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ABSTRACT. The aim of this paper is to establish explicit bounds on certain retarded integral
inequalities which can be used as convenient tools in some applications. The two independent
variable generalizations of the main results and some applications are also given.
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1. I NTRODUCTION

Integral inequalities which provide explicit bounds on unknown functions have played a fun-
damental role in the development of the theory of differential and integral equations. Over the
years, various investigators have discovered many useful integral inequalities in order to achieve
a diversity of desired goals, see [1] – [6] and the references given therein. In a recent paper [5]
Lipovan has given a useful nonlinear generalisation of the celebrated Gronwall inequality and
presented some of its applications. However, the integral inequalities available in the literature
do not apply directly in certain general situations and it is desirable to find integral inequalities
useful in some new applications. The main purpose of the present paper is to establish explicit
bounds on more general retarded integral inequalities which can be used as tools in the qualita-
tive study of certain retarded integrodifferential equations. Some immediate applications of one
of the result to convey the importance of our results to the literature are also given.

2. STATEMENT OF RESULTS

In what follows,R denotes the set of real numbers,R+ = [0,∞), I = [t0, T ), J1 = [x0, X),
J2 = [y0, Y ) are the given subsets ofR, ∆ = J1 × J2 and′ denotes the derivative. The partial
derivatives of a functionz (x, y), x, y ∈ R with respect tox andy are denoted byD1z (x, y)
andD2z (x, y) respectively.
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2 B.G. PACHPATTE

Our main results are given in the following theorems.

Theorem 2.1. Let u (t) , a (t) ∈ C (I, R+) , b (t, s) ∈ C (I2, R+) for t0 ≤ s ≤ t ≤ T and
α (t) ∈ C1 (I, I) be nondecreasing withα (t) ≤ t on I andk ≥ 0 be a constant.

(a1) If

(2.1) u (t) ≤ k +

∫ α(t)

α(t0)

[
a (s) u (s) +

∫ s

α(t0)

b (s, σ) u (σ) dσ

]
ds,

for t ∈ I, then

(2.2) u (t) ≤ k exp (A (t)) ,

for t ∈ I, where

(2.3) A (t) =

∫ α(t)

α(t0)

[
a (s) +

∫ s

α(t0)

b (s, σ) dσ

]
ds,

for t ∈ I.
(a2) Letg ∈ C (R+, R+) be a nondecreasing function withg (u) > 0 for u > 0. If

(2.4) u (t) ≤ k +

∫ α(t)

α(t0)

[
a (s) g (u (s)) +

∫ s

α(t0)

b (s, σ) g (u (σ)) dσ

]
ds,

for t ∈ I, then fort0 ≤ t ≤ t1,

(2.5) u (t) ≤ G−1 [G (k) + A (t)] ,

whereA (t) is defined by (2.3),G−1 is the inverse function of

(2.6) G (r) =

∫ r

r0

ds

g (s)
, r > 0, r0 > 0,

andt1 ∈ I is chosen so that

G (k) + A (t) ∈ Dom
(
G−1

)
,

for all t lying in the interval[t0, t1] .

Theorem 2.2. Let u (x, y) , a (x, y) ∈ C (∆, R+) , b (x, y, s, t) ∈ C (∆2, R+) , for x0 ≤ s ≤
x ≤ X, y0 ≤ t ≤ y ≤ Y, α (x) ∈ C1 (J1, J1) , β (y) ∈ C1 (J2, J2) be nondecreasing with
α (x) ≤ x onJ1, β (y) ≤ y onJ2 andk ≥ 0 be a constant.

