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ABSTRACT. This paper provides some conditions to obtain best uniform coapproximation. Some
error estimates are determined. A relation between interpolation and best uniform coapproxima-
tion is exhibited. Continuity properties of selections for the metric projection and the cometric
projection are studied.
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1. INTRODUCTION

A new kind of approximation was first introduced in 1972 by Franchetti and FEuri [3] to
characterize real Hilbert spaces among real reflexive Banach spaces. This was christened ‘best
coapproximation’ by Papini and Singér [16]. Subsequently, Geetha S. Rao and coworkers have
developed this theory to a considerable extent [4] - [13]. This theory is largely concerned with
the questions of existence, uniqueness and characterizations of best coapproximation. It also
deals with the continuity properties of the cometric projection and selections for the comet-
ric projection, apart from related maps and strongly unique best coapproximation. This paper
mainly deals with the role of Chebyshev subspaces in the best uniform coapproximation prob-
lems and a selection for the cometric projection. Segtjon 2 gives the fundamental concepts of
best approximation and best coapproximation that are used in the sequel. Section 3 provides
some conditions to obtain a best uniform coapproximation. Sefcfion 4 deals with the error es-
timates and a relation between interpolation and best uniform coapproximation. Selections for
the metric projection and the cometric projection and their continuity properties are studied in
Sectior{b.
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2 GEETHA S. RAO AND R. SARAVANAN

2. PRELIMINARIES

Definition 2.1. Let G be a nonempty subset of a real normed linear spaceAn element
g € G is called abest coapproximatioto f € X from G if for everyg € G,

lg—grll < IIf —gll-

The set of all best coapproximations fo= X from G is denoted byR (f). The subset is
called anexistence sdf R (f) contains at least one element, for evgrg X. The subse

is called auniquenesset if R (f) contains at most one element, for evgrg X. The subset
G is called anexistence and uniqueness #ef?. (f) contains exactly one element, for every
f € X. The set

D (Re) =={f € X : Ra(f)# 0}
is called the domain oR.

Proposition 2.1. [16]Let G be a linear subspace of a real normed linear spake If
f € D(Rg) anda € R, thenaf € D (Rg) and R (af) = aRq (f), whereR denotes
the set of real numbers. That iB¢ is homogeneous.

Remark 2.2. If GG is a subset of a real normed linear subspac¥ siich thatvg € G for every
g € G, > 0, then Propositioh 2|1 holds for > 0.

Definition 2.2. Let G be a nonempty subset of a real normed linear spacé&he set-valued
mappingRg; : X — POW (G) which associates for every € X, the setRs (f) of the
best coapproximations tbfrom G is called thecometric projectioronto G, wherePOW (G)
denotes the set of all subsets(of

Definition 2.3. Let G be a nonempty subset of a real normed linear spaceAn element
g € G is called abest approximatioto f € X from G if for every g € G,

If = g¢ll < lf =9l
ie., if
If = gsll = ik lIf —gll = d (£, G),

whered (f, G) := distance between the elemehénd the seg.

The set of all best approximations foc X from G is denoted byP; (f).

The subset is called aproximinal or existence saf P (f) contains at least one element
foreveryf € X. (G is called asemi Chebyshew uniqueness séft P; (f) contains exactly one
element for everyf € X.

Definition 2.4. Let G be a nhonempty subset of a real normed linear spacéhe set-valued
mappingP; : X — POW (G) which associates for everf € X, the setP; (f) of the best
approximations tgf from G is called themetric projectiononto G

Let [a, b] be a closed and bounded interval of the real line. A space of continuous real valued
functions ona, b] is defined by

Cla,b) ={f :[a,b] — R : fis continuou$.

If » is a positive integer, then the spacereftimes continuously differentiable functions on
la, b] is defined by

C"la,b] = {f : [a,b] = R: f € Cla,b]}.
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BESTUNIFORM COAPPROXIMATION 3

Definition 2.5. Thesignof a functiong € C'[a, b] is defined by

-1 if g(t) <0
sgng(t)=<¢ 0 if g(t)=0
1 if g(t)>0.

Definition 2.6. Let G be a subset of a real normed linear spéade, b, f € C'[a,b] \G. Let
{t1,...,t,} € [a,b]. Afunctiong € G is said tointerpolatef at the point¢y, ..., ¢,} if

gt = f(t), i=1,...,n.

