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ABSTRACT. An integral inequality for convex functions defined on linear spaces is obtained
which contains in a particular case a refinement for the first part of the celebrated Hermite-
Hadamard inequality. Applications for semi-inner products on normed linear spaces are also
provided.
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1. I NTRODUCTION

Let X be a real linear space,a, b ∈ X, a 6= b and let[a, b] := {(1− λ) a + λb, λ ∈ [0, 1]}
be thesegmentgenerated bya andb. We consider the functionf : [a, b] → R and the attached
functiong (a, b) : [0, 1] → R, g (a, b) (t) := f [(1− t) a + tb], t ∈ [0, 1].

It is well known thatf is convex on[a, b] iff g (a, b) is convex on[0, 1], and the following
lateral derivatives exist and satisfy

(i) g′± (a, b) (s) = (5±f [(1− s) a + sb]) (b− a), s ∈ (0, 1)
(ii) g′+ (a, b) (0) = (5+f (a)) (b− a)

(iii) g′− (a, b) (1) = (5−f (b)) (b− a)
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2 S.S. DRAGOMIR

where(5±f (x)) (y) are theGâteaux lateral derivatives,we recall that

(5+f (x)) (y) := lim
h→0+

[
f (x + hy)− f (x)

h

]
,

(5−f (x)) (y) := lim
k→0−

[
f (x + ky)− f (x)

k

]
, x, y ∈ X.

The following inequality is the well-known Hermite-Hadamard integral inequality for convex
functions defined on a segment[a, b] ⊂ X :

(HH) f

(
a + b

2

)
≤
∫ 1

0

f [(1− t) a + tb] dt ≤ f (a) + f (b)

2
,

which easily follows by the classical Hermite-Hadamard inequality for the convex function
g (a, b) : [0, 1] → R

g (a, b)

(
1

2

)
≤
∫ 1

0

g (a, b) (t) dt ≤ g (a, b) (0) + g (a, b) (1)

2
.

For other related results see the monograph on line [1].
Now, assume that(X, ‖·‖) is a normed linear space. The functionf0 (s) = 1

2
‖x‖2, x ∈ X is

convex and thus the following limits exist

(iv) 〈x, y〉s := (5+f0 (y)) (x) = lim
t→0+

[
‖y+tx‖2−‖y‖2

2t

]
;

(v) 〈x, y〉i := (5−f0 (y)) (x) = lim
s→0−

[
‖y+sx‖2−‖y‖2

2s

]
;

for anyx, y ∈ X. They are called thelower andupper semi-innerproducts associated to the
norm‖·‖.

For the sake of completeness we list here some of the main properties of these mappings that
will be used in the sequel (see for example [2]), assuming thatp, q ∈ {s, i} andp 6= q:

(a) 〈x, x〉p = ‖x‖2 for all x ∈ X;

(aa) 〈αx, βy〉p = αβ 〈x, y〉p if α, β ≥ 0 andx, y ∈ X;

(aaa)
∣∣∣〈x, y〉p

∣∣∣ ≤ ‖x‖ ‖y‖ for all x, y ∈ X;

(av) 〈αx + y, x〉p = α 〈x, x〉p + 〈y, x〉p if x, y ∈ X andα ∈ R;
(v) 〈−x, y〉p = −〈x, y〉q for all x, y ∈ X;

(va) 〈x + y, z〉p ≤ ‖x‖ ‖z‖+ 〈y, z〉p for all x, y, z ∈ X;
(vaa) The mapping〈·, ·〉p is continuous and subadditive (superadditive) in the first variable for

p = s (or p = i);
(vaaa) The normed linear space(X, ‖·‖) is smooth at the pointx0 ∈ X\ {0} if and only if

〈y, x0〉s = 〈y, x0〉i for all y ∈ X; in general〈y, x〉i ≤ 〈y, x〉s for all x, y ∈ X;
(ax) If the norm‖·‖ is induced by an inner product〈·, ·〉 , then〈y, x〉i = 〈y, x〉 = 〈y, x〉s for

all x, y ∈ X.

