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ABSTRACT. This paper provides some conditions to obtain best uniform coapproximation. Some
error estimates are determined. A relation between interpolation and best uniform coapproxima-
tion is exhibited. Continuity properties of selections for the metric projection and the cometric
projection are studied.
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1. I NTRODUCTION

A new kind of approximation was first introduced in 1972 by Franchetti and Furi [3] to
characterize real Hilbert spaces among real reflexive Banach spaces. This was christened ‘best
coapproximation’ by Papini and Singer [16]. Subsequently, Geetha S. Rao and coworkers have
developed this theory to a considerable extent [4] – [13]. This theory is largely concerned with
the questions of existence, uniqueness and characterizations of best coapproximation. It also
deals with the continuity properties of the cometric projection and selections for the comet-
ric projection, apart from related maps and strongly unique best coapproximation. This paper
mainly deals with the role of Chebyshev subspaces in the best uniform coapproximation prob-
lems and a selection for the cometric projection. Section 2 gives the fundamental concepts of
best approximation and best coapproximation that are used in the sequel. Section 3 provides
some conditions to obtain a best uniform coapproximation. Section 4 deals with the error es-
timates and a relation between interpolation and best uniform coapproximation. Selections for
the metric projection and the cometric projection and their continuity properties are studied in
Section 5.
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2 GEETHA S. RAO AND R. SARAVANAN

2. PRELIMINARIES

Definition 2.1. Let G be a nonempty subset of a real normed linear spaceX. An element
gf ∈ G is called abest coapproximationto f ∈ X from G if for everyg ∈ G,

‖g − gf‖ ≤ ‖f − g‖ .

The set of all best coapproximations tof ∈ X from G is denoted byRG (f). The subsetG is
called anexistence setif RG (f) contains at least one element, for everyf ∈ X. The subsetG
is called auniquenessset ifRG (f) contains at most one element, for everyf ∈ X. The subset
G is called anexistence and uniqueness setif RG (f) contains exactly one element, for every
f ∈ X. The set

D (RG) := {f ∈ X : RG (f) 6= ∅}

is called the domain ofRG.

Proposition 2.1. [16]Let G be a linear subspace of a real normed linear spaceX. If
f ∈ D (RG) and α ∈ R, thenαf ∈ D (RG) and RG (αf) = αRG (f) , whereR denotes
the set of real numbers. That is,RG is homogeneous.

Remark 2.2. If G is a subset of a real normed linear subspace ofX such thatαg ∈ G for every
g ∈ G, α ≥ 0, then Proposition 2.1 holds forα ≥ 0.

Definition 2.2. Let G be a nonempty subset of a real normed linear spaceX. The set-valued
mappingRG : X → POW (G) which associates for everyf ∈ X, the setRG (f) of the
best coapproximations tof from G is called thecometric projectionontoG, wherePOW (G)
denotes the set of all subsets ofG.

Definition 2.3. Let G be a nonempty subset of a real normed linear spaceX. An element
gf ∈ G is called abest approximationto f ∈ X from G if for everyg ∈ G,

‖f − gf‖ ≤ ‖f − g‖

i.e., if

‖f − gf‖ = inf
g∈G

‖f − g‖ = d (f, G) ,

whered (f, G) := distance between the elementf and the setG.
The set of all best approximations tof ∈ X from G is denoted byPG (f).
The subsetG is called aproximinalor existence setif PG (f) contains at least one element

for everyf ∈ X. G is called asemi Chebyshevor uniqueness setif PG (f) contains exactly one
element for everyf ∈ X.

Definition 2.4. Let G be a nonempty subset of a real normed linear spaceX. The set-valued
mappingPG : X → POW (G) which associates for everyf ∈ X, the setPG (f) of the best
approximations tof from G is called themetric projectionontoG.

Let [a, b] be a closed and bounded interval of the real line. A space of continuous real valued
functions on[a, b] is defined by

C [a, b] = {f : [a, b] → R : f is continuous} .

If r is a positive integer, then the space ofr−times continuously differentiable functions on
[a, b] is defined by

Cr [a, b] =
{
f : [a, b] → R : f (r) ∈ C [a, b]

}
.
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BEST UNIFORM COAPPROXIMATION 3

Definition 2.5. Thesignof a functiong ∈ C [a, b] is defined by

sgng (t) =


−1 if g (t) < 0

0 if g (t) = 0

1 if g (t) > 0.

