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ABSTRACT. The main purpose of this paper is to establish with a constructive proof the fol-
lowing Hölder-type inequality: letA be a uniformly completeΦ-algebra,T be a positive linear
functional, andp, q be rational numbers such thatp−1 + q−1 = 1. Then the inequality

T (|fg|) ≤ (T (|f |p))1/p (T (|g|q))1/q

holds for allf, g ∈ A.
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The classical Hölder inequalities are often obtained using classical real analysis and con-
vexity. Moreover, these inequalities involve exponents in the fieldR of real numbers. The
inequalities, when suitably interpreted, make sense in the general context ofΦ-algebras, that
is, archimedeanf -algebras with an identity element. In this more general context the tools of
classical real analysis (for instance, convexity of natural logarithm) are not available. In spite
of that, surprisingly, we offer a purely algebraic proof of a Hölder-type inequality for positive
(linear) functionals on a uniformly completeΦ-algebra. However, although one can define the
exponents inR of elements in a uniformly completeΦ-algebravia Krivine’s approach (see [9]),
which relies heavily on representation theory and then on the Axiom of Choice (i.e., Zorn’s
Lemma), we reduce our general study to the situation of rational exponents, avoid any use of
the representation tools, and keep our proofs intrinsic, constructive and elementary.

In this paper, we use the classical monographs [10] by Luxemburg and Zaanen, and [11]
by Zaanen as a starting point, and we refer to these works for unexplained terminology and
notations.
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2 KARIM BOULABIAR

The (relatively) uniform topology on vector lattices (or Riesz spaces) plays a key role in the
context of this work. Let us therefore recall the definition and some elementary properties of
this topology. ByN we mean the set{1, 2, ...}. Let L be an archimedean vector lattice and
V be a nonempty subset ofL. A sequence(fn)n∈N of elements ofL is said toconvergeV -
uniformlyto f ∈ L if there existsv ∈ V so that for each real numberε > 0 there existsn0 ∈ N
such that|f − fn| ≤ ε |v| whenevern ≥ n0. In this case,f is called theV -limit of (fn)n∈N
(which is unique becauseL is assumed to be archimedean). A non empty subsetD of L is
said to beV -closedif D contains all of theV -limits of its V -uniformly convergent sequences.
We define thus the closed sets of the so-calledV -topologyon L. An alternative definition as
well as elementary properties of theV -topology are presented in [6, 1.2, p. 526]. The well-
knownuniform topologyonL is precisely theL-topology. The sequence(fn)n∈N in L is called
auniform Cauchy sequenceif there existsf ∈ L so that for each real numberε > 0 there exists
n0 ∈ N such that|fm − fn| ≤ ε |f | whenevern, m ≥ n0. The vector latticeL is said to be
uniformly completeif every uniform Cauchy sequence inA has a (unique) uniform limit inA.
For more background on uniform topology on vector lattices we refer the reader to [10, Sections
16 and 63].

The next paragraph deals with the notion ofΦ-algebras. A vector latticeA is called alattice-
ordered algebraif there exists an associative multiplication inA with the usual algebraic prop-
erties such thatfg ∈ A+ for all f, g ∈ A+. The lattice-ordered algebraA is said to be an
f -algebra if f ∧ g = 0 andh ≥ 0 in A imply f ∧ (hg) = f ∧ (gh) = 0. Thef -algebras
received their name from Birkhoff and Pierce in [3]. The most classical example of anf -
algebra is the algebraC (X) of all real-valued continuous functions on a topological spaceX.
The squares in anf -algebra are positive. Using the Axiom of Choice, Birkhoff and Pierce in
[3] proved that any archimedeanf -algebra is commutative. However, a Zorn’s Lemma free
proof of this important result, due to Zaanen, can be found in [11, Theorem 140.10]. Besides,
Chapter 20 in [11] is devoted to the elementary theory off -algebras. In [7], Henriksen and
Johnson have called an archimedeanf -algebra with an identity element aΦ-algebra. Let A
be a uniformly completeΦ-algebra (Henriksen and Johson useduniformly closedinstead of
uniformly complete). It was proven by Beukers and Huijsmans (see [2, Corollary 6]) that for
everyf ∈ A+ andn ∈ N, there exists a uniqueg ∈ A+ such thatgn = f (this fact can be also
deduced directly from [5, Corollary 4.11] by Buskes, de Pagter and van Rooij). This element
g is called thenth-root of f and it is denoted byf 1/n. It follows easily that for everyf ∈ A,
thep-powerfp is well defined for every nonnegative rational numberp. Of course,fp also is
defined for a negativep provided thatf has an inverse inA. The uniqueness ofnth-roots inA
together with the commutativity ofA guarantees the validity of classical products rules such as
fpf q = fp+q, (fp)q = fpq, (fg)p = fpgp, .... All of the aforementioned results will be used
below without further mention. The reader can consult Section 3 in [7] for more information
about uniformly completeΦ-algebras.