(b1) If

(2.7) u (x, y) ≤ k +

∫ α(x)

α(x0)

∫ β(y)

β(y0)

[
a (s, t) u (s, t)

+

∫ s

α(x0)

∫ t

β(y0)

b (s, t, σ, η) u (σ, η) dηdσ

]
dtds,

for (x, y) ∈ ∆, then

(2.8) u (x, y) ≤ k exp (A (x, y)) ,

for (x, y) ∈ ∆, where

(2.9) A (x, y) =

∫ α(x)

α(x0)

∫ β(y)

β(y0)

[
a (s, t) +

∫ s

α(x0)

∫ t

β(y0)

b (s, t, σ, η) dηdσ

]
dtds,

for (x, y) ∈ ∆.
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(b2) Letg be as in Theorem 2.1, part(a2) . If

(2.10) u (x, y) ≤ k +

∫ α(x)

α(x0)

∫ β(y)

β(y0)

[
a (s, t) g (u (s, t))

+

∫ s

α(x0)

∫ t

β(y0)

b (s, t, σ, η) g (u (σ, η)) dηdσ

]
dtds,

for (x, y) ∈ ∆, then forx0 ≤ x ≤ x1, y0 ≤ y ≤ y1,

(2.11) u (x, y) ≤ G−1 [G (k) + A (x, y)] ,

whereA (x, y) is defined by (2.9),G, G−1 are as defined in Theorem 2.1, part(a2) and
x1 ∈ J1, y1 ∈ J2 are chosen so that

G (k) + A (x, y) ∈ Dom
(
G−1

)
,

for all x andy lying in [x0, x1] and[y0, y1] respectively.

3. PROOFS OF THEOREMS 2.1 AND 2.2

From the hypotheses, we observe thatα′ (t) ≥ 0 for t ∈ I, α′ (x) ≥ 0 for x ∈ J1, β′ (y) ≥ 0
for y ∈ J2.

(a1) Let k > 0 and define a functionz (t) by the right hand side of (2.1). Thenz (t) > 0,
z (t0) = k, u (t) ≤ z (t) and

z′ (t) =

[
a (α (t)) u (α (t)) +

∫ α(t)

α(t0)

[b (α (t) , σ) u (σ) dσ]

]
α′ (t)(3.1)

≤

[
a (α (t)) z (α (t)) +

∫ α(t)

α(t0)

[b (α (t) , σ) z (σ) dσ]

]
α′ (t) .

From (3.1) it is easy to observe that

(3.2)
z′ (t)

z (t)
≤

[
a (α (t)) +

∫ α(t)

α(t0)

b (α (t) , σ) dσ

]
α′ (t) .

Integrating (3.2) fromt0 to t, t ∈ I and by making the change of variables yields

(3.3) z (t) ≤ k exp (A (t)) ,

for t ∈ I. Using (3.3) inu (t) ≤ z (t) we get the inequality in (2.2). Ifk ≥ 0, we
carry out the above procedure withk + ε instead ofk, whereε > 0 is an arbitrary small
constant, and subsequently pass to the limit asε → 0 to obtain (2.2).

(a2) Let k > 0 and define a functionz (t) by the right hand side of (2.4). Thenz (t) > 0,
z (t0) = k, u (t) ≤ z (t) and as in the proof of(a1) we get

(3.4)
z′ (t)

g (z (t))
≤

[
a (α (t)) +

∫ α(t)

α(t0)

b (α (t) , σ) dσ

]
α′ (t) .

From (2.6) and (3.4) we have

(3.5)
d

dt
G (z (t)) =

z′ (t)

g (z (t))
≤

[
a (α (t)) +

∫ α(t)

α(t0)

b (α (t) , σ) dσ

]
α′ (t) .

Integrating (3.5) fromt0 to t, t ∈ I and by making the change of variables we have

(3.6) G (z (t)) ≤ G (k) + A (t) .
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SinceG−1 (z) is increasing, from (3.6) we have

(3.7) z (t) ≤ G−1 [G (k) + A (t)] .

Using (3.7) inu (t) ≤ z (t) we get (2.5). The casek ≥ 0 can be completed as mentioned
in the proof of(a1) . The subintervalt0 ≤ t ≤ t1 for t is obvious.