Definition 2.6. Let G be a subset of a real normed linear spaceC [a, b] , f ∈ C [a, b] \G. Let
{t1, . . . , tn} ∈ [a, b]. A functiong ∈ G is said tointerpolatef at the points{t1, . . . , tn} if

g (ti) = f (ti) , i = 1, . . . , n.

Definition 2.7. An n−dimensional subspaceG of C [a, b] is called aChebyshev subspace
(Tchebycheff subspace,in brief,T−subspace) or Haar subspace,if there exists a basis{g1, . . . , gn}
of G such that

D

 g1, . . . , gn

t1, . . . , tn

 =

∣∣∣∣∣∣
g1 (t1) · · · gn (t1)

...
...

g1 (t1) · · · gn (tn)

∣∣∣∣∣∣ > 0,

for all t1 < · · · < tn in [a, b] .

Definition 2.8. Let {g1, . . . , gn} be a set of bounded real valued functions defined on a subset
I of R. The system{gi}n

1 is said to be aweak Chebyshev system(or Weak Tchebycheff system;
in brief, WT -system) if they are linearly independent, and

D

 g1, . . . , gn

t1, . . . , tn

 =

∣∣∣∣∣∣
g1 (t1) · · · gn (t1)

...
...

g1 (t1) · · · gn (tn)

∣∣∣∣∣∣ ≥ 0,

for all t1 < · · · < tn ∈ I. The space spanned by a weak Chebyshev system is called aweak
Chebychev space.

In contrast to the definitions of Chebychev space, there the functions are defined on arbitrary
subsetsI of R and they are not required to be continuous onT. It is clear that every Chebyshev
space is a weak Chebyshev space.

Best coapproximation problems can be considered with respect to various norms, e.g.,L1−norm,
L2−norm, andL∞−norm. The choice of the norms depends on the given minimization prob-
lem. Since theL2−norm induces an inner product and best coapproximation coincides with
best approximation in inner product spaces, all the results of best approximation with respect to
theL2−norm can be carried over to best coapproximation with respect toL2−norms. Hence,
the best coapproximation problems will be considered with respect to theL1 andL∞ norms.

Definition 2.9. For all functionsf ∈ C [a, b], the uniform normor L∞−norm or supremum
norm is defined by

‖f‖∞ = sup
t∈[a,b]

|f (t)| .

Best coapproximation (respectively, best approximation) with respect to this norm is calledbest
uniform coapproximation(respectively,best uniform approximation).

Definition 2.10. The setE (f) of extreme pointsof a functionf ∈ C [a, b] is defined by

E (f) = {t ∈ [a, b] : |f (t)| = ‖f‖∞} .

For the sake of brevity, the terminology subspace is used instead of a linear subspace. Unless
otherwise stated, all normed linear spaces considered in this paper are existence subsets and
existence subspaces with respect to best coapproximation. It is easy to deal withC [a, b] instead
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4 GEETHA S. RAO AND R. SARAVANAN

of an arbitrary normed linear space. Since best coapproximation (respectively, best approxima-
tion) of an element in a subset from the same subset is the element of itself, i.e., ifG ⊂ X,
f ∈ G =⇒ RG (f) = f andPG (f) = f , it is sufficient to deal with the element to which a best
coapproximation (respectively, best approximation) to be found, which lies outside the subset,
i.e.,f ∈ X\G.

3. CHARACTERIZATION OF BEST UNIFORM COAPPROXIMATION

The following theorem is a characterization best uniform coapproximation due to Geetha S.
Rao and R. Saravanan [14].
Theorem 3.1.LetG be a subspace ofC [a, b], f ∈ C [a, b] \G andgf ∈ G. Then the following
statements are equivalent:

(i) The functiongf is a best uniform coapproximation tof fromG.
(ii) For every functiong ∈ G,

min
t∈E(g)

(f (t)− gf (t)) g (t) ≤ 0.

The next result generalizes one part of Theorem 3.1.
Theorem 3.2.LetG be a subset ofC [a, b] such thatαg ∈ G for all g ∈ G andα ∈ [0,∞). Let
f ∈ C [a, b] \G andgf ∈ G. If gf is a unique best uniform coapproximation tof from G, then
for every functiong ∈ G\ {gf} and every setU containingE (g − gf ) ,

inf
t∈U

(f (t)− gf (t)) (g (t)− gf (t)) < 0.