Applying inequality (HH) for the convex functionf0 (x) = 1
2
‖x‖2 , one may deduce the

inequality

(1.1)

∥∥∥∥x + y

2

∥∥∥∥2

≤
∫ 1

0

‖(1− t) x + ty‖2 dt ≤ ‖x‖2 + ‖y‖2

2

for anyx, y ∈ X. The same (HH) inequality applied forf1 (x) = ‖x‖ , will give the following
refinement of the triangle inequality:

(1.2)

∥∥∥∥x + y

2

∥∥∥∥ ≤ ∫ 1

0

‖(1− t) x + ty‖ dt ≤ ‖x‖+ ‖y‖
2

, x, y ∈ X.
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FIRST HERMITE-HADAMARD INEQUALITY FOR CONVEX FUNCTIONS 3

In this paper we point out an integral inequality for convex functions which is related to
the first Hermite-Hadamard inequality in (HH) and investigate its applications for semi-inner
products in normed linear spaces.

2. THE RESULTS

We start with the following lemma which is also of interest in itself.
Lemma 2.1. Let h : [α, β] ⊂ R → R be a convex function on[α, β]. Then for anyγ ∈ [α, β]
one has the inequality

1

2

[
(β − γ)2 h′+ (γ)− (γ − α)2 h′− (γ)

]
≤
∫ β

α

h (t) dt− (β − α) h (γ)(2.1)

≤ 1

2

[
(β − γ)2 h′− (β)− (γ − α)2 h′+ (α)

]
.

The constant1
2

is sharp in both inequalities.
The second inequality also holds forγ = α or γ = β.

Proof. It is easy to see that for any locally absolutely continuous functionh : (α, β) → R, we
have the identity

(2.2)
∫ γ

α

(t− α) h′ (t) dt +

∫ β

γ

(t− β) h′ (t) dt = h (γ)−
∫ β

α

h (t) dt

for anyγ ∈ (α, β) , whereh′ is the derivative ofh which exists a.e. on(α, β) .
Sinceh is convex, then it is locally Lipschitzian and thus (2.2) holds. Moreover, for any

γ ∈ (α, β), we have the inequalities

(2.3) h′ (t) ≤ h′− (γ) for a.e.t ∈ [α, γ]

and

(2.4) h′ (t) ≥ h′+ (γ) for a.e.t ∈ [γ, β] .

If we multiply (2.3) byt− α ≥ 0, t ∈ [α, γ] and integrate on[α, γ] , we get

(2.5)
∫ γ

α

(t− α) h′ (t) dt ≤ 1

2
(γ − α)2 h′− (γ)

and if we multiply (2.4) byβ − t ≥ 0, t ∈ [γ, β], and integrate on[γ, β] , we also have

(2.6)
∫ β

γ

(β − t) h′ (t) dt ≥ 1

2
(β − γ)2 h′+ (γ) .

If we subtract (2.6) from (2.5) and use the representation (2.2), we deduce the first inequality in
(2.1).

Now, assume that the first inequality (2.1) holds withC > 0 instead of1
2
, i.e.,

(2.7) C
[
(β − γ)2 h′+ (γ)− (γ − α)2 h′− (γ)

]
≤
∫ β

α

h (t) dt− (β − α) h (γ) .

Consider the convex functionh0 (t) := k
∣∣t− α+β

2

∣∣, k > 0, t ∈ [α, β]. Then

h′0+

(
α + β

2

)
= k, h′0−

(
α + β

2

)
= −k, h0

(
α + β

2

)
= 0

and ∫ β

α

h0 (t) dt =
1

4
k (β − α)2 .
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4 S.S. DRAGOMIR

If in (2.7) we chooseh = h0, γ = α+β
2

, then we get

C

[
1

4
(β − α)2 k +

1

4
(β − α)2 k

]
≤ 1

4
k (β − α)2

which givesC ≤ 1
2

and the sharpness of the constant in the first part of (2.1) is proved.
If eitherh′+ (α) = −∞ or h′− (β) = −∞, then the second inequality in (2.1) holds true.
Assume thath′+ (α) andh′− (β) are finite. Sinceh is convex on[α, β] , we have

(2.8) h′ (t) ≥ h′+ (α) for a.e.t ∈ [α, γ] (γ may be equal toβ)

and

(2.9) h′ (t) ≤ h′− (β) for a.e.t ∈ [γ, β] (γ may be equal toα) .