(b1) Let k > 0 and define a functionz (x, y) by the right hand side of (2.7). Thenz (x, y) >
0, z (x0, y) = z (x, y0) = k, u (x, y) ≤ z (x, y) and

D1z (x, y) =

[∫ β(y)

β(y0)

[
a (α (x) , t) u (α (x) , t)(3.8)

+

∫ α(x)

α(x0)

∫ t

β(y0)

b (α (x) , t, σ, η) u (σ, η) dηdσ

]
dt

]
α′ (x)

≤

[∫ β(y)

β(y0)

[
a (α (x) , t) z (α (x) , t)

+

∫ α(x)

α(x0)

∫ t

β(y0)

b (α (x) , t, σ, η) z (σ, η) dηdσ

]
dt

]
α′ (x) .

From (3.8) it is easy to observe that

(3.9)
D1z (x, y)

z (x, y)
≤

[∫ β(y)

β(y0)

[
a (α (x) , t) +

∫ α(x)

α(x0)

∫ t

β(y0)

b (α (x) , t, σ, η) dηdσ

]
dt

]
α′ (x) .

Keepingy fixed in (3.9), settingx = ξ and integrating it with respect toξ from x0 to x
and making the change of variables we get

(3.10) z (x, y) ≤ k exp (A (x, y)) .

Using (3.10) inu (x, y) ≤ z (x, y), we get the required inequality in (2.8). The case
k ≥ 0 follows as mentioned in the proof of(a1) .

(b2) The proof can be completed by following the proof of(a2) and closely looking at the
proof of (b1) . Here we omit the details.

4. SOME APPLICATIONS

In this section, we present some immediate applications of the inequality(a1) in Theorem
2.1 to study certain properties of solutions of the integrodifferential equation

(P ) x′ (t) = F

(
t, x (t− h (t)) ,

∫ t

t0

f (t, σ, x (σ − h (σ))) dσ

)
,

with the given initial condition

(P0) x (t0) = x0,

wheref ∈ C (I2 × R, R), F ∈ C (I × R2, R), x0 is a real constant andh ∈ C1 (I, I) be
nondecreasing witht− h (t) ≥ 0, h′ (t) < 1, h (t0) = 0.

The following theorem deals with the estimate on the solution of (P ) – (P0).

Theorem 4.1.Suppose that

|f (t, s, x)| ≤ b (t, s) |x| ,(4.1)

|F (t, x, w)| ≤ a (t) |x|+ |w| ,(4.2)
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wherea (t) , b (t, s) are as defined in Theorem 2.1 and let

(4.3) M = max
t∈I

1

1− h′ (t)
.

If x (t) is any solution of (P ) – (P0), then

(4.4) |x (t)|

≤ |x0| exp

(∫ t−h(t)

t0

[
Ma (s + h (η)) +

∫ s

t0

M2b (s + h (η) , σ + h (τ)) dσ

]
ds

)
,

for t, η, τ in I.

Proof. The solutionx (t) of (P ) – (P0) can be written as

(4.5) x (t) = x0 +

∫ t

t0

F

(
s, x (s− h (s)) ,

∫ s

t0

f (s, σ, x (σ − h (σ))) dσ

)
ds.

Using (4.1) – (4.3) in (4.5) and making the change of variables we have

|x (t)| ≤ |x0|+
∫ t−h(t)

t0

[
Ma (s + h (η)) |x (s)|+

∫ s

t0

M2b (s + h (η) , σ + h (τ)) |x (σ)| dσ

]
ds,

for t, η, τ in I. Now a suitable application of the inequality in(a1) given in Theorem 2.1 yields
the required estimate in (4.4). �

Next, we shall prove the uniqueness of the solutions of (P ) – (P0).

Theorem 4.2.Suppose that the functionsf, F in (P ) satisfy the conditions

|f (t, s, x)− f (t, s, y)| ≤ b (t, s) |x− y| ,(4.6)

|F (t, x, x̄)− F (t, y, ȳ)| ≤ a (t) |x− y|+ |x̄− ȳ| ,(4.7)

wherea (t) , b (t, s) are as defined in Theorem 2.1 and letM be as in (4.3). Then the problem
(P ) – (P0) has at most one solution onI.