Proof. Assume to the contrary that there exists a functiong1 ∈ G\ {gf} and a setU containing
E (g1 − gf ) such that

inf
t∈U

(f (t)− gf (t)) (g1 (t)− gf (t)) ≥ 0.

Then for allt ∈ U, it follows that

(3.1) (f (t)− gf (t)) (g1 (t)− gf (t)) ≥ 0.

Let

(3.2) V =

{
t ∈ [a, b] : |g1 (t)− gf (t)| ≥ 1

2
‖g1 − gf‖∞

}
.

Assume without loss of generality thatE (g1 − gf ) ⊂ U ⊂ V. Let

(3.3) c = ‖g1 − gf‖∞ −max {|g1 (t)− gf (t)| : t ∈ V \U} .

It is clear thatc > 0. By multiplying f − gf with an appropriate positive factor and using
Remark 2.2, assume without loss of generality that

(3.4) ‖f − gf‖∞ ≤ min

{
c,

1

2
‖g1 − gf‖∞

}
.

Case 1.Let t ∈ [a, b] \V. Then it follows that

|f (t)− g1 (t)| = |(f (t)− gf (t))− (g1 (t)− gf (t))|
≤ |f (t)− gf (t)|+ |g1 (t)− gf (t)|

≤ ‖f − gf‖∞ +
1

2
‖g1 − gf‖∞ by (3.2)

≤ 1

2
‖g1 − gf‖∞ +

1

2
‖g1 − gf‖∞ by (3.4)

= ‖g1 − gf‖∞ .
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BEST UNIFORM COAPPROXIMATION 5

Case 2.Let t ∈ V \U. Then it follows that

|f (t)− g1 (t)| = |(f (t)− gf (t))− (g1 (t)− gf (t))|
≤ |f (t)− gf (t)|+ |g1 (t)− gf (t)|
≤ |f (t)− gf (t)|+ ‖g1 − gf‖∞ − c by (3.3)

≤ ‖g1 − gf‖∞ by (3.4).

Case 3.Let t ∈ U. Then it follows that

|f (t)− g1 (t)| = |(f (t)− gf (t))− (g1 (t)− gf (t))|
= ||f (t)− gf (t)| − |g1 (t)− gf (t)|| by (3.1)

= |g1 (t)− gf (t)| − |f (t)− gf (t)| by (3.2) and (3.4)

≤ ‖g1 − gf‖∞ .

Thus for allt ∈ [a, b] ,
|f (t)− g1 (t)| ≤ ‖g1 − gf‖∞ .

This implies that
‖g1 − gf‖∞ ≥ ‖f − g1‖∞ ,

which shows thatgf is not a unique best uniform coapproximation tof from G, a contradiction.
�

If G is considered as a subspace ofC [a, b] , then Theorem 3.2 can be written as:

Theorem 3.3. Let G be a subspace ofC [a, b] , f ∈ C [a, b] \G andgf ∈ G. If gf is a unique
best uniform coapproximation tof fromG, then for every nontrivial functiong ∈ G and every
setU containingE (g) ,

inf
t∈U

(f (t)− gf (t)) (g (t)) < 0.

Proof. Assume to the contrary that there exist a nontrivial functiong1 ∈ G and a setU contain-
ing E (g1) such that

inf
t∈U

(f (t)− gf (t)) (g1 (t)) ≥ 0.

Let g2 = g1 + gf . Then for allt ∈ U, it follows that

(f (t)− gf (t)) (g2 (t)− gf (t)) ≥ 0.

The remaining part of the proof is the same as that of Theorem 3.2. �

Remark 3.4. Theorems 3.2 and 3.3 remain true if the interval[a, b] is replaced by a compact
Hausdorff space.

Let X be a normed linear space andG be a subset ofX. Let gf ∈ G be fixed. For each
g ∈ G, define a setL (g, gf ) of continuous linear functionals depending upong andgf by

L (g, gf ) = {L ∈ G∗ : L (g − gf ) = ‖g − gf‖ and ‖L‖ = 1} ,

whereG∗ denotes the set of continuous linear functionals defined onG.
Some conditions to obtain best coapproximation are established.