If we multiply (2.8) byt− α ≥ 0, t ∈ [α, γ] and integrate on[α, γ] , then we deduce

(2.10)
∫ γ

α

(t− α) h′ (t) dt ≥ 1

2
(γ − α)2 h′+ (α)

and if we multiply (2.9) byβ − t ≥ 0, t ∈ [γ, β], and integrate on[γ, β] , then we also have

(2.11)
∫ β

γ

(β − t) h′ (t) dt ≤ 1

2
(β − γ)2 h′− (β) .

Finally, if we subtract (2.10) from (2.11) and use the representation (2.2), we deduce the second
inequality in (2.1). Now, assume that the second inequality in (2.1) holds with a constantD > 0
instead of1

2
, i.e.,

(2.12)
∫ β

α

h (t) dt− (β − α) h (γ) ≤ D
[
(β − γ)2 h′− (β)− (γ − α)2 h′+ (α)

]
.

If we consider the convex functionh0 (t) = k
∣∣t− α+β

2

∣∣, k > 0, t ∈ [α, β], then we have
h′0− (β) = k, h′0+ (α) = −k and by (2.12) applied forh0 in γ = α+β

2
we get

1

4
k (β − α)2 ≤ D

[
1

4
k (β − α)2 +

1

4
k (β − α)2

]
,

givingD ≥ 1
2

which proves the sharpness of the constant1
2

in the second inequality in (2.1).�

Corollary 2.2. With the assumptions of Lemma 2.1 and ifγ ∈ (α, β) is a point of differentia-
bility for h, then

(2.13)

(
α + β

2
− γ

)
h′ (γ) ≤ 1

β − α

∫ β

α

h (t) dt− h (γ) .

Now, recall that the following inequality, which is well known in the literature as the Hermite-
Hadamard inequality for convex functions, holds

(2.14) h

(
α + β

2

)
≤ 1

β − α

∫ β

α

h (t) dt ≤ h (α) + h (β)

2
.

The following corollary provides both a sharper lower bound for the difference,

1

β − α

∫ β

α

h (t) dt− h

(
α + β

2

)
,

which we know is nonnegative, and an upper bound.

J. Inequal. Pure and Appl. Math., 3(2) Art. 31, 2002 http://jipam.vu.edu.au/

http://jipam.vu.edu.au/


FIRST HERMITE-HADAMARD INEQUALITY FOR CONVEX FUNCTIONS 5

Corollary 2.3. Leth : [α, β] → R be a convex function on[α, β]. Then we have the inequality

0 ≤ 1

8

[
h′+

(
α + β

2

)
− h′−

(
α + β

2

)]
(β − α)(2.15)

≤ 1

β − α

∫ β

α

h (t) dt− h

(
α + β

2

)
≤ 1

8

[
h′− (β)− h′+ (α)

]
(β − α) .

The constant1
8

is sharp in both inequalities.

Example 2.1. Assume that−∞ < α < 0 < β < ∞ and consider the convex functionh :
[α, β] → R, h (x) = exp |x| . We have

h′ (x) =

 −e−x if x < 0,

ex if x > 0;

andh′− (0) = −1, h′+ (0) = 1. Also,∫ β

α

h (t) dt =

∫ 0

α

e−xdx +

∫ β

0

exdx = exp (β) + exp (−α)− 2.

Now, if α+β
2
6= 0, then by (2.15) we deduce the elementary inequality

0 ≤ exp (β) + exp (−α)− 2

β − α
− exp

∣∣∣∣α + β

2

∣∣∣∣(2.16)

≤ 1

8
[exp (β) + exp (−α)] (β − α) .

If α+β
2

= 0 and if we denoteβ = a, a > 0, thusα = −a and by (2.15) we also have

(2.17)
1

2
a ≤ exp (a)− 1

a
− 1 ≤ 1

2
a exp (a) .

The reader may produce other elementary inequalities by choosing in an appropriate way the
convex functionh. We omit the details.

We are now able to state the corresponding result for convex functions defined on linear
spaces.

Theorem 2.4. Let X be a linear space,a, b ∈ X, a 6= b andf : [a, b] ⊂ X → R be a convex
function on the segment[a, b]. Then for anys ∈ (0, 1) one has the inequality

1

2

[
(1− s)2 (5+f [(1− s) a + sb]) (b− a)− s2 (5−f [(1− s) a + sb]) (b− a)

]
(2.18)

≤
∫ 1

0

f [(1− t) a + tb] dt− f [(1− s) a + sb]

≤ 1

2

[
(1− s)2 (5−f (b)) (b− a)− s2 (5+f (a)) (b− a)

]
.

