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ABSTRACT. The main purpose of this paper is to establish with a constructive proof the fol-
lowing Holder-type inequality: lel be a uniformly complet@-algebra,l” be a positive linear
functional, andp, ¢ be rational numbers such that! + ¢—! = 1. Then the inequality

T(Ifg) < (T () (T (191"
holds for allf, g € A.
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The classical Holder inequalities are often obtained using classical real analysis and con-
vexity. Moreover, these inequalities involve exponents in the fieldf real numbers. The
inequalities, when suitably interpreted, make sense in the general contéxalgébras, that
is, archimedearf-algebras with an identity element. In this more general context the tools of
classical real analysis (for instance, convexity of natural logarithm) are not available. In spite
of that, surprisingly, we offer a purely algebraic proof of a Holder-type inequality for positive
(linear) functionals on a uniformly completfe-algebra. However, although one can define the
exponents iR of elements in a uniformly complete-algebravia Krivine’s approach (seé [9]),
which relies heavily on representation theory and then on the Axiom of Choice (i.e., Zorn’s
Lemma), we reduce our general study to the situation of rational exponents, avoid any use of
the representation tools, and keep our proofs intrinsic, constructive and elementary.

In this paper, we use the classical monographs [10] by Luxemburg and Zaanen, and [11]
by Zaanen as a starting point, and we refer to these works for unexplained terminology and
notations.
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2 KARIM BOULABIAR

The (relatively) uniform topology on vector lattices (or Riesz spaces) plays a key role in the
context of this work. Let us therefore recall the definition and some elementary properties of
this topology. ByN we mean the sefl,2,...}. Let L be an archimedean vector lattice and
V' be a nonempty subset &f. A sequencsd f,),.y Of elements ofL is said toconvergeV -
uniformlyto f € L if there existsy € V' so that for each real number> 0 there exists;, € N
such that f — f,| < |v| whenevem > n,. In this casef is called theV/-limit of (f,), .y
(which is unigque becausk is assumed to be archimedean). A non empty subsef L is
said to bel/-closedif D contains all of thé/-limits of its V' -uniformly convergent sequences.
We define thus the closed sets of the so-caltetbpologyon L. An alternative definition as
well as elementary properties of thétopology are presented inl[6, 1.2, p. 526]. The well-
knownuniform topologyon L is precisely thel-topology. The sequendg,,),,. in L is called
auniform Cauchy sequendehere existsf € L so that for each real number> 0 there exists
no € N such that f,, — f.| < e|f| whenevem,m > ny. The vector latticel is said to be
uniformly completef every uniform Cauchy sequence i#has a (unique) uniform limit imd.

For more background on uniform topology on vector lattices we refer the reader to [10, Sections
16 and 63].

The next paragraph deals with the notionbfe&lgebras. A vector latticd is called dattice-
ordered algebraf there exists an associative multiplicationAnwith the usual algebraic prop-
erties such thafg € At for all f,g € A*. The lattice-ordered algebra is said to be an
f-algebraif f Ag = 0andh > 0in Aimply f A (hg) = f A (gh) = 0. The f-algebras
received their name from Birkhoff and Pierce in [3]. The most classical example ¢f an
algebra is the algebr@ (X) of all real-valued continuous functions on a topological sp&ce
The squares in affi-algebra are positive. Using the Axiom of Choice, Birkhoff and Pierce in
[3] proved that any archimedegfialgebra is commutative. However, a Zorn’s Lemma free
proof of this important result, due to Zaanen, can be found ih [11, Theorem 140.10]. Besides,
Chapter 20 in[[11] is devoted to the elementary theory -@gebras. In[[7], Henriksen and
Johnson have called an archimeddaalgebra with an identity element®&algebra. Let A
be a uniformly complet&-algebra (Henriksen and Johson usedformly closedinstead of
uniformly complete It was proven by Beukers and Huijsmans (see [2, Corollary 6]) that for
everyf € AT andn € N, there exists a unique € A* such thaty” = f (this fact can be also
deduced directly from |5, Corollary 4.11] by Buskes, de Pagter and van Rooij). This element
g is called thenth-root of f and it is denoted by'/”. It follows easily that for everyf € A,
the p-power f? is well defined for every nonnegative rational numpelOf course,f? also is
defined for a negative provided thatf has an inverse ial. The uniqueness ofth-roots inA
together with the commutativity od guarantees the validity of classical products rules such as
frfe = frra (7)1 = fr1 (fg)? = fPg?,.... All of the aforementioned results will be used
below without further mention. The reader can consult Section 3lin [7] for more information
about uniformly complet@-algebras.