Proposition 3.5. Let G be a subset of a normed linear spaceX, f ∈ X\G andgf ∈ G. If for
eachg ∈ G,

min
L∈L(g,gf)

L (f − gf ) ≤ 0,

or if for eachg ∈ G, there existsL ∈ L (g, gf ) such that

L (gf ) ≥ L (f) ,

J. Inequal. Pure and Appl. Math., 3(2) Art. 24, 2002 http://jipam.vu.edu.au/
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6 GEETHA S. RAO AND R. SARAVANAN

thengf is a best approximation tof fromG.

Proof. Let minL∈L(g,gf) L (gf − f) ≤ 0. Then there exists a continuous linear functionalL ∈
L (g, gf ) such thatL (f − gf ) ≤ 0. It follows that

‖g − gf‖ = L (g − gf ) = L (g)− L (gf ) = L (g)− L (f) = L (g − f) ≤ ‖g − f‖ .

The other case can be proved similarly. �

Let G be a subspace of a normed linear spaceX. Forx ∈ X, let d (x, G) denote the distance
betweenx andG, i.e.,

d (x, G) = inf
g∈G

‖x− g‖ .

Then the quotient spaceX/G is equipped with the norm,

‖x + g‖ = d (x, G) .

Theorem 3.6. Let G andH be subspaces of a normed linear spaceX such thatG ⊂ H and
let f ∈ X\H andh ∈ H. If h is a best coapproximation tof from H, thenh + G is a best
coapproximation tof + G from the quotient spaceH\G.

Proof. Assume thath+G is not a best coapproximation tof +G from H/G. Then there exists
h′ + G ∈ H/G such that

|‖h′ + G− (h + G)‖| > |‖f + G− (h′ + G)‖| .
That is,

|‖h′ − h + G‖| > |‖f − h′ + G‖| .
That is,

d (f − h′, G) < d (h′ − h,G) .

This implies that there existsg ∈ G such that

‖f − h′ − g‖ < d (h′ − h,G)

< ‖h′ − h + g‖ .

That is,
‖(g + h′)− h‖ > ‖f − (g + h′)‖ .

Thush is not a best coapproximation tof from H, a contradiction. �

4. BEST UNIFORM COAPPROXIMATION AND CHEBYSHEV SUBSPACES

Let G be a subset ofC [a, b] , f ∈ C [a, b] \G andgf ∈ G be a best uniform coapproximation
to f from G. It is known that for everyg ∈ G,

‖f − gf‖ ≤ 2 ‖f − g‖ .

If the subsetG is considered as a Chebyshev subspace, then a lower bound for‖f − gf‖∞ is
obtained, for which the following definition and results are required.

Definition 4.1. The pointst1 < · · · < tp in [a, b] are calledalternating extreme pointsof a
functionf ∈ C [a, b] , if there exists a signσ ∈ {−1, 1} such that

σ (−1)i f (ti) = ‖f‖∞ , i = 1, . . . , p.

Theorem 4.1. [1]Let G be ann−dimensional weak Chebyshev subspace ofC [a, b] , f ∈
C [a, b] \G and gf ∈ G. If the error f − gf has at leastn + 1 alternating extreme points in
[a, b] , gf is a best uniform approximations tof fromG.
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BEST UNIFORM COAPPROXIMATION 7

Theorem 4.2. [15]LetG be ann−dimensional weak Chebyshev subspace ofC [a, b] . Then for
all integersm ∈ {1, . . . , n} and all pointsa = t0 < t1 < · · · < tm−1 < tm = b, there exists a
nontrivial functiong ∈ G such that

(−1)i g (t) ≥ 0, t ∈ [ti−1, ti] , i = 1, . . . ,m.

Now a lower bound for‖f − gf‖∞ can be established as follows:

Theorem 4.3.LetG be ann−dimensional weak Chebyshev subspace ofC [a, b] , f ∈ C [a, b] \G
andgf ∈ G. If gf is a best uniform coapproximation but not a best uniform approximation tof
fromG, then there exists a nontrivial functiong ∈ G such that

‖g‖∞ ≤ ‖f − gf‖∞ .

Proof. Sincegf is not a best uniform approximation tof from G, by Theorem 4.1,f − gf

cannot have more thann alternating extreme points in[a, b] . Let t1 < · · · < tp, p ≤ n be the
alternating extreme points off − gf in [a, b] . Assume first thatf (t1)− gf (t1) = ‖f − gf‖∞ .
Then there exist pointsx0, x1, . . . , xp in [a, b] and a real numberc > 0 such that

a = x0 < x1 < · · · < xpi1 < xp = b,

xi ∈ (ti, ti−1) , i = 0, . . . , p− 1.

and
(−1)i+1 (f (t)− gf (t)) ≤ ‖f − gf‖∞ − c, t ∈ [xi, xi+1] , i = 0, . . . , p− 1.

