}=\left\{b_{j k} e^{i\left(j t_{1}+k t_{2}\right)}\right\}_{j, k=1}^{M} . \tag{2.8}
\end{equation*}
$$

Let $A, B \subset\{1,2, \ldots, M\}$ and define

$$
\begin{equation*}
a(A, B)=\sum_{j \in A} \sum_{k \in B} a_{j k} \tag{2.9}
\end{equation*}
$$

then by virtue of inequalities (2.7) and (2.8),

$$
\begin{equation*}
\|a\|_{F} \leq C_{p} M^{\frac{1}{2}+\frac{1}{p}} \sqrt{\log (2 M)} \tag{2.10}
\end{equation*}
$$

On the other hand for any $r>0$,

$$
\begin{equation*}
\|a\|_{r}=\left[\sum_{j=1}^{M} \sum_{k=1}^{M}\left|a_{j k}\right|^{r}\right]^{\frac{1}{r}} \geq M^{\frac{2}{r}} \tag{2.11}
\end{equation*}
$$

We see that if $r<\frac{4 p}{p+2}$,

$$
\begin{equation*}
\lim _{M \rightarrow \infty} \frac{\|a\|_{r}}{\|a\|_{F}}=\infty \tag{2.12}
\end{equation*}
$$

This shows that $\frac{4 p}{p+2}$ is sharp. The proof for the case that $\mu$ is a bounded-pre-
Page 11 of 15 bimeasure is similar.

## 3. Functions of Bounded $p$-Variations and Related Function Spaces

Let $p \geq 1$ and $f$ be a function defined on $[0,1]^{2}$. Let

$$
V_{p}^{(2)}\left(f,[0,1]^{2}\right)=\left(\sup _{\pi_{1}, \pi_{2}} \sum_{i, j}\left|\Delta_{i, j}^{\pi_{1}, \pi_{2}} f\right|^{p}\right)^{1 / p} .
$$

Here $\pi_{1}=\left\{0=x_{0}<x_{1},<\cdots<x_{m}=1\right\}$, and $\pi_{2}=\left\{0=y_{0}<y_{1},<\cdots<\right.$ $\left.y_{n}=1\right\}$, are partitions of $[0,1]$ and

$$
\Delta_{i, j}^{\pi_{1}, \pi_{2}}(f)=f\left(x_{i}, y_{j}\right)-f\left(x_{i}, y_{j-1}\right)-f\left(x_{i-1}, y_{j}\right)+f\left(x_{i-1}, y_{j-1}\right)
$$

Let $W_{p}^{(2)}\left([0,1]^{2}\right)=W_{p}^{(2)}$ denote the class of functions $f$ on $[0,1]^{2}$ such that,

$$
\begin{aligned}
\|f\|_{W_{p}^{2}}= & V_{p}^{(2)}\left(f,[0,1]^{2}\right)+V_{p}^{(2)}(f(0, \cdot),[0,1]) \\
& +V_{p}^{(1)}(f(\cdot, 0),[0,1])+|f(0,0,0)| \\
< & \infty
\end{aligned}
$$

Let $\vec{x}=\left(x_{1}, x_{2}\right), \quad \vec{y}=\left(y_{1}, y_{2}\right) \in[0,1]^{2}$, and $f$ be a function defined on $[0,1]^{2}$. Let

$$
f_{\vec{y}}(\vec{x})=f\left(x_{1}, x_{2}\right)-f\left(x_{1}, y_{2}\right)-f\left(y_{1}, x_{2}\right)+f\left(y_{1}, y_{2}\right) .
$$

We say that $f$ is a Lipschitz function of order $\alpha$ of first type, if there exists a

## Page 12 of 15

 constant $C$ such that for all $\vec{x}$ and $\vec{y}$ in $[0,1]^{2}$,$$
\begin{equation*}
|f(\vec{x})-f(\vec{y})| \leq C| | \vec{x}-\vec{y} \|_{2}^{\alpha} . \tag{3.1}
\end{equation*}
$$

