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Abstract

Let X be a Banach space which is uniformly convex and uniformly smooth.
We introduce the lower and upper moduli of expansion of the dual mapping
J of the space X. Some estimation of certain well-known moduli (convexity,
smoothness and flatness) and two new moduli introduced in [5] are described
with this new moduli of expansion.

Let (X, ‖·‖) be a real normed space,X∗ its conjugate space,X∗∗ the second
conjugate ofX andS (X) the unit sphere inX (S (X) = {x ∈ X| ‖x‖ = 1}) .

Moreover, we shall use the following definitions and notations.
The sign(S) denotes thatX is smooth,(R) thatX is reflexive,(US) that

X is uniformly smooth,(SC) that X is strictly convex, and(UC) that X is
uniformly convex.

The mapJ : X → 2X∗
is called the dual map ifJ (0) = 0 and forx ∈ X,

x 6= 0,
J (x) = {f ∈ X∗|f (x) = ‖f‖ ‖x‖ , ‖f‖ = ‖x‖} .

The dual map ofX∗ into 2X∗∗
we denote byJ∗. The mapτ is canonical

linear isometry ofX into X∗∗.

It is well known that functional

(1) g (x, y) :=
‖x‖
2

(
lim

t→−0

‖x + ty‖ − ‖x‖
t

+ lim
t→+0

‖x + ty‖ − ‖x‖
t

)
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always exists onX2. If X is (S) , then (1) reduces to

g (x, y) = ‖x‖ lim
t→0

‖x + ty‖ − ‖x‖
t

;

the functionalg is linear in the second argument,J (x) is a singleton andg (x, ·) ∈
J (x) . In this case we shall writeJ (x) = Jx = fx. Then[y, x] := g (x, y) , de-
fines a so called semi-inner product[·, ·] (s.i.p) onX2 which generates the norm
of X,

(
[x, x] = ‖x‖2) , (see [1]). If X is an inner-product space (i.p. space)

theng (x, y) is the usual i.p. of the vectorx and the vectory.

By the use of functionalg we define the angle between vectorx and vector
y (x 6= 0, y 6= 0) as

(2) cos (x, y) :=
g (x, y) + g (y, x)

2 ‖x‖ ‖y‖

(see [3]). If (X, (·, ·)) is an i.p. space, then (2) reduces to

cos (x, y) =
(x, y)

‖x‖ ‖y‖
.

We say thatX is a quasi-inner product space (q.i.p space) if the following
equality holds

(3) ‖x + y‖4 − ‖x− y‖4 = 8
[
‖x‖2 g (x, y) + ‖y‖2 g (y, x)

]
, (x, y ∈ X) 1

1If (·, ·) is an i.p. onX2 theng (x, y) = (x, y) and the equality (3) is the parallelogram
equality.
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The equality (3) holds in the spacel4, but does not hold in the spacel1. A
q.i.p. spaceX is (SC) and(US) (see [6] and [4]).

Alongside the modulus of convexity ofX, δX , and the modulus of smooth-
ness ofX, ρX , defined by

δX (ε) = inf

{
1−

∥∥∥∥x + y

2

∥∥∥∥ ∣∣∣∣ x, y ∈ S (X) ; ‖x− y‖ ≥ ε

}
;

ρX (ε) = sup

{
1−

∥∥∥∥x + y

2

∥∥∥∥ ∣∣∣∣ x, y ∈ S (X) ; ‖x− y‖ ≤ ε

}
;

we have defined in [5] the angle modulus of convexity ofX, δ′X , and the angle
modulus of smoothness ofX, ρ′X by:

δ′X (ε) = inf

{
1− cos (x, y)

2

∣∣∣∣ x, y ∈ S (X) ; ‖x− y‖ ≥ ε

}
;

ρ′X (ε) = sup

{
1− cos (x, y)

2

∣∣∣∣ x, y ∈ S (X) ; ‖x− y‖ ≤ ε

}
.

We also recall the known definition of modulus of flatness ofX, ηX (Day’s
modulus):

ηX (ε) = sup

{
2− ‖x + y‖
‖x− y‖

∣∣∣∣ x, y ∈ S (X) ; ‖x− y‖ ≤ ε

}
.

We now quote three known results.