Definition 2.7. An n—dimensional subspacé of C'[a,b] is called aChebyshev subspace
(Tchebycheff subspade brief, T'—subspace) or Haar subspadtthere exists a basigyy, . . ., 9.}
of G such that

Jis -y 0n g1(t1) - ga(tr)
D = : : >0,
t1,...5tn g (t1) - gn(ty)
forallt; <--- <t,ina,b].
Definition 2.8. Let {g, ..., g,} be a set of bounded real valued functions defined on a subset

I of R. The syster{g;}; is said to be aveak Chebyshev systéor Weak Tchebycheff system;
in brief, WT-system) if they are linearly independent, and

G1s- - 0n gi(t) - ga(th)
D = : : >0,
ti, ...t g (t) - gn(tn)
forallt; < --- < t, € I. The space spanned by a weak Chebyshev system is calledla

Chebychev space.

In contrast to the definitions of Chebychev space, there the functions are defined on arbitrary
subsetd of R and they are not required to be continuous/oft is clear that every Chebyshev
space is a weak Chebyshev space.

Best coapproximation problems can be considered with respect to various nornis,-erorm,
Lo—norm, andL.,—norm. The choice of the norms depends on the given minimization prob-
lem. Since thel.,—norm induces an inner product and best coapproximation coincides with
best approximation in inner product spaces, all the results of best approximation with respect to
the L,—norm can be carried over to best coapproximation with respekttoorms. Hence,
the best coapproximation problems will be considered with respect tb,thed L., norms.

Definition 2.9. For all functionsf € C [a, b], the uniform normor L.,—norm or supremum
normis defined by

[flloe = sup [f(£)]-

t€la,b]
Best coapproximation (respectively, best approximation) with respect to this norm isloedied
uniform coapproximatiofrespectivelypest uniform approximatign

Definition 2.10. The setE (f) of extreme pointsf a functionf € C'[a, b] is defined by
E(f)={telad:[f O] =1lc}-

For the sake of brevity, the terminology subspace is used instead of a linear subspace. Unless

otherwise stated, all normed linear spaces considered in this paper are existence subsets and
existence subspaces with respect to best coapproximation. Itis easy to de@lwithinstead

J. Inequal. Pure and Appl. Math3(2) Art. 24, 2002 http://jipam.vu.edu.au/


http://jipam.vu.edu.au/

4 GEETHA S. RAO AND R. SARAVANAN

of an arbitrary normed linear space. Since best coapproximation (respectively, best approxima-
tion) of an element in a subset from the same subset is the element of itself, Gzeq ifX,

f € G= Rs(f)= fandPs; (f) = f, itis sufficient to deal with the element to which a best
coapproximation (respectively, best approximation) to be found, which lies outside the subset,
ie., f e X\G.

3. CHARACTERIZATION OF BEST UNIFORM COAPPROXIMATION

The following theorem is a characterization best uniform coapproximation due to Geetha S.
Rao and R. Saravanan [14].

Theorem 3.1.LetG be a subspace @ [a,b], f € C [a,b] \G andg; € G. Then the following
statements are equivalent:

(i) The functiory; is a best uniform coapproximation fofromG.
(i) For every functiory € G,

t?}}@) (f(t) —gs(t)g(t) <0.

The next result generalizes one part of Thedrerp 3.1.

Theorem 3.2. LetG be a subset of' [a, b] such thaing € G forall g € G anda € [0, 00). Let
feCla,b]\Gandgs € G. If g; is a unique best uniform coapproximation tdrom G, then
for every functiory € G\ {g;} and every seV containingE (g — g¢) ,

f (f () — g5 (1)) (9 (t) = 95 (£)) <O

Proof. Assume to the contrary that there exists a functipg G\ {g;} and a set containing
E (g1 — gy) such that

inf (f (t) — g7 (1)) (91 (£) — g5 (£)) = 0.

teU
Then for allt € U, it follows that
(3.1) (f (&) = g7 (8) (91 (t) — gs (1)) > 0.
Let

1

@2 v ={ee it sl -0 012 Lo - ol ).
Assume without loss of generality that(¢; — g;) C U C V. Let
(3.3) c=llg1 — g¢ll,, —max{lg (t) —gs (t)[ : t € VAU}.