The constant1
2

is sharp in both inequalities.
The second inequality also holds fors = 0 or s = 1.

Proof. Follows by Lemma 2.1 applied for the convex functionh (t) = g (a, b) (t) =
f [(1− t) a + tb], t ∈ [0, 1], and the choicesα = 0, β = 1, andγ = s. �
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6 S.S. DRAGOMIR

Corollary 2.5. If f : [a, b] → R is as in Theorem 2.4 and Gâteaux differentiable inc :=
(1− λ) a + λb, λ ∈ (0, 1) along the direction(b− a), then we have the inequality:

(2.19)

(
1

2
− λ

)
(5f (c)) (b− a) ≤

∫ 1

0

f [(1− t) a + tb] dt− f (c) .

The following result related to the first Hermite-Hadamard inequality for functions defined
on linear spaces also holds.

Corollary 2.6. If f is as in Theorem 2.4, then

0 ≤ 1

8

[
5+f

(
a + b

2

)
(b− a)−5−f

(
a + b

2

)
(b− a)

]
(2.20)

≤
∫ 1

0

f [(1− t) a + tb] dt− f

(
a + b

2

)
≤ 1

8
[(5−f (b)) (b− a)− (5+f (a)) (b− a)] .

The constant1
8

is sharp in both inequalities.

Now, letΩ ⊂ Rn be an open and convex set inRn.
If F : Ω → R is a differentiable convex function onΩ, then, obviously, for anȳc ∈ Ω we

have

∇F (c̄) (ȳ) =
n∑

i=1

∂F (c̄)

∂xi

· yi, ȳ ∈ Rn,

where ∂F
∂xi

are the partial derivatives ofF with respect to the variablexi (i = 1, . . . , n) .
Using (2.18), we may state that(

1

2
− λ

) n∑
i=1

∂F
(
λā + (1− λ) b̄

)
∂xi

· (bi − ai)(2.21)

≤
∫ 1

0

F
[
(1− t) ā + tb̄

]
dt− F

(
(1− λ) ā + λb̄

)
≤ (1− λ)2

n∑
i=1

∂F
(
b̄
)

∂xi

· (bi − ai)− λ2

n∑
i=1

∂F (ā)

∂xi

· (bi − ai)

for any ā, b̄ ∈ Ω andλ ∈ (0, 1) .
In particular, forλ = 1

2
, we get

0 ≤
∫ 1

0

F
[
(1− t) ā + tb̄

]
dt− F

(
ā + b̄

2

)
(2.22)

≤ 1

8

n∑
i=1

(
∂F
(
b̄
)

∂xi

− ∂F (ā)

∂xi

)
· (bi − ai) .

In (2.22) the constant1
8

is sharp.

3. APPLICATIONS FOR SEMI -I NNER PRODUCTS

Let (X, ‖·‖) be a real normed linear space. We may state the following results for the semi-
inner products〈·, ·〉i and〈·, ·〉s.
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Proposition 3.1. For anyx, y ∈ X andσ ∈ (0, 1) we have the inequalities:

(1− σ)2 〈y − x, (1− σ) x + σy〉s − σ2 〈y − x, (1− σ) x + σy〉i(3.1)

≤
∫ 1

0

‖(1− t) x + ty‖2 dt− ‖(1− σ) x + σy‖2

≤ (1− σ)2 〈y − x, y〉i − σ2 〈y − x, y〉s .

The second inequality in (3.1) also holds forσ = 0 or σ = 1.

The proof is obvious by Theorem 2.4 applied for the convex functionf (x) = 1
2
‖x‖2, x ∈ X.

If the space issmooth, then we may put[x, y] = 〈x, y〉i = 〈x, y〉s for eachx, y ∈ X and the
first inequality in (3.1) becomes

(3.2) (1− 2σ) [y − x, (1− σ) x + σy] ≤
∫ 1

0

‖(1− t) x + ty‖2 dt− ‖(1− σ) x + σy‖2 .