Lemma 1. (Theorem 6 in [7] and Theorem 6 in [1]). Let X be a real normed
space which is(S) , (SC) and(R) . Then for allf ∈ X∗ there exists a unique
x ∈ X such that

f (y) = g (x, y) , (y ∈ X) .
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Lemma 2. (Theorem 7 in [1]). Let X be a Banach space which is(US) and
(UC) and let[·, ·] be an s.i.p. onX2 which generates the norm onX (see [1]).
Then the dual spaceX∗ is (US) and(UC) and the functional

〈Jx, Jy〉 := [y, x] , (x, y ∈ X) ,

is an s.i.p on(X∗)2 .

Lemma 3. (Proposition 3 in [2]). Let X be a real normed space. Then forJ, J∗

andτ on their respective domains we have

J−1 = τ−1J∗ and J = J∗−1τ.

Remark 1. Under the hypothesis of Lemma2, the mappingsJ, J∗ and τ are
bijective mappings. Then, by Lemma3, Lemma2 and Lemma1, in this case,
we have

〈Jx, Jy〉 = g (x, y) = g (fy, fx) , (x, y ∈ X) .

Lemma 4. Let X be a real normed space which is(S) , (SC) and (R) . Then
for x, y ∈ S (X) we have

(4) 1−
∥∥∥∥x + y

2

∥∥∥∥ ≤ 1− cos (x, y)

2
≤ ‖x− y‖ ‖fx − fy‖

4
.

Proof. Under the hypothesis of Lemma4, using Lemma1, we havefx = g (x, ·)
(x ∈ X) . Consequently,

‖fx − fy‖ = sup {|g (x, t)− g (y, t)| | t ∈ S (X)}
≥ g (x, t)− g (y, t) (t ∈ S (X)) .
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For t = x−y
‖x−y‖ , (x 6= y) , we obtain

(5) g

(
x,

x− y

‖x− y‖

)
− g

(
y,

x− y

‖x− y‖

)
≤ ‖fx − fy‖ .

SinceX is (S) , the functionalg is linear in the second argument. Hence, from
(5) we get

(6) 1− g (x, y)− g (y, x) + 1 ≤ ‖x− y‖ ‖fx − fy‖ .

Using the inequality

1−
∥∥∥∥x + y

2

∥∥∥∥ ≤ 1− cos (x, y)

2
≤ ‖x− y‖

2

(see Lemma 1 in [5]) and the inequality (6) we obtain the inequality (4).

Lemma 5. LetX be a Banach space which is(US) and(UC) . Let δX∗ be the
modulus of convexity ofX∗. Then for eachε > 0 and for all x, y ∈ S (X) the
following implications hold

‖x− y‖ ≤ 2δX∗ (ε) =⇒ ‖fx − fy‖ ≤ ε,(7)

‖fx − fy‖ ≥ ε =⇒ ‖x− y‖ ≥ 2δX∗ (ε) .(8)

Proof. By Lemma2, X∗ is a Banach space which is(UC) and(US) . SinceX∗

is (UC) , for eachε > 0, we haveδX∗ (ε) > 0 and, for allx, y ∈ S (X) ,

(9) ‖fx + fy‖ > 2− 2δX∗ (ε) =⇒ ‖fx − fy‖ < ε.
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Under the hypothesis of Lemma5, by Remark1, we haveg (x, y) = g (fy, fx) .
Hence, by inequality

1− ‖x− y‖ ≤ g (x, y) ≤ ‖x + y‖ − 1

(see Lemma 1 in [6]), we obtain

(10) 1− ‖x− y‖ ≤ g (x, y) = g (fy, fx) ≤ ‖fx + fy‖ − 1,

so that we have

(11) ‖x− y‖+ ‖fx + fy‖ ≥ 2.

Now, letx, y ∈ S (X) and‖x− y‖ < 2δX∗ (ε) . Then, by (11) we obtain

‖fx + fy‖ > 2− 2δX∗ (ε) .

Thus, by (9), we conclude that

(12) ‖x− y‖ < 2δX∗ (ε) =⇒ ‖fx − fy‖ < ε.

On the other hand if‖x− y‖ = 2δX∗ (ε) and ‖fx − fy‖ > ε, by (9), it
follows

‖x− y‖+ ‖fx + fy‖ ≤ 2.

So, by (11), we get
‖x− y‖+ ‖fx + fy‖ = 2.