Throughout this paperd stands for a uniformly complet@-algebra. The multiplicative
identity of A will be denoted bye.

We plunge into the matter by the following basic lemma, which turns out to be useful for
later purposes.

Lemma 1. Letm andn be natural numbers such that < n. Then the inequality

m(e—f") <n(e—f")

holds for all f € A™.
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Proof. The result is obvious fom = 0 or m = n. We assume therefore thét< m < n. In
particularn > 2. Consider now the polynomial

P(X)=mX"—nX"+n—-—meR[X].
It is easily seen thaP (X) is divisible by(X — 1)* and that the quotient is

Q(X):i(n—m)(k+1)X’“+im(n—(k+1))X’“
k=0 k=m

(with the second summation equaif m = n — 1). Clearly all of the coefficients af (X) are
nonnegative, s@ (X) € R* [X]. Accordingly, if f € AT thenQ (f) € A" and therefore

P(f)=(f—e)Q(f) € A7,
that is,
mf" —nf"+(n—m)ec AT,
This completes the proof of the lemma. O
The next result is deduced from the lemma above by classical means. The details follow.
Lemma 2. Leta € [0, 1] be a rational number. Then the inequality

f*<af+(1-a)e
holds forall f € A*.

Proof. Since the cases = 0 anda = 1 are trivial, we suppose that€ (0, 1). Choose natural
numbersn andn such that < m < n anda = m/n. Instead off in the inequality proved in
Lemmd 1, takef'/". We get that

m(e= (7)) <nle= (")
and therefore
_me:af+(1—a)e,

as required. O

From now on, andgq are rational numbers such that p,q andp=! + ¢~ = 1. Before
stating the next lemma, we point out thayiE A™ has an inversg~! in Atheng™! € A™ (see
Theorem 142.2 in [11]).

Lemma 3. The inequality
fa<p ' fP+q g
holds forall f,g € A™.
Proof. Let f,g € AT and suppose, at first, thathas an inversg—! in A*. It follows from
Lemmd2 that
(fg ™)' <p gt +q e
Multiplying both sides by, we obtain that
fUrgtt<pT'f +q7'g.

Now, letg € A™ be arbitrary. For each € N, we putg, = g + n~'e € A*. Sinceg, has an
inverse inA™ (seel[7, 3.3, p. 84] of [11, Theorem 146.3]), we can apply the result of the first
case tay,. Consequently,

(1) fUPgle < pTlf 4w qTlg < p T f g+ g e
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On the other hand, it follows from Lemrma 2 thabik h < ein Aand0 < « < 1 is a rational
number then
h*<ah+(1l—a)e<ae+ (1—a)e=ce.

Now the substitutiorh = gg;* yields
(2) fl/pgl/q < fl/pgqll/q_
Combining [1) and(2), we get

frrgte<p f+q g+ g n e,
that is

gl —plf —qlg< g 'n e
SinceA is archimedean, we derive

gt <plf 4 q7'g.

Taking in the last inequality” and ¢¢ instead off andg, respectively, we obtain the desired
result. O

Let 7" be afunctionalon A, that is, a linear map from into R. We say thafl" is positiveif
T(f) > 0forall f € A™. Next we present some equivalent properties of positive functionals
on ®-algebras.

Theorem 4. LetT be a positive functional oA and f € A*. Then the following are equivalent:
(i) T(f) = 0.
(ii) T'(fg) = 0forall g € A.
(iii) T (f™) = 0 for somem € N.
Proof. The proof we present here was suggested by a referee and it is much more elegant and

simpler than the initial one.
(i) = (ii) We can assumeg € A*. Then from

0<g—gAne<n ‘g (n € N)
(seel[11, Theorem 142.7]) we derive
0<T(fg) = T(fgAnf) <n~'T(fg*)  (neN).