It is clear thatc > 0. By multiplying f — ¢, with an appropriate positive factor and using
RemarK 2.P, assume without loss of generality that

) 1
34) I =gl < min {5 lan — ol }-

Case 1.Lett € [a,b] \V. Then it follows that

1) =g (D = (&) —gr @) = (g1 () — gs ()]
1f () = g5 (D) + 191 (t) — g7 (1))

1
17 = gsll+ 5l — asll, by @D)

1 1
5 g = gsllc + 5l = g¢ll. by B:-4)
lgr = 97l -

IN

IN

J. Inequal. Pure and Appl. Math3(2) Art. 24, 2002 http://jipam.vu.edu.au/


http://jipam.vu.edu.au/

BESTUNIFORM COAPPROXIMATION 5

Case 2.Lett € V\U. Then it follows that
@) =@ = [(f(t)—g7) = (g1 (t) — g7 (1))
| (@) = g7 (O] + |91 (¢) — g7 (2]
£ () — g5 @] + llor — g7l . — ¢ by B3)
191 — 97l by (3.4).
Case 3.Lett € U. Then it follows that
f @) =g (@) = [(f () —gr @) — (g1 (t) — g5 (t))]
= [If(t) —gr )| —lg1 (t) — g7 (O)|| by B.3)
= g1 (t) — g5 ()| = |f () — g7 ()| by (3.2) and[(3}4)

< g =97l -

IA A A

Thus for allt € [a, ],
1f () =g (D] < llgr — g7l -
This implies that
191 = 97llc = If = 9rlle s
which shows thag is not a unique best uniform coapproximationftérom G, a contradiction.
O
If G is considered as a subspace&dfz, b] , then Theorerh 3|2 can be written as:

Theorem 3.3. Let G be a subspace af' [a,b], f € C[a,b]\G andg; € G. If g; is a unique
best uniform coapproximation tb from GG, then for every nontrivial functiop € G and every
setU containingF (g) ,

inf (f (1) = g7 (1)) (9 (1) < 0.

Proof. Assume to the contrary that there exist a nontrivial functipg GG and a setU contain-
ing E (g1) such that

inf (f () — g5 (1)) (91 (£)) = 0.

teU
Letg, = ¢1 + g;. Then for allt € U, it follows that

(f () = g7 (1) (92 (£) — g (t)) > 0.
The remaining part of the proof is the same as that of Theprem 3.2. O
Remark 3.4. Theorems 3]2 and 3.3 remain true if the interjvab] is replaced by a compact
Hausdorff space.

Let X be a normed linear space attbe a subset ok. Letg; € G be fixed. For each
g € G, define a seL (g, gs) of continuous linear functionals depending ugoandg, by

L(g,97) ={L€G :L(g—gs)=|lg—gsll and|[L]| =1},
whereG* denotes the set of continuous linear functionals define@d.on
Some conditions to obtain best coapproximation are established.

Proposition 3.5. Let G be a subset of a normed linear spate f € X\G andg; € G. If for
eachg € G,

Leﬁ(g,gf)

or if for eachg € G, there existd. € L (g, gf) such that
L(gy) > L(f),
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theng, is a best approximation t¢ fromG.

Proof. Let minLec(g,gf) L(g; — f) < 0. Then there exists a continuous linear functiohat
L (g,gr) suchthatl (f — gf) < 0. It follows that

lg = g¢ll = L(g—g¢) = L(9) = L(gs) = L(g) = L(f) =L(g—=f) <llg— 1l
The other case can be proved similarly. O

Let G be a subspace of a normed linear spicé&orx € X, letd (z, G) denote the distance
betweenr andG, i.e.,

d(z,G) = inf |lz - g||.

geG
Then the quotient spacg€/G is equipped with the norm,
|+ gll = d(z,G).

Theorem 3.6. Let G and H be subspaces of a normed linear spac¢esuch thatG ¢ H and
let f € X\H andh € H. If his a best coapproximation té from H, thenh + G is a best
coapproximation tgf + G from the quotient spacH\G.