Sincep ≤ n, by Theorem 4.2 there exists a nontrivial functiong ∈ G such that

(−1)i g (t) ≥ 0, t ∈ [xi, xi+1] , i = 0, . . . , p− 1.

By multiplying g with an appropriate positive factor, assume without loss of generality that
‖g‖∞ ≤ c. Then for allt ∈ [xi, xi+1] , it follows that

−‖f − gf‖∞ ≤ (−1)i+1 (f (t)− gf (t))

≤ (−1)i+1 (f (t)− gf (t)) + (−1)i g (t)

= (−1)i+1 (f (t)− gf (t))− (−1)i+1 g (t)

≤ ‖f − gf‖∞ − c + ‖g‖∞
≤ ‖f − gf‖∞ .

That is,

−‖f − gf‖∞ ≤ (−1)i+1 (f (t)− gf (t))− (−1)i+1 g (t) ≤ ‖f − gf‖∞ .

This implies that for alli ∈ {0, 1, . . . , p− 1} and for allt ∈ [xi, xi+1] ,∣∣∣(−1)i+1 ((f (t)− gf (t))− g (t))
∣∣∣ ≤ ‖f − gf‖∞ .

Hence
‖f − gf − g‖∞ ≤ ‖f − gf‖∞ .

For the second case,f (t1)− gf (t1) = −‖f − gf‖∞ , the inequality

‖f − gf − g‖∞ ≤ ‖f − gf‖∞
can be proved similarly.

Sincegf − (gf + g) is a best uniform approximation tof − (gf + g) from G it follows that

‖gf − (gf + g)‖∞ ≤ ‖f − (gf + g)‖∞ .

Hence
‖g‖∞ ≤ ‖f − gf‖∞ .
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�

In order to approximate a given functionf ∈ C [a, b] by functions from a finite dimensional
subspace, it is required that the approximating function coincides withf at certain points of the
interval [a, b] . In order to establish a similar fact for coapproximation, the following theorems
are required.

Theorem 4.4. [1]Let G be a Chebyshev subspace ofC [a, b] . Then for every functionf ∈
C [a, b] \G, there exists a unique best uniform approximation fromG.

Theorem 4.5. Let G be ann−dimensional Chebyshev subspace ofC [a, b] , f ∈ C [a, b] \G
andgf ∈ G. Then the following statements are equivalent:

(i) The functiongf is a best uniform approximation tof fromG.
(ii) The errorf − gf has at leastn + 1 alternating extreme points in[a, b] .

Now a relation between interpolation and best uniform coapproximation is obtained as fol-
lows:

Theorem 4.6. Let G be ann−dimensional Chebyshev subspace ofC [a, b] , f ∈ C [a, b] \G
andgf ∈ G. If gf is a best uniform coapproximation tof from G, thengf interpolatesf at at
leastn points of[a, b] .

Proof. SinceG is ann−dimensional Chebyshev space ofC [a, b] , by Theorem 4.4 and Theorem
4.5 there exists a unique function, sayg1 ∈ G, such thatf − g1 has at leastn + 1 alternating
extreme points in[a, b] . Therefore, there exist pointst1 < · · · < tp, p ≥ n + 1, in [a, b] and a
signσ ∈ {−1, 1} such that

σ (−1)i (f (ti)− g1 (ti)) = ‖f − g1‖∞ , i = 1, . . . , p.

Sincegf is a best uniform coapproximation tof from G, it follows that fori = 1, . . . , p,

σ (−1)i (gf (ti)− g1 (ti)) ≤ ‖gf − g1‖∞ ≤ ‖f − g1‖∞ = σ (−1)i (f (ti)− g1 (ti)) .

This implies that

σ (−1)i (gf (ti)− f (ti)) ≤ 0, i = 1, . . . , p.

Hence the functionf − gf has at leastp − 1 zeros, sayx1, . . . , xp−1. Thusgf interpolatesf at
at leastn pointsx1, . . . , xp−1. �

Remark 4.7. Theorem 4.6 can be proved in the context of weak Chebyshev subspaces.