But
0<T(fgAnf)<nT(f)=
Hence from archimedeanity it follows th&{( f¢g) = 0.
(ii) = (iii) Obvious.
(iii) = (i) The result is trivial form = 1, so assume that. > 2. The proof proceeds by
induction onm. If m = 2 thenT (f?) = 0 and therefore

OST((nf—e)Q):T(e)—QnT(f) (n e N).

0 (n € N).

Consequently,
0<2nT (f) <T(e) (n € N)

and theril’ (f) = 0. Now, letm > 3 such thatl’ (/™) = 0 and assume that the result holds for
all m’ with 2 < m’ < m. Letk = 0ork = 1 so thatm + k = 2m’. In view of ‘(i) = (ii)’, and
since

T(f™*) =T (f"f*) and T(f™) =0,
T <<fm)2) 7 <f2m’> =T (™) =0,
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The induction hypothesis yields that(f™') = 0 thenT (f) = 0 and we are done. O

We are now in position to prove the main result of the present work.
Theorem 5. LetT be a positive functional of.. Then the Holder-type inequality

T(|fgl) < (T(|f|p))1/P (T(]g]q))l/q
holds for all f, g € A.

Proof. Since|fg| = | f| |g], it suffices to show the inequality fgt g € A*. Lety = (T (fp))l/p
andn = (T (gq))l/q. First, assume thatn # 0. Applying Lemm@ tq. ! f andn~1g, we get

pn g <p () Ha () = p T P 4 g g
and therefore

i T (fg) =T ('~ fg) <p ' PT(f7) +q ' T (¢%) = 1.
Hence
T (fg) < pm = (T (f7)"'" (T (¢°))""
Now, suppose thatn = 0. Take for instance = 0, thatis, T (f?) = 0. If r = [p] + 1 — p then

T () =T (/71 =0,
and thusl’ (fg) = 0 (by Theorenj 4). This completes the proof of the theorem. O

At last, we extend the inequality above to the more general setting of positive linear maps
between two uniformly complete-algebras. To this end, we have to recall some definitions. A
linear mapl” between two vector latticels andV is said to bepositiveif 7 (f) € V' whenever
f € L* (the reader is encouraged to consult [1] for the theory of positive linear maps on vector
lattices). LetL be an archimedean vector lattice. We daBlenderafter Buskes and van Rooij
in [6, 1.2, p. 526] ifL contains a countabl@-linear sublatticd” such thatl is theV -closure of
V' (hereQ is the field of rational numbers). Finally, recall that a positive elementa vector
lattice L is called astrong order unitin L if for each f € L there exists a real numbarsuch
that[f] < Xe.

At this point, we give our extension result.

Corollary 6. Let A and B be uniformly completé-algebras and assume that the multiplicative
identity of B is a strong order unitinB. If T': A — B is a positive linear map then the Hoélder-
type inequality

T(|fgl) < (T(|f|p))1/p (T(]g]q))l/q
holds for all f, g € A.

Proof. As usual, we can assume thAtg € A". ConsiderA, the uniformly completed-
subalgebra ofi generated by, g ande. In view of Lemma 2.6 in[[5] A is countably generated
as a vector lattice. Hence byl [6, 1.2 (ii{, is a slender vector sublattice df. On the other
hand, it follows from Lemma 1.3 in_[6] thal mapsA, into a slender vector sublattide of
B. LetV denote the vector sublattice &f generated by. and the unit elementz of B. By
[6, 1.2 (iii))], V is slender. Consider at this point théclosureB, of V' in B. SinceB is
uniformly complete, so i3, (by Lemma 1.1 (iii) in[6]). Now,ep is a strong order unit i
and therefore s is a strong order unit i3y. In summary,B, is a uniformly complete slender
vector lattice withez as strong order unit. We infer tha, is supplied with a multiplicatios

in such a manner thag, is a ®-algebra witheg as multiplicative identity (see [8, p. 166] for
a constructive proof of the existence :9f But in view of Propositior.6 in [4], « coincides
with the multiplication inB and B, is thus a uniformly complete slendérsubalgebra of3.
Consequently]’ can be seen as a positive linear map between two uniformly complete slender
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®-algebras, so we may suppose without loss of generality thatbaiid B are slender. Take
now an arbitrary multiplicative positive functionalon B. Applying Theoren b to the positive
functionalwT on A, we derive