Proof. Assume that + G is not a best coapproximation fo+ G from H/G. Then there exists
h' + G € H/G such that

P+ G = (h+ O >lIf +G = (A + Gl

That is,
X" =h+ Gl > [IIf =1+ Gl
That s,
d(f—1,G)<d —h,G).
This implies that there exists€ G such that
If =# gl < d(W —hG)

< |IW=h+g|.
That s,
(g + 1) = hll > |If = (g + M)l
Thush is not a best coapproximation yofrom H, a contradiction. O

4. BEST UNIFORM COAPPROXIMATION AND CHEBYSHEV SUBSPACES

Let G be asubset of' [a, 0], f € C'[a,b] \G andg; € G be a best uniform coapproximation
to f from G. It is known that for every) € G,
If = gsll <20 f —gll-

If the subset; is considered as a Chebyshev subspace, then a lower bounf foy,|| _ is
obtained, for which the following definition and results are required.

Definition 4.1. The pointst; < --- < t, in [a, b] are calledalternating extreme pointef a
function f € C [a, 1], if there exists a sign € {—1, 1} such that

o (=)' f(t)=lflle, i=1....p.

Theorem 4.1. [I]Let G be ann—dimensional weak Chebyshev subspac&'¢i,b|, f €
Cla,b)\G andg; € G. If the error f — g; has at least + 1 alternating extreme points in
la,b], g is a best uniform approximations from G.
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Theorem 4.2.[15]Let G be ann—dimensional weak Chebyshev subspac€ @f, ] . Then for
all integersm € {1,...,n} and all pointsa =ty < t; < -+ < t,,—1 < t,, = b, there exists a
nontrivial functiong € GG such that
(=1)'g(t) >0, t €[tig,ti], i=1,...,m.
Now a lower bound fof| f — g¢||__ can be established as follows:
Theorem 4.3.LetG be ann—dimensional weak Chebyshev subspacé fef, 0], f € C'[a, b \G
andg; € G. If gy is a best uniform coapproximation but not a best uniform approximatigh to
from G, then there exists a nontrivial functigne G such that
9/l < If — 97l -
Proof. Sinceg; is not a best uniform approximation tbfrom G, by Theoren] 4[L.f — g;
cannot have more thamalternating extreme points i, b] . Lett; < --- < t,, p < n be the
alternating extreme points gf— g in [a, b] . Assume first thay (¢1) — gy (t1) = || f — 97|l -
Then there exist pointsy, x4, . .., z, in [a, b] and a real number > 0 such that
a = To< T << Tpip <Tp=b,
T; € (tiati—l)a 1=0,...,p—1.
and .
(DO =95 ) SN =95l = t € [y zina], i =0, p = 1.
Sincep < n, by Theoreny 42 there exists a nontrivial functips G such that
(—l)ig(t) >0,t€[r,xq],i=0,....,p— 1.

By multiplying ¢ with an appropriate positive factor, assume without loss of generality that
9]l < c. Thenforallt € [z;,z,44], it follows that

—f =gl < DT g5 (1)
< (DT =g (@) + (=1 g (1)
= (D" (1) =g, (1)) = (=) g (1)
< Nf=9rllc = e+ gl
< If =9l

That is,

—f = glloe <D E =95 @) = (D) g () <N f = 95llo -
This implies that for ali € {0,1,...,p — 1} and for allt € [z;, z;44],

U™ @) =95 @) =g )| < If — 95llo -
Hence
1f =97 = 9lls <1 = 91l -
For the second casg,(t,) — g5 (t1) = — || f — g7l , the inequality
1f =97 = 9l < IIf = 9¢ll

can be proved similarly.
Sinceg; — (gs + ¢) is a best uniform approximation to— (g + g) from G it follows that

lgr — (95 + Dlloe < NIf = (97 + 9l -
Hence
l9llee < IIf =97l -
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O

In order to approximate a given functighe C [a, b] by functions from a finite dimensional
subspace, it is required that the approximating function coincidesfnatitertain points of the
interval[a, b] . In order to establish a similar fact for coapproximation, the following theorems
are required.

Theorem 4.4.[1]Let G be a Chebyshev subspace®fa,b]. Then for every functiorf <
C'la, b] \G, there exists a unique best uniform approximation fidm

Theorem 4.5. Let G be ann—dimensional Chebyshev subspace’df:,b], f € C[a,b]\G
andg; € G. Then the following statements are equivalent:

(i) The functiory; is a best uniform approximation tbfromG.
(i) The errorf — g; has at least: + 1 alternating extreme points ifa, 4] .