The following theorem is required to establish an upper bound for the error‖f − gf‖∞ under
some conditions.

Theorem 4.8. [1]If f ∈ Cn [a, b], if g is a polynomial of degreen which interpolatesf at n
pointsx1, . . . , xn in [a, b] and ifw (x) = (x− x1) · · · (x− xn) , then

‖f − g‖∞ ≤ 1

n!

∥∥f (n)
∥∥
∞ ‖w‖∞ .

Now, an upper bound can be determined as follows:

Corollary 4.9. LetG be a space of polynomials of degreen defined on[a, b] andf ∈ Cn [a, b] \G.
If gf ∈ G is a best uniform coapproximation tof fromG, then

‖f − gf‖∞ ≤ 1

n!

∥∥f (n)
∥∥
∞ ‖w‖∞ ,

wherew (x) = (x− x1) · · · (x− xn) andx1, . . . , xn are the points in[a, b] at whichgf interpo-
latesf.
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Proof. Since a space of polynomials is a Chebyshev space, by Theorem 4.6, there existn points
x1, . . . , xn in [a, b] at whichgf interpolatesf. Hence by Theorem 4.8,

‖f − gf‖∞ ≤ 1

n!

∥∥f (n)
∥∥
∞ ‖w‖∞ .

�

Remark 4.10. It is clear that the error‖f − gf‖∞ is minimum when thexi’s are taken as the
zeros of Chebyshev polynomials.
Proposition 4.11.LetG be a subspace ofC [a, b] , f ∈ C [a, b] \G andgf ∈ G be a best uniform
coapproximation tof from G. Then there does not exist a function inG, which interpolates
f − gf at its extreme points.

Proof. Suppose to the contrary that there exists a functiong0 ∈ G such thatg0 interpolates
f − gf at its extreme points. LetE (g0) = {t1, . . . , tn} . So

g0 (ti) = f (ti)− gf (ti) , i = 1, . . . , n.

This implies that
g0 (ti) (f (ti)− gf (ti)) > 0, i = 1, . . . , n.

Hence
min

t∈E(g0)
g0 (t) (f (t)− gf (t)) > 0.

Thus by Theorem 3.1,gf is not a best uniform coapproximation tof from G, a contradiction.
�

The following result answers the question:
When does a best uniform approximation imply a best uniform coapproximation?
Theorem 4.12.Let G be a subset ofC [a, b] , f ∈ C [a, b] \G and gf ∈ G be a best uniform
approximation tof fromG. If for every functiong ∈ G,

(4.1) min
t∈E(g−gf)

(f (t)− g (t)) (gf (t)− g (t)) ≤ 0,

then the functiongf is a best uniform coapproximation tof fromG.

Proof. For every functiong ∈ G, there exists a pointt ∈ E (g − gf ) such that

(f (t)− g (t)) (gf (t)− g (t)) ≤ 0.

Therefore, it follows that

‖f − g‖∞ ≥ ‖f − gf‖∞
≥ |f (t)− gf (t)|
= |(f (t)− g (t))− (gf (t)− g (t))|
= |f (t)− g (t)|+ |gf (t)− g (t)|
= ‖gf − g‖∞ .

�

Remark 4.13. In Theorem 4.12, the result holds even if the condition (4.1) is replaced by the
condition:

sgn (f (t)− g (t)) = sgn (g (t)− gf (t)) ,

for somet ∈ E (g − gf ) .

If gf ∈ RG (f) andg0 ∈ PG (f) , then it is clear that1
2
‖f − gf‖ ≤ ‖f − g0‖ .

The following result improves this lower bound. The proof is obvious.
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Proposition 4.14. Let G be a subset of a normed linear spaceX. Let f1, f2 ∈ X\G, gf1 ∈
RG (f1) , gf2 ∈ RG (f2) , g1 ∈ PG (f1) andg2 ∈ PG (f2) . Then

max

{
‖f1 − gf1‖

2
,
‖gf1 − gf2‖ − ‖f1 − f2‖

2

}
≤ ‖f1 − g1‖

and

max

{
‖f2 − gf2‖

2
,
‖gf1 − gf2‖ − ‖f1 − f2‖

2

}
≤ ‖f2 − g2‖ .