An interesting particular case one can get from (3.1) is the one forσ = 1
2
,

0 ≤ 1

8
[〈y − x, y + x〉s − 〈y − x, y + x〉i](3.3)

≤
∫ 1

0

‖(1− t) x + ty‖2 dt−
∥∥∥∥x + y

2

∥∥∥∥2

≤ 1

4
[〈y − x, y〉i − 〈y − x, x〉s] .

The inequality (3.3) provides a refinement and a counterpart for the first inequality (1.1).
If we consider now two linearly independent vectorsx, y ∈ X and apply Theorem 2.4 for

f (x) = ‖x‖, x ∈ X, then we get

Proposition 3.2. For any linearly independent vectorsx, y ∈ X andσ ∈ (0, 1) , one has the
inequalities:

1

2

[
(1− σ)2 〈y − x, (1− σ) x + σy〉σ

‖(1− σ) x + σy‖
− σ2 〈y − x, (1− σ) x + σy〉i

‖(1− σ) x + σy‖

]
(3.4)

≤
∫ 1

0

‖(1− t) x + ty‖ dt− ‖(1− σ) x + σy‖

≤ 1

2

[
(1− σ)2 〈y − x, y〉i

‖y‖
− σ2 〈y − x, x〉s

‖x‖

]
.

The second inequality also holds forσ = 0 or σ = 1.

We note that if the space is smooth, then we have

(3.5)

(
1

2
− σ

)
· [y − x, (1− σ) x + σy]

‖(1− σ) x + σy‖
≤
∫ 1

0

‖(1− t) x + ty‖ dt− ‖(1− σ) x + σy‖ ,

and forσ = 1
2
, (3.4) will give the simple inequality

0 ≤ 1

8

[〈
y − x,

x+y
2∥∥x+y
2

∥∥
〉

s

−

〈
y − x,

x+y
2∥∥x+y
2

∥∥
〉

i

]
(3.6)

≤
∫ 1

0

‖(1− t) x + ty‖ dt−
∥∥∥∥x + y

2

∥∥∥∥
≤ 1

8

[〈
y − x,

y

‖y‖

〉
i

−
〈

y − x,
x

‖x‖

〉
s

]
.
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8 S.S. DRAGOMIR

The inequality (3.6) provides a refinement and a counterpart for the first inequality in (1.2).
Moreover, if we assume that(H, 〈·, ·〉) is an inner product space, then by (3.6) we get for any

x, y ∈ H with ‖x‖ = ‖y‖ = 1 that

(3.7) 0 ≤
∫ 1

0

‖(1− t) x + ty‖ dt−
∥∥∥∥x + y

2

∥∥∥∥ ≤ 1

8
‖y − x‖2 .

The constant1
8

is sharp.
Indeed, ifH = R, 〈a, b〉 = a · b, then takingx = −1, y = 1, we obtain equality in (3.7).
We give now some examples.

(1) Let`2 (K) , K = C, R; be the Hilbert space of sequencesx = (xi)i∈N with
∑∞

i=0 |xi|2 <
∞. Then, by (3.7), we have the inequalities

0 ≤
∫ 1

0

(
∞∑
i=0

|(1− t) xi + tyi|2
) 1

2

dt−

(
∞∑
i=0

∣∣∣∣xi + yi

2

∣∣∣∣2
) 1

2

(3.8)

≤ 1

8
·
∞∑
i=0

|yi − xi|2 ,

for anyx, y ∈ `2 (K) provided
∑∞

i=0 |xi|2 =
∑∞

i=0 |yi|2 = 1.
(2) Letµ be a positive measure,L2 (Ω) the Hilbert space ofµ−measurable functions onΩ

with complex values that are2−integrable onΩ, i.e.,f ∈ L2 (Ω) iff
∫

Ω
|f (t)|2 dµ (t) <

∞. Then, by (3.7), we have the inequalities

0 ≤
∫ 1

0

(∫
Ω

|(1− λ) f (t) + λg (t)|2 dµ (t)

) 1
2

dλ(3.9)

−

(∫
Ω

∣∣∣∣f (t) + g (t)

2

∣∣∣∣2 dµ (t)

) 1
2

≤ 1

8
·
∫

Ω

|f (t)− g (t)|2 dµ (t)

for anyf, g ∈ L2 (Ω) provided
∫

Ω
|f (t)|2 dµ (t) =

∫
Ω
|g (t)|2 dµ (t) = 1.
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