Now a relation between interpolation and best uniform coapproximation is obtained as fol-
lows:

Theorem 4.6. Let G be ann—dimensional Chebyshev subspace’df:, b], f € C[a,b]\G
andg; € G. If g; is a best uniform coapproximation fofrom GG, theng; interpolatesf at at
leastn points offa, b] .

Proof. SinceG is ann—dimensional Chebyshev space®fa, b] , by Theoren 44 and Theorem
[4.5 there exists a unique function, saye G, such thatf — ¢, has at least + 1 alternating
extreme points ifa, b] . Therefore, there exist points < --- < t,,p > n+1,in [a,b] and a
signo € {—1,1} such that

o (=)' (f(t:) =91 () = If —gills i=1,....p.

Sincey; is a best uniform coapproximation fofrom G, it follows that fori =1, ..., p,

o (=1)" (g7 (t:) — g1 (1)) < llgr — gullo < F = g1lloe = o (=)' (F () — g1 () -
This implies that
o(=1) (g7 (&) —f(t:) <0, i=1,...,p.
Hence the functiorf — g, has at leasp — 1 zeros, sayt, ..., z,_;. Thusg, interpolatesf at
at leastr pointszy, ..., x, ;. O
Remark 4.7. Theorenj 4.6 can be proved in the context of weak Chebyshev subspaces.

The following theorem is required to establish an upper bound for thelefrerg,||  under
some conditions.

Theorem 4.8.[1]If f € C™[a,b], if g is a polynomial of degree which interpolatesf at n
pointszy, ...,z in [a,b] and ifw (z) = (r — xy) - - - (x — x,,) , then

1
If = gllee < S [1F ] Nllee -

Now, an upper bound can be determined as follows:

Corollary 4.9. LetG be a space of polynomials of degredefined ora, b and f € C™ [a, b] \G.
If g € G is a best uniform coapproximation from G, then

1
17 = sl < 1 1A ol

wherew (z) = (x — x1) - - - (x — z,) andz, . . ., z,, are the points irfja, b] at whichg; interpo-
lates f.
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Proof. Since a space of polynomials is a Chebyshev space, by Théorem 4.6, therepeirgs
T1,..., 2, iN [a,b] at whichg, interpolatesf Hence by Theorein 4.8,

1f = 9rll HﬂW}HMu
0

Remark 4.10. It is clear that the erro f — g;|| _ is minimum when ther;’s are taken as the
zeros of Chebyshev polynomials.

Proposition 4.11.LetG be a subspace f [a, b] , f € C'[a,b] \G andg; € G be a best uniform
coapproximation tof from G. Then there does not exist a functionGh which interpolates
[ — gy atits extreme points.

Proof. Suppose to the contrary that there exists a functipre G such thatg, interpolates
f — gy atits extreme points. Le¥ (go) = {t1,...,t,}. SO
9o (t:) = f(t:) —gr (i), 1=1,....n.
This implies that
go () (f (t:) — gy (8)) >0, i=1,....n

Hence
i t t) — t)) > 0.
ég%gﬂ)ﬁ() 9r (1))
Thus by Theorerp 3|15, is not a best uniform coapproximation fafrom G, a contradiction.

O
The following result answers the question:
When does a best uniform approximation imply a best uniform coapproximation?
Theorem 4.12.Let G be a subset of' [a,b], f € Ca,b]\G andg; € G be a best uniform
approximation tof fromG. If for every functiory € G,

(4.1) min - (f(t) = g(#)) (g7 (1) =g () <0,

tEE(g—gf)
then the functiory; is a best uniform coapproximation ofrom G.
Proof. For every functiory € G, there exists a poirtte E (g — g¢) such that

(f#)—g®)(gr () —g () <0.

Therefore, it follows that

1f=glle = I =97l
> |f () — g5 (D)
= [(f(t)—g(t) — (g9, ) —g (@)
= |f@#) —g®)|+1gs () =g ()
= llgr — 9l

O

Remark 4.13. In Theorenj 4.12, the result holds even if the condit[on](4.1) is replaced by the
condition:

sgn (f (t) — g (t)) = sgn (g (t) — g7 (1)),
for somet € E (g — gy) .

If s € Re (f) andgo € Pi (f), thenitis clear thal || f — g¢| < ||f — gol|-
The following result improves this lower bound. The proof is obvious.