5. SELECTION FOR THE M ETRIC PROJECTION AND THE COMETRIC PROJECTION

Definition 5.1. Let G be a subset of a normed linear spaceX and letPG : X → POW (G) (re-
spectively,RG : X → POW (G)) be the metric projection (respectively, cometric projection)
ontoG. A selectionfor the metric projectionPG (respectively, cometric projectionRG) is an
onto mapS : X → G such thatS (f) ∈ PG (f) (respectively,S (f) ∈ RG (f)) for all f ∈ X. If
S is continuous, then it is called a continuous selection for the metric projection (respectively,
cometric projection).
Definition 5.2. A selectionS for the metric projectionPG (respectively, cometric projection
RG) is said to besunnyif S (fα) = S (f) for all f ∈ X andα ≥ 0, wherefα := αf +
(1− α) S (f) .

The following result shows that every selection for a cometric projection onto a subspace is
a sunny selection.
Theorem 5.1. Let G be a subspace of a normed linear spaceX. Then every selection for a
cometric projectionRG : X → POW (G) is a sunny selection.

Proof. Let S be a selection. It is enough to prove thatS (fα) = S (f) , for all f ∈ X and
α ≥ 0, wherefα := αf + (1− α) S (f) . It follows from Proposition 2.1 that

S (fα) = S (αf + (1− α) S (f))

= S (α (f − S (f)) + S (f))

= S (α (f − S (f))) + S (f)

= αS (f − S (f)) + S (f)

= α (S (f)− S (f)) + S (f)

= S (f) .

Thus every selection is sunny. �

LetB∞ denote the closed unit sphere inC [a, b] with center at origin with respect toL∞−norm.
That is,

B∞ := {f ∈ C [a, b] : ‖f‖∞ ≤ 1} .

Definition 5.3. A mapT : C [a, b] → B∞ defined by

(T (f)) (x) := max {−1, min {1, f (x)}} , f ∈ C [a, b] , x ∈ [a, b] ,

is called anorthogonal projection.
Remark 5.2. By the definition of orthogonal projection, it can be written as

(T (f)) (x) =

 sgn f (x) , x ∈ M (f) ,

f (x) , otherwise,

where
M (f) := {x ∈ [a, b] : |f (x)| > 1} .
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The next result shows that the orthogonal projection is a continuous selection for the cometric
projection.

Theorem 5.3. The orthogonal projectionT : C [a, b] → B∞ is a continuous selection for the
cometric projectionRB∞ : C [a, b] → POW (B∞) under theLp−norm,1 ≤ p ≤ ∞.

Proof. Since the inequality|b− sgna| ≤ |a− b| holds for all reala and such that|a| ≥ 1
and |b| ≤ 1, it can be shown thatT is a selection for the cometric projectionRB∞ by taking
a = f (x) andb = g (x) . For if a = f (x) , then|f (x)| ≥ 1. Therefore,‖f‖∞ ≥ 1, hence either
f belongs to the boundary ofB∞ or f belongs toC [a, b] \B∞. If b = g (x) , then|g (x)| ≤ 1.
Therefore,‖g‖∞ ≤ 1, henceg ∈ B∞. Then for anyf ∈ C [a, b] andg ∈ B∞, it can be shown
that

|g (x)− (T (f)) (x)| ≤ |f (x)− g (x)| ,
for all x ∈ [a, b] .

Case 1.For allx ∈ [a, b] such that|f (x)| > 1, it follows that

|g (x)− sgnf (x)| ≤ |f (x)− g (x)| .
Hence by Remark 5.2 it follows that

|g (x)− (T (f)) (x)| ≤ |f (x)− g (x)| .

Case 2.For allx ∈ [a, b] such that|f (x)| ≤ 1, it follows that

|g (x)− (T (f)) (x)| = |g (x)− f (x)| .

By monotonicity of the norm, it follows that‖g − T (f)‖p ≤ ‖f − g‖p . HenceT (f) ∈
RB∞ (f) . ThusT is a selection for the cometric projectionRB∞ .

To proveT is continuous, it is enough to prove that

(5.1) ‖T (f1)− T (f2)‖p ≤ ‖f1 − f2‖p ,

for f1, f2 ∈ C [a, b] .

Case 1.Letx ∈ [a, b] such that|f1 (x)| > 1 and|f2 (x)| > 1. Since the inequality|sgna− sgnb| ≤
|a− b| holds, whenever|a| ≥ 1, |b| ≥ 1, inequality (5.1) follows by takinga = f1 (x) and
b = f2 (x) and by using remark 5.2 and monotonicity of the norm.