WT (f9) < (WT (f7)"7 (WT (9")"".
Sincew is multiplicative, we get

W (fg) < w [(T(f7)" (T (9)""]
and thus
o[y ) - T (s9)] 2 0

The last inequality holds for every multiplicative positive functionabn B and, by Corollary
2.5 (i) in [5], for any real-valued lattice homomorphisson B (recall that a real-valueldttice
homomorphismv on B is a linear functionab on B such thato (| f|) = |w (f)]| for all f € B).
SinceB is assumed to be slender, the BetB) of all real-valued lattice homomorphisms &n
separates the points &f, that is, if f € Bandw (f) = 0forallw € H(B) thenf = 0 (by
Theorem 2.2 in([6]). In particular, if € Bandw (f) > 0forallw € H(B) thenf > 0. It
follows via the inequality above that

(T (f7)" (T (¢)"" =T (f9) > 0,
which is the desired inequality. O
Comment. The key step in the proof of Corollajy 6 above is the construction ofbtadgebra
By such thatH (By) separates the points &. But thed-algebraB already has this separation
property. Indeed, sincB is a uniformly complet@-algebra the multiplicative identity of which
is a strong order unitB is isomorphic as &-algebra to aC (X) for some compact Hausdorff
topological spaceX (see, for instance [7, 3.2, p. 84]). The constructioBgfseems thus to
be superfluous. However, such a construction allows us to avoid any use of Axiom of Choice,

which is our wish in this paper. Notice that the representatioB bfy C' (X) relies heavily on
Zorn’s Lemma.

REFERENCES
[1] C.D. ALIPRANTIS AND O. BURKINSHAW, Positive OperatorsAcademic Press, 1985.

[2] F. BEUKERSAND C.B. HUIJSMANS, Calculus irf-algebras,. Austral. Math. Soc. (Ser. A37
(1984), 110-116.

[3] G. BIRKHOFFAND R.S. PIERCE, Lattice-ordered ringsn. Acad. Brasil Ci.28 (1956), 41-69.

[4] K. BOULABIAR, The range of lattice homomorphisms gralgebras, J. Martinez (edQrdered
Algebraic StructuresKluwer (2002), 179-188.

[5] G. BUSKES, B. DE PAGTERAND A. VAN ROOIJ, Functional calculus on Riesz spackslag.
Math, 2 (1991), 423-436.

[6] G. BUSKESAND A. VAN ROOIJ, Small Riesz spacellath. Proc. Camb. Phil. Soc105(1989),
523-536.

[7] M. HENRIKSEN AND D.G. JOHSON, On the structure of a class of archimedean lattice-ordered
algebrasFund. Math, 50 (1961), 73-94.

[8] C.B. HUIJSMANSAND B. DE PAGTER, Subalgebras and Riesz subspaces gfalgebraProc.
London, Math. Soc48(1984), 161-174.

J. Inequal. Pure and Appl. Math3(5) Art. 74, 2002 http://jipam.vu.edu.au/


http://jipam.vu.edu.au/

A HOLDER-TYPE INEQUALITY 7

[9] J.L. KRIVINE, Théorémes de factorisation dans les espaces rétiGaésinaire Maurey-Schwartz
1973-74, Exposé 22-23.

[10] W.A. LUXEMBURG AND A.C. ZAANEN, Riesz spacels North-Holland, 1971.
[11] A.C. ZAANEN, Riesz spacel$, North-Holland, 1983.

J. Inequal. Pure and Appl. Math3(5) Art. 74, 2002 http://jipam.vu.edu.au/


http://jipam.vu.edu.au/

	References