J. Inequal. Pure and Appl. Math3(2) Art. 24, 2002 http://jipam.vu.edu.au/


http://jipam.vu.edu.au/

10 GEETHA S. RAO AND R. SARAVANAN

Proposition 4.14. Let G be a subset of a normed linear spa&e Let f, f» € X\G, g5, €
Ra (f1), 95 € Ra (f2), 91 € P (f1) andgs € P (f2). Then

max{”fl _2gf1H Hgfl _gsz - Hfl - fZH} S ||f1 _91”

’ 2
and

max{ 12~ 951 Non = 95l = U = sz} <ol

5. SELECTION FOR THE METRIC PROJECTION AND THE COMETRIC PROJECTION

Definition 5.1. Let G be a subset of a normed linear spacand letP; : X — POW (G) (re-
spectively,Rs : X — POW (G)) be the metric projection (respectively, cometric projection)
onto GG. A selectionfor the metric projectionP; (respectively, cometric projectioRl;) is an
onto mapS : X — G suchthatS (f) € P (f) (respectivelyS (f) € Rq (f)) forall f € X. If
S is continuous, then it is called a continuous selection for the metric projection (respectively,
cometric projection).
Definition 5.2. A selectionS for the metric projectionP; (respectively, cometric projection
R¢) is said to besunnyif S (f,) = S(f) forall f € X anda > 0, wheref, = af +
(1—a)S(f).

The following result shows that every selection for a cometric projection onto a subspace is
a sunny selection.

Theorem 5.1. Let G be a subspace of a normed linear spaceThen every selection for a
cometric projection?; : X — POW (G) is a sunny selection.

Proof. Let S be a selection. It is enough to prove titatf,) = S(f), forall f € X and
a > 0, wheref, := af + (1 — a) S (f) . It follows from Propositior 2]1 that
S(fa) = Slaf+(1—-a)S(f))

= S(a(f =S +5(f)

= S(a(f=5UN)+5(f)

= aS(f=5(f)+5(f)

= a(S(f)=SU))+S()

= S(f).
Thus every selection is sunny. O

Let B, denote the closed unit spherditia, b] with center at origin with respect to,, —norm.
That is,

By :={fe€Cla,b]: |fll, <1}.
Definition 5.3. Amap7T : C [a,b] — B defined by
(T'(f)) (z) :=max{—1,min{1, f(x)}}, fe€Cla,b], x € |a,b],
is called arorthogonal projection.
Remark 5.2. By the definition of orthogonal projection, it can be written as

{Sgnf(fv), reM(f),

f(z), otherwise,

(T(f) (x) =

where
M (f) ={z €[a,b]: |f (2)] > 1}.
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The next result shows that the orthogonal projection is a continuous selection for the cometric
projection.
Theorem 5.3. The orthogonal projectiofi” : C'[a,b] — B, is a continuous selection for the
cometric projectionRp__ : C'[a,b] — POW (B) under theL,—norm,1 < p < co.

Proof. Since the inequalityb — sgna| < |a — b| holds for all reala and such thata| > 1
and|b| < 1, it can be shown thdl’ is a selection for the cometric projectidty_ by taking
a= f(x)andb =g (x).Forifa = f (z),then|f ()| > 1. Therefore|| f|| ., > 1, hence either
f belongs to the boundary @, or f belongs toC [a,b] \ B If b = g (z), then|g ()] < 1.
Therefore,|g|| , < 1, hencey € B. Then for anyf € C'[a,b] andg € B., it can be shown
that

lg () = (T () (@) < |f (z) = g ()],

forall z € [a,].
Case 1.For allx € [a,b] such that f (z)| > 1, it follows that
|9 () = sgnf (x)] < |f (x) =g (2)].
Hence by Remark 5.2 it follows that
lg () = (T'(N) (@) < |f () — g (2)].
Case 2.For allx € [a,b] such that f (z)| < 1, it follows that
|9 (z) = (T'(f)) (@) = lg (x) = [ (2)].
By monotonicity of the norm, it follows thatg — 7' (f)[l, < [|f —gll,. HenceT (f) €

R (f). ThusT is a selection for the cometric projectidi);__ .
To proveT' is continuous, it is enough to prove that

(5.1) 1T (fr) =T (), < = Lall, s
for fl,fg € C’[a, b] .