Proof. Let x (t) andx̄ (t) be two solutions of (P ) – (P0) on I, then we have

(4.8) x (t)− x̄ (t) =

∫ t

t0

{
F

(
s, x (s− h (s)) ,

∫ s

t0

f (s, σ, x (σ − h (σ))) dσ

)
− F

(
s, x̄ (s− h (s)) ,

∫ s

t0

f (s, σ, x̄ (σ − h (σ))) dσ

)}
ds.

Using (4.6), (4.7) in (4.8) and making the change of variables we have

(4.9) |x (t)− x̄ (t)| ≤
∫ t−h(t)

t0

[
Ma (s + h (η)) |x (s)− x̄ (s)|

+

∫ s

t0

M2b (s + h (η) , σ + h (τ)) |x (σ)− x̄ (σ)| dσ

]
ds

for t, η, τ in I. A suitable application of the inequality in(a1) given in Theorem 2.1 yields
|x (t)− x̄ (t)| ≤ 0. Thereforex (t) = x̄ (t) , i.e., there is at most one solution of (P ) – (P0). �

Our next result shows the dependency of solutions of (P ) – (P0) on initial values.
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Theorem 4.3.Letx1 (t) andx2 (t) be the solutions of (P ) with the given initial conditions

(P1) x1 (t0) = x1,

and

(P2) x2 (t0) = x2,

respectively, wherex1, x2, are real constants. Suppose that the functionsf andF in (P ) satisfy
the conditions (4.6) and (4.7) in Theorem 4.2 and letM be as in (4.3). Then

(4.10) |x1 (t)− x2 (t)| ≤ |x1 − x2|

× exp

(∫ t−h(t)

t0

[
Ma (s + h (η)) +

∫ s

t0

M2b (s + h (η) , σ + h (τ)) dσ

]
ds

)
,

for t, η, τ in I.

Proof. By using the facts thatx1 (t) andx2 (t) are the solutions of (P ) – (P1) and (P ) – (P2)
respectively, we have

(4.11) x1 (t)− x2 (t)

= x1 − x2 +

∫ t

t0

{
F

(
s, x1 (s− h (s)) ,

∫ s

t0

f (s, σ, x1 (σ − h (σ))) dσ

)
− F

(
s, x2 (s− h (s)) ,

∫ s

t0

f (s, σ, x2 (σ − h (σ))) dσ

)}
ds.

Using (4.6), (4.7) in (4.11) and by making the change of variables, we have

(4.12) |x1 (t)− x2 (t)| ≤ |x1 − x2|+
∫ t−h(t)

t0

[
Ma (s + h (η)) |x1 (s)− x2 (s)|

+

∫ s

t0

M2b (s + h (η) , σ + h (τ)) |x1 (σ)− x2 (σ)| dσ

]
ds,

for t, η, τ in I. Now a suitable application of the inequality in(a1) given in Theorem 2.1 to
(4.12) yields the required estimate in (4.10). �

In concluding we note that the inequality in(b1) given in Theorem 2.2 can be used to study
the similar properties as in Theorems 4.1 – 4.3 for the hyperbolic partial integrodifferential
equation

(4.13) D1D2z (x, y) = F (x, y, z (x− h1 (x) , y − h2 (y)) , T z (x, y)) ,

with the given initial boundary conditions

(4.14) z (x, y0) = a1 (x) , z (x0, y) = a2 (y) , a1 (x0) = a2 (y0) ,

where

(4.15) Tz (x, y) =

∫ x

x0

∫ y

y0

K (x, y, s, t, z (s− h1 (s) , t− h2 (t))) dtds,

under some suitable conditions on the functions involved in (4.13) – (4.15). Since the formu-
lations of these results are very close to those given above, we omit it here. Various other
applications of the inequalities given here is left to another work.
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