Hence, using (10), we conclude thatg (x, y) = 1−‖x− y‖ , i.e.,g (x, x− y) =
‖x‖ ‖x− y‖ . Thus, sinceX is (SC) , using Lemma 5 in [1], we getx = x− y,
which is impossible. So, the implication (7) is correct. The implication (8)
follows from the implication (12).
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We now introduce a new definition.
According to the inequality (4), to make further progress in the estimates of

the moduliδX , δ′X , ρX , ρ′X , it is convenient to introduce

Definition 1. LetX be(S) andx, y ∈ S (X) . The functioneJ : [0, 2] → [0, 2] ,
defined by

eJ (ε) := inf {‖fx − fy‖ | ‖x− y‖ ≥ ε}

will be called the lower modulus of expansion of the dual mappingJ.

The functioneJ : [0, 2] → [0, 2] , defined as

eJ (ε) := sup {‖fx − fy‖ | ‖x− y‖ ≤ ε}

is the upper modulus of expansion of the dual mappingJ.

Now, we quote our new results. Firstly, we note some elementary properties
of the modulieJ andeJ .

Theorem 6. LetX be(S). Then the following assertions are valid.

a) The functioneJ is nondecreasing on[0, 2] .

b) The functioneJ is nondecreasing on[0, 2] .

c) eJ(ε) ≤ eJ (ε) (ε ∈ [0, 2]) .

d) If X is a Hilbert space, theneJ(ε) = eJ (ε) .

http://jipam.vu.edu.au/
mailto:pmilicic@hotmail.com
http://jipam.vu.edu.au/


On Moduli of Expansion of the
Duality Mapping of Smooth

Banach Spaces

Pavle M. Miličić
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Proof. The assertions a) and b) follow from the implications

ε1 < ε2 =⇒ {(x, y) | ‖x− y‖ ≥ ε1} ⊃ {(x, y) | ‖x− y‖ ≥ ε2}
(x, y ∈ S (X)) ,

ε1 < ε2 =⇒ {(x, y) | ‖x− y‖ ≤ ε1} ⊂ {(x, y) | ‖x− y‖ ≤ ε2}
(x, y ∈ S (X)) .

c) Assume, to the contrary, i.e., that there is anε ∈ [0, 2] such thateJ(ε) >
eJ (ε) . Then

inf {‖fx − fy‖ | ‖x− y‖ = ε} ≥ inf {‖fx − fy‖ | ‖x− y‖ ≥ ε}
> sup {‖fx − fy‖ | ‖x− y‖ ≤ ε}
≥ sup {‖fx − fy‖ | ‖x− y‖ = ε} ,

which is not possible.
d) In a Hilbert space, we have

‖fx − fy‖ = sup {|(x, t)− (y, t)| | t ∈ S (X)} ≤ ‖x− y‖ .

On the other hand, the functionalfx − fy attains its maximum int = x−y
‖x−y‖ ∈

S (X) .

Hence‖x− y‖ = ‖fx − fy‖ . Because of that, we haveeJ(ε) = eJ (ε) =
ε.

In the next theorems some relation between moduliδ′X , ρ′X ,eJ , eJ are given.
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Theorem 7. LetX be(S) , (SC) and(R) . Then, forε ∈ (0, 2] we have

a) δ′X (ε) ≤ 1

2
eJ(ε)

b) ρ′X (ε) ≤ ε

4
eJ (ε) ,

c)
2

ε
ρX (ε) ≤ ηX (ε) ≤ 1

2
eJ (ε) .

Proof. The proof of the assertions a) and b) follows immediately using the def-
initions of the functionsδ′X andρ′X and the inequality (4).
c) Letx, y ∈ S (X) , x 6= y. By Lemma4, we have

2− ‖x + y‖
‖x− y‖

=
2

‖x− y‖

(
1− ‖x + y‖

2

)
≤ 1− cos (x, y)

‖x− y‖

≤ ‖x− y‖ ‖fx − fy‖
2 ‖x− y‖

=
‖fx − fy‖

2
.

So
2− ‖x + y‖
‖x− y‖

≤ ‖fx − fy‖
2

.

Using the definition ofηX andeJ , we obtain

ηX (ε) ≤ 1

2
eJ (ε) .
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On the other hand

(0 < ‖x− y‖ ≤ ε) =⇒
(

1

‖x− y‖
≥ 1

ε

)
=⇒ 2− ‖x + y‖

‖x− y‖
≥ 2

ε

(
1− ‖x + y‖

2

)
.

Because of that we have

ηX (ε) ≥ 2

ε
ρX (ε) .

Remark 2. The last inequality is true for an arbitrary spaceX.