Case l.Letx € [a,b] suchthatf, (x)| > 1and|f, (z)| > 1. Since the inequalitysgna — sgnb| <
la — b| holds, whenevefa| > 1, |b] > 1, inequality [5.1) follows by taking: = f; (z) and
b = f, (z) and by using rematk 5.2 and monotonicity of the norm.

Case 2.Letz € [a,b] such thatf; (z)| < 1and|f, (z)| < 1. By RemarK 5.2 and monotonicity
of the norm, inequality (5]1) is obvious.

Case 3.Letz € [a,b] such thatf, (z)| < 1and|f; (x)| > 1. Since the inequalitje — sgnb| <
la — b| holds, whenevefa| < 1, |b] > 1, inequality [5.1) follows by taking. = f; (z) and
b = fo (x) and by using Rema.2 and monotonicity of the norm. Tf$f,) — 7' (fo)[, <

Lfr = fell, -
0

Exponential sums are functions of the form

h() = pi(a)ets,

wheret; are real and distinct ang are polynomials. The expression

m

d(h):= (Opi+1),

i=1
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is called as the degree of exponential skirheredp denotes the degree pflLet V,, denote the
set of all exponential sums of degree less than or equal Eo Schmidt|[17] studied about the
continuity properties of the metric projection

Py, : Cla,b] — POW (V,,).
The following definition and results are required to prove the next result, which answers the
guestion:

When does the metric projectid®y, have a continuous selection?
In a normed linear spack, thecs—neighbourhood of a nonempty sétin X is given by

B.(A)={re X :d(x,A) <e},

where
d(z,A) = inf ||z —a| .
acA

Definition 5.4. [2]Let G be a subset of a normed linear spaceThen a set-valued map :
X — POW (@G) is said to be—lower semicontinuouat f € X, if for eache > 0, there exists
a neighbourhood’ of f such that

Be (F<f1))mBs (F(fQ)) 7é®

for each choice of pointg;, fo € U. F'is said to be 2-lower semicontinuoushfis 2-lower
semicontinuous at each point &f
Theorem 5.4.[2]Let G be he complete subspace of a normed linear spaeasd letF" : X —
POW (G) be a set-valued map. Lét (F)) = {z € X : F'(z) is a singleton sét Suppose that
F has closed images anid (F') is dense inX. ThenF" has a continuous selection if and only if
F'is 2-lower semicontinuous. Moreoverfifhas a continuous selection, then it is unique.
Theorem 5.5.[17]The set of functions @ |a, b] which have a unique best approximation from
V, is denseirC [a, b] .

Now a result which provides a necessary and sufficient condition for the metric projection
Py, to have a continuous selection can be stated. The proof follows from The¢orem 5.4 and
Theoreni5.b.

Theorem 5.6. The metric projection
Py, : Cla,b] — POW (V,)
has a continuous selection if and onlyfif, is 2-lower semicontinuous. MoreoverHyf,, has a
continuous selection, then it is unique.
Theorem 5.7.[2]Let G be a subset of normed linear spakeand letF' : X — POW (G). If
F'is a singleton-valued map, thenis 2-lower semicontinuous if and onlyfifis continuous.
Theorem 5.8.[7]Let G be an existence and uniqueness subspace with respect to best coap-
proximation of a normed linear spaceé. Then each of the following statements implies that the
cometric projectionR is continuous.
() G is afinite dimensional space.
(i) G is ahyperplane.
(i) Gis closed andr;' (0) is boundedly compact.
(iv) R is continuous at the points at;' (0) .
(V) Rg' (0)+ Rg' (0) € Rg' (0).
As a consequence of Theorejms|5.4] 5.7[and 5.8, the next result follows.
Theorem 5.9. Let G be an existence and uniqueness subspace with respect to best coapprox-

imation of a normed linear spac¥. Then each of the statements (i), (ii), (iii), (iv) and (v) of
Theoren) 5.8 implies that the cometric projectiBa has a unique continuous selection.
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Remark 5.10. Theorenj 5.4 can be stated in the context of best coapproximation as follows.:
Let G be a complete subspace of a normed linear spa@nd letR; :— POW (G) be

the cometric projection. TheR; has a selection which is continuous on the closure of the

set{f € X : f has a unique best coapproximation fr@s} if and only if Rs is 2-lower

semicontinuous.
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