Case 2.Let x ∈ [a, b] such that|f1 (x)| ≤ 1 and|f2 (x)| ≤ 1. By Remark 5.2 and monotonicity
of the norm, inequality (5.1) is obvious.

Case 3.Let x ∈ [a, b] such that|f1 (x)| ≤ 1 and|f2 (x)| ≥ 1. Since the inequality|a− sgnb| ≤
|a− b| holds, whenever|a| ≤ 1, |b| ≥ 1, inequality (5.1) follows by takinga = f1 (x) and
b = f2 (x) and by using Remark 5.2 and monotonicity of the norm. Thus‖T (f1)− T (f2)‖p ≤
‖f1 − f2‖p .

�

Exponential sums are functions of the form

h (x) =
n∑

i=1

pi (x) etxi ,

whereti are real and distinct andpi are polynomials. The expression

d (h) :=
m∑

i=1

(∂pi + 1) ,
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is called as the degree of exponential sumh. here∂p denotes the degree ofp. Let Vn denote the
set of all exponential sums of degree less than or equal ton. E. Schmidt [17] studied about the
continuity properties of the metric projection

PVn : C [a, b] → POW (Vn) .

The following definition and results are required to prove the next result, which answers the
question:
When does the metric projectionPVn have a continuous selection?

In a normed linear spaceX, theε−neighbourhood of a nonempty setA in X is given by

Bε (A) := {x ∈ X : d (x, A) < ε} ,

where
d (x, A) := inf

a∈A
‖x− a‖ .

Definition 5.4. [2]Let G be a subset of a normed linear spaceX. Then a set-valued mapF :
X → POW (G) is said to be2−lower semicontinuousatf ∈ X, if for eachε > 0, there exists
a neighbourhoodU of f such that

Bε (F (f1)) ∩Bε (F (f2)) 6= ∅
for each choice of pointsf1, f2 ∈ U. F is said to be 2-lower semicontinuous ifF is 2-lower
semicontinuous at each point ofX.

Theorem 5.4. [2]LetG be he complete subspace of a normed linear spaceX and letF : X →
POW (G) be a set-valued map. LetH (F ) = {x ∈ X : F (x) is a singleton set}. Suppose that
F has closed images andH (F ) is dense inX. ThenF has a continuous selection if and only if
F is 2-lower semicontinuous. Moreover, ifF has a continuous selection, then it is unique.

Theorem 5.5. [17]The set of functions ofC [a, b] which have a unique best approximation from
Vn is dense inC [a, b] .

Now a result which provides a necessary and sufficient condition for the metric projection
PVn to have a continuous selection can be stated. The proof follows from Theorem 5.4 and
Theorem 5.5.
Theorem 5.6.The metric projection

PVn : C [a, b] → POW (Vn)

has a continuous selection if and only ifPVn is 2-lower semicontinuous. Moreover, ifPVn has a
continuous selection, then it is unique.

Theorem 5.7. [2]LetG be a subset of normed linear spaceX and letF : X → POW (G) . If
F is a singleton-valued map, thenF is 2-lower semicontinuous if and only iff is continuous.

Theorem 5.8. [7]Let G be an existence and uniqueness subspace with respect to best coap-
proximation of a normed linear spaceX. Then each of the following statements implies that the
cometric projectionRG is continuous.

(i) G is a finite dimensional space.
(ii) G is a hyperplane.

(iii) G is closed andR−1
G (0) is boundedly compact.

(iv) RG is continuous at the points ofR−1
G (0) .

(v) R−1
G (0) + R−1

G (0) ⊂ R−1
G (0) .

As a consequence of Theorems 5.4, 5.7 and 5.8, the next result follows.
Theorem 5.9. Let G be an existence and uniqueness subspace with respect to best coapprox-
imation of a normed linear spaceX. Then each of the statements (i), (ii), (iii), (iv) and (v) of
Theorem 5.8 implies that the cometric projectionRG has a unique continuous selection.
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Remark 5.10. Theorem 5.4 can be stated in the context of best coapproximation as follows.:
Let G be a complete subspace of a normed linear spaceX and letRG :→ POW (G) be

the cometric projection. ThenRG has a selection which is continuous on the closure of the
set {f ∈ X : f has a unique best coapproximation fromG} if and only if RG is 2-lower
semicontinuous.
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