Corollary 8. For a q.i.p. space, it holds that

(13) eJ (ε) ≥
(ε

2

)4

(ε ∈ [0, 2]) .

Proof. By a) of Theorem7 and the inequalityε
4

32
≤ δ′X (ε) (see Corollary 2 in

[5]), we get (13).

Corollary 9. If X is (S) , (SC) and(R) then

a) δ′X∗ (ε) ≤ 1

2
eJ(ε) ,

b) ρ′X∗ ≤
1

2
eJ∗ (ε) ,
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c)
2

3
ρX∗ (ε) ≤ ηX∗ (ε) ≤ 1

2
eJ∗ (ε) .

Proof. It is well-known that ifX is (S) , (SC) and(R) thenX∗ is (S) , (SC)
and(R) . Hence Theorem7 is valid forX∗.

Theorem 10.LetX be a Banach space which is(UC) and(US) . Then, for all
ε > 0, we have the following estimations:

a) ρ′X (2δX∗ (ε)) ≤ εδX∗ (ε)

2
,

b) ρ′X∗ (2δX (ε)) ≤ εδX (ε)

2
,

c) eJ∗(ε) ≥ 2δX∗ (ε) ,

d) eJ (2δX∗ (ε)) ≤ ε, (eJ∗ (2δX (ε)) ≤ ε) .

Proof. a) Using, in succession, the definition of the functionρ′X , the inequal-
ity (4) in Lemma2 and the implication (7), we obtain:

ρ′X (2δX∗ (ε)) = sup

{
1− cos (x, y)

2

∣∣∣∣ ‖x− y‖ ≤ 2δX∗ (ε)

}
≤ 1

4
sup {‖x− y‖ ‖fx − fy‖ | ‖x− y‖ ≤ 2δX∗ (ε)}

≤ 1

4
2εδX∗ (ε)

=
εδX∗ (ε)

2
.

http://jipam.vu.edu.au/
mailto:pmilicic@hotmail.com
http://jipam.vu.edu.au/


On Moduli of Expansion of the
Duality Mapping of Smooth

Banach Spaces

Pavle M. Miličić
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b) If, in a), we setX∗ instead ofX (X∗∗ instead ofX∗), we get

(14) ρ′X∗ (2δX∗∗ (ε)) ≤ εδX∗∗ (ε)

2
.

Let F, G ∈ S (X∗∗) . Under the hypothesis of Theorem10, we have

δX∗∗ (ε) = inf

{
1− ‖F + G‖

2

∣∣∣∣ ‖F −G‖ ≥ ε

}
= inf

{
1− ‖τx + τy‖

2

∣∣∣∣ ‖τx− τy‖ ≥ ε

}
= inf

{
1− ‖τ (x + y)‖

2

∣∣∣∣ ‖τ (x− y)‖ ≥ ε

}
= inf

{
1− ‖x + y‖

2

∣∣∣∣ ‖x− y‖ ≥ ε

}
= δX (ε) .

Consequently the inequality (14) is equivalent to the inequality b).

c) Using, in succession, the definition ofeJ , Lemma3, and the implication
(8), we get

eJ∗ (ε) = inf {‖J∗fx − J∗fy‖ | ‖fx − fy‖ ≥ ε}
= inf {‖τx− τy‖ | ‖fx − fy‖ ≥ ε}
≥ 2δX∗ (ε) .
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d) Using the definition ofeJ and the implication (7), we get

eJ (2δX∗ (ε)) = sup {‖fx − fy‖ | ‖x− y‖ ≤ 2δX∗ (ε)} ≤ ε.

Replacing, here,X∗ with X∗∗ andJ with J∗, we get the second inequality.

Since in a Banach spaceX we have

δX (ε) ≤ 1−
√

1− ε2

4
and δX (ε) ≤ δ′X (ε)

(see Theorem 1 in [5]), using b) and a) of Theorem10, we obtain

Corollary 11. Under the hypothesis of Theorem10, we have

a)
2

ε
ρ′X∗ (2δX (ε)) ≤ δX (ε) ≤ 2

ε
δ′X (ε) ,

b) ρ′X (2δX∗ (ε)) ≤ ε

2

(
1−

√
1− ε2

4

)
.
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[4] P.M. MILIČIĆ, A generalization of the parallelogram equality in normed
spaces,J. Math. of Kyoto Univ.,38(1) (1998), 71–75.
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