Throughout this paper,A stands for a uniformly completeΦ-algebra. The multiplicative
identity ofA will be denoted bye.

We plunge into the matter by the following basic lemma, which turns out to be useful for
later purposes.

Lemma 1. Letm andn be natural numbers such thatm ≤ n. Then the inequality

m (e− fn) ≤ n (e− fm)

holds for allf ∈ A+.
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A HÖLDER-TYPE INEQUALITY 3

Proof. The result is obvious form = 0 or m = n. We assume therefore that0 < m < n. In
particularn ≥ 2. Consider now the polynomial

P (X) = mXn − nXm + n−m ∈ R [X] .

It is easily seen thatP (X) is divisible by(X − 1)2 and that the quotient is

Q (X) =
m−1∑
k=0

(n−m) (k + 1) Xk +
n−2∑
k=m

m (n− (k + 1)) Xk

(with the second summation equal0 if m = n− 1). Clearly all of the coefficients ofQ (X) are
nonnegative, soQ (X) ∈ R+ [X]. Accordingly, iff ∈ A+ thenQ (f) ∈ A+ and therefore

P (f) = (f − e)2 Q (f) ∈ A+,

that is,
mfn − nfm + (n−m) e ∈ A+.

This completes the proof of the lemma. �

The next result is deduced from the lemma above by classical means. The details follow.

Lemma 2. Letα ∈ [0, 1] be a rational number. Then the inequality

fα ≤ αf + (1− α) e

holds for allf ∈ A+.

Proof. Since the casesα = 0 andα = 1 are trivial, we suppose thatα ∈ (0, 1). Choose natural
numbersm andn such that0 < m < n andα = m/n. Instead off in the inequality proved in
Lemma 1, takef 1/n. We get that

m
(
e−

(
f 1/n

)n
)
≤ n

(
e−

(
f 1/n

)m
)

and therefore

fα =
(
f 1/n

)m ≤ m

n
f +

n−m

n
e = αf + (1− α) e,

as required. �

From now on,p andq are rational numbers such that1 < p, q andp−1 + q−1 = 1. Before
stating the next lemma, we point out that ifg ∈ A+ has an inverseg−1 in A theng−1 ∈ A+ (see
Theorem 142.2 in [11]).

Lemma 3. The inequality
fg ≤ p−1fp + q−1gq

holds for allf, g ∈ A+.

Proof. Let f, g ∈ A+ and suppose, at first, thatg has an inverseg−1 in A+. It follows from
Lemma 2 that (

fg−1
)1/p ≤ p−1fg−1 + q−1e.

Multiplying both sides byg, we obtain that

f 1/pg1/q ≤ p−1f + q−1g.

Now, letg ∈ A+ be arbitrary. For eachn ∈ N, we putgn = g + n−1e ∈ A+. Sincegn has an
inverse inA+ (see [7, 3.3, p. 84] or [11, Theorem 146.3]), we can apply the result of the first
case togn. Consequently,

(1) f 1/pg1/q
n ≤ p−1f + q−1gn ≤ p−1f + q−1g + q−1n−1e.
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On the other hand, it follows from Lemma 2 that if0 ≤ h ≤ e in A and0 ≤ α ≤ 1 is a rational
number then

hα ≤ αh + (1− α) e ≤ αe + (1− α) e = e.

Now the substitutionh = gg−1
n yields

(2) f 1/pg1/q ≤ f 1/pg1/q
n .

Combining (1) and (2), we get

f 1/pg1/q ≤ p−1f + q−1g + q−1n−1e,

that is
f 1/pg1/q − p−1f − q−1g ≤ q−1n−1e.

SinceA is archimedean, we derive

f 1/pg1/q ≤ p−1f + q−1g.