Here $\|\cdot\|_{2}$ refers to the usual $l_{2}$-norm. The class of Lipschitz functions of order $\alpha$ of first type is denoted by $\Lambda_{\alpha}^{1}(2)$. We say that $f$ is a Lipschitz function of order $\alpha$ of second type, if there exists a constant $C$ such that for all $\vec{x}$ and $\vec{y}$ in $[0,1]^{2}$,

$$
\begin{equation*}
\left|f_{\vec{y}}(\vec{x})\right| \leq C\|\vec{x}-\vec{y}\|_{2}^{\alpha} \tag{3.2}
\end{equation*}
$$

The class of Lipschitz functions of order $\alpha$ of second type is denoted by $\Lambda_{\alpha}^{2}(2)$. If $f \in \Lambda_{\alpha}^{1}(2)$ then

$$
\left.\left|f_{\vec{y}}(\vec{x})\right| \leq 4 C \min \left\{\left|x_{j}-y_{j}\right|^{\alpha}: 1 \leq j \leq 2\right\} \leq C_{2}\|\vec{x}-\vec{y}\|_{2}^{\alpha}\right\} .
$$

Therefore, $\Lambda_{\alpha}^{1}(2) \subset \Lambda_{\alpha}^{2}(2)$. Using Theorem 1.1 we obtain
Corollary 3.1. Let $f$ be a function defined on $[0,1]^{2}$. Suppose that for any $1 \leq j \leq n$ and for any fixed partitions $\pi_{1}$ and $\pi_{2}$ of the interval $[0,1]$, we have

$$
\begin{equation*}
\sup _{\pi}\left[\sum_{i, j}\left|\Delta_{i, j}^{\pi_{1}, \pi} f\right|^{p}\right]^{1 / p}+\sup _{\pi}\left[\sum_{i, j}\left|\Delta_{i, j}^{\pi, \pi_{2}} f\right|^{p}\right]^{1 / p} \leq M<\infty \tag{3.3}
\end{equation*}
$$

then $f \in W_{\frac{4 p}{2+p}}^{(2)}$.


Littlewood's Inequality for $p$-Bimeasures

Nasser Towghi

| Title Page |
| :---: |
| Contents |
| Close Back |
| Quit |
| Page 13 of 15 |

## References

[1] R.C. BLEI, Fractional dimensions and bounded fractional forms, Mem. Amer. Math. Soc., 57 (1985), No. 331.
[2] R.C. BLEI, Multilinear measure theory and the Grothendieck factorization theorem, Proc. London Math. Soc., 56(3) (1988), 529-546.
[3] R.C. BLEI, An Extension theorem concerning Fréchet measures, Can. Math. Bull., 38 (1995), 278-285.
[4] J. DIESTEL and J.J. UHL, Jr., Vector Measures, Math Surveys 15, Amer. Math. Soc., Providence, (1977).
[5] M. FRÉCHET, Sur les fonctionnelles bilinéaires, Trans. Amer. Math. Soc., 16 (1915), 215-234.
[6] A. GROTHENDIECK, Résumé de la théorie métirque des produits tensoriels topologiques, Bol. Soc. Matem. São Paulo, 8 (1956), 1-79.
[7] C.C. GRAHAM AND B.M. SCHREIBER, Bimeasure algebras on LCA groups, Pacific Journal of Math., 115 (1984), 91-127.
[8] J.P. KAHANE, Some Random Series of Functions, 2nd edition, Cambridge University Press, Heath (1986).
[9] J.E. LITTLEWOOD, On bounded bilinear forms in an infinite number of variables, Quart. J. Math. Oxford, 1 (1930), 164-174.
[10] M. MORSE AND W. TRANSUE, Functionals of bounded Fréchet variation, Canad. J. Math., 1 (1949), 153-165.


Littlewood's Inequality for $p$-Bimeasures

Nasser Towghi

Title Page
Contents

| Go Back |
| :---: | :---: |
| Close |
| Quit |
| Q |

Page 14 of 15
[11] M. MORSE AND W. TRANSUE, Integral representations of bilinear functionals, Proc. Nat. Acad. Sci., 35 (1949), 136-143.
[12] M. MORSE AND W. TRANSUE, C-bimeasures $\Lambda$ and their integral extensions, Ann. Math., 64 (1956), 89-95.
Littlewood's Inequality for $p$-Bimeasures
Nasser Towghi
Title Page

