Journal of Inequalities in Pure and Applied Mathematics

A MONOTONICITY PROPERTY OF THE Г FUNCTION

HENDRIK VOGT AND JÜRGEN VOIGT

Fachrichtung Mathematik,
Technische Universität Dresden, D-01062 Dresden, Germany.
EMail: vogt@math.tu-dresden.de
EMail: voigt@math.tu-dresden.de
volume 3, issue 5, article 73, 2002.

Received 11 January, 2001; accepted 29 July, 2002

Communicated by: A. Laforgia

Abstract
Contents
Home Page
Close
Quit

The starting point of this note was an inequality,

$$
\begin{equation*}
1 \leq \frac{\Gamma\left(\frac{n}{2}+1\right)^{\frac{n-d}{n}}}{\Gamma\left(\frac{n-d}{2}+1\right)} \leq e^{\frac{d}{2}} \tag{1}
\end{equation*}
$$

for all pairs of integers $0 \leq d \leq n$, in [5, Lemma 2.1]. Note that the left hand side of this inequality is an immediate consequence of the logarithmic convexity of the Γ-function; see [5]. Looking for a stream-lined proof of inequality (1), we first found a proof of the more general inequality

$$
\begin{equation*}
\frac{\Gamma(p+1)^{\frac{1}{p}}}{\Gamma(q+1)^{\frac{1}{q}}} \leq e^{\frac{p}{q}-1} \tag{2}
\end{equation*}
$$

valid for all $0<q \leq p$, and finally showed

$$
\begin{equation*}
\frac{\Gamma(p+1)^{\frac{1}{p}}}{\Gamma(q+1)^{\frac{1}{q}}} \leq \frac{p+1}{q+1} \tag{3}
\end{equation*}
$$

for all $-1<q \leq p$. These inequalities will be immediate consequences of the following result.
Theorem 1. The function $f(x):=1+\frac{1}{x} \ln \Gamma(x+1)-\ln (x+1)$ is strictly completely monotone on $(-1, \infty)$,

$$
\begin{gathered}
\lim _{x \rightarrow-1} f(x)=1, \quad \lim _{x \rightarrow \infty} f(x)=0 \\
f(0)=\lim _{x \rightarrow 0} f(x)=1-\gamma
\end{gathered}
$$

(Here, γ is the Euler-Mascheroni constant, and strictly completely monotone means $(-1)^{n} f^{(n)}(x)>0$ for all $\left.x \in(-1, \infty), n \in \mathbb{N}_{0}\right)$.

Integral Means Inequalities for Fractional Derivatives of Some General Subclasses of Analytic Functions

Hendrik Vogt and Jürgen Voigt

Title Page
Contents

J. Ineq. Pure and Appl. Math. 3(5) Art. 73, 2002
http://jipam.vu.edu.au

Proof. The main ingredient of the proof is the integral representation

$$
\ln \Gamma(x+1)=x \ln (x+1)-x+\int_{0}^{\infty}\left(\frac{1}{t}-\frac{1}{e^{t}-1}\right) e^{-t} \frac{1}{t}\left(1-e^{-x t}\right) d t
$$

which is an immediate consequence of [6, formula 1.9 (2) (p.21)] and [6, formula 1.7.2 (18) (p. 17)]. We obtain

$$
f(x)=\int_{0}^{\infty}\left(\frac{1}{t}-\frac{1}{e^{t}-1}\right) e^{-t} \frac{1}{x t}\left(1-e^{-x t}\right) d t
$$

The function

$$
g(y):=\frac{1}{y}\left(1-e^{-y}\right)=\int_{0}^{1} e^{-s y} d s
$$

is strictly completely monotone on \mathbb{R}. Since $\frac{1}{t}-\frac{1}{e^{t}-1}>0$ for all $t>0$, we conclude that f is strictly completely monotone. As $y \rightarrow \infty, g(y)$ tends to zero, and hence $\lim _{x \rightarrow \infty} f(x)=0$. The definition of f shows $\lim _{x \rightarrow 0} f(x)=$ $1+\psi(1)=1-\gamma$; cf. [6, formula 1.7 (4) (p. 15)]. Finally,

$$
\lim _{x \rightarrow-1} f(x)=1+\lim _{x \rightarrow-1}\left(\frac{1}{x}(\ln \Gamma(x+2)-\ln (x+1))-\ln (x+1)\right)=1
$$

Corollary 2. Inequalities (3), (2) and (1) are valid for the indicated ranges.
Proof. Inequality (3) is just a reformulation of the monotonicity of the function f from Theorem 1. Continuing (3) to the right,

$$
\frac{p+1}{q+1} \leq \frac{p}{q} \leq e^{\frac{p}{q}-1} \quad(0<q \leq p)
$$

Integral Means Inequalities for Fractional Derivatives of Some General Subclasses of Analytic Functions

Hendrik Vogt and Jürgen Voigt

Title Page
Contents

Go Back
Close
Quit
Page 3 of 5

we obtain (2). Setting $q=\frac{n-d}{2}, p=\frac{n}{2}$ we get (1).

Remark 1.

(a) In [4] it was shown that the function $\xi \mapsto \xi\left(\Gamma\left(1+\frac{1}{\xi}\right)\right)^{\xi}$ is increasing on $(0, \infty)$. This fact follows immediately from our Theorem 1, because of $\ln \left(\frac{1}{x} \Gamma(x+1)^{\frac{1}{x}}\right)+1=-\ln x+\frac{1}{x} \Gamma(x+1)+1=\ln (x+1)-\ln x+f(x)$. (In fact, the latter function even is strictly completely monotone as well.)
(b) For other recent results on (complete) monotonicity properties of the Γ function we refer to [1, 2, 3].

Integral Means Inequalities for Fractional Derivatives of Some General Subclasses of Analytic Functions

Hendrik Vogt and Jürgen Voigt

Title Page
Contents
Go Back
Close
Quit 4 of 5

References

[1] H. ALZER, On some inequalities for the gamma and psi functions, Math. Comp., 66(217) (1997), 373-389.
[2] G. D. ANDERSON AND S.-L. QIU, A monotoneity property of the gamma function, Proc. Amer. Math. Soc., 125(11) (1997), 3355-3362.
[3] Á. ELBERT AND A. LAFORGIA, On some properties of the gamma function, Proc. Amer. Math. Soc., 128(9) (2000), 2667-2673.
[4] D. KERSHAW AND A. LAFORGIA, Monotonicity results for the gamma function, Atti Accad. Sci. Torino, Cl. Sci. Fis. Mat. Natur., 119(3-4) (1985), 127-133.
[5] A. KOLDOBSKY and M. LIFSHITS, Average volume of sections of star bodies, In: Geometric Aspects of Functional Analysis, V. D. Milman and G. Schechtmann (eds.), Lect. Notes Math., 1745, Springer, Berlin, 2000, 119-146.
[6] A. ERDÉLYI, W. MAGNUS, F. OBERHETTINGER AND F. TRICOMI, Higher Trancscendental Functions, McGraw-Hill Book Company, New York-Toronto-London, 1953.

Integral Means Inequalities for Fractional Derivatives of Some General Subclasses of Analytic Functions

Hendrik Vogt and Jürgen Voigt

Title Page
Contents
Go Back
Close
Quit
Page 5 of 5