Taking in the last inequalityfp andgq instead off andg, respectively, we obtain the desired
result. �

Let T be afunctionalon A, that is, a linear map fromA into R. We say thatT is positiveif
T (f) ≥ 0 for all f ∈ A+. Next we present some equivalent properties of positive functionals
onΦ-algebras.
Theorem 4.LetT be a positive functional onA andf ∈ A+. Then the following are equivalent:

(i) T (f) = 0.
(ii) T (fg) = 0 for all g ∈ A.
(iii) T (fm) = 0 for somem ∈ N.

Proof. The proof we present here was suggested by a referee and it is much more elegant and
simpler than the initial one.

(i) ⇒ (ii) We can assumeg ∈ A+. Then from

0 ≤ g − g ∧ ne ≤ n−1g2 (n ∈ N)

(see [11, Theorem 142.7]) we derive

0 ≤ T (fg)− T (fg ∧ nf) ≤ n−1T (fg2) (n ∈ N) .

But
0 ≤ T (fg ∧ nf) ≤ nT (f) = 0 (n ∈ N) .

Hence from archimedeanity it follows thatT (fg) = 0.
(ii) ⇒ (iii) Obvious.
(iii) ⇒ (i) The result is trivial form = 1, so assume thatm ≥ 2. The proof proceeds by

induction onm. If m = 2 thenT (f 2) = 0 and therefore

0 ≤ T
(
(nf − e)2) = T (e)− 2nT (f) (n ∈ N) .

Consequently,
0 ≤ 2nT (f) ≤ T (e) (n ∈ N)

and thenT (f) = 0. Now, letm ≥ 3 such thatT (fm) = 0 and assume that the result holds for
all m′ with 2 ≤ m′ < m. Let k = 0 or k = 1 so thatm + k = 2m′. In view of ‘(i) ⇒ (ii)’, and
since

T
(
fm+k

)
= T

(
fmfk

)
and T (fm) = 0,

we get

T

((
fm′

)2
)

= T
(
f 2m′

)
= T

(
fm+k

)
= 0.
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The induction hypothesis yields thatT
(
fm′)

= 0 thenT (f) = 0 and we are done. �

We are now in position to prove the main result of the present work.
Theorem 5. LetT be a positive functional ofA. Then the Hölder-type inequality

T (|fg|) ≤ (T (|f |p))1/p
(T (|g|q))1/q

holds for allf, g ∈ A.

Proof. Since|fg| = |f | |g|, it suffices to show the inequality forf, g ∈ A+. Letµ = (T (fp))1/p

andη = (T (gq))1/q. First, assume thatµη 6= 0. Applying Lemma 3 toµ−1f andη−1g, we get

µ−1η−1fg ≤ p−1
(
µ−1f

)p
+ q−1

(
η−1g

)q
= p−1µ−pfp + q−1η−qgq.

and therefore

µ−1η−1T (fg) = T
(
µ−1η−1fg

)
≤ p−1µ−pT (fp) + q−1η−qT (gq) = 1.

Hence
T (fg) ≤ µη = (T (fp))1/p (T (gq))1/q

Now, suppose thatµη = 0. Take for instanceµ = 0, that is,T (fp) = 0. If r = [p] + 1− p then

T
(
f [p]+1

)
= T (fpf r) = 0,

and thusT (fg) = 0 (by Theorem 4). This completes the proof of the theorem. �

At last, we extend the inequality above to the more general setting of positive linear maps
between two uniformly completeΦ-algebras. To this end, we have to recall some definitions. A
linear mapT between two vector latticesL andV is said to bepositiveif T (f) ∈ V + whenever
f ∈ L+ (the reader is encouraged to consult [1] for the theory of positive linear maps on vector
lattices). LetL be an archimedean vector lattice. We callL slenderafter Buskes and van Rooij
in [6, 1.2, p. 526] ifL contains a countableQ-linear sublatticeV such thatL is theV -closure of
V (hereQ is the field of rational numbers). Finally, recall that a positive elemente in a vector
latticeL is called astrong order unitin L if for eachf ∈ L there exists a real numberλ such
that|f | ≤ λe.

At this point, we give our extension result.
Corollary 6. LetA andB be uniformly completeΦ-algebras and assume that the multiplicative
identity ofB is a strong order unit inB. If T : A → B is a positive linear map then the Hölder-
type inequality

T (|fg|) ≤ (T (|f |p))1/p
(T (|g|q))1/q

holds for allf, g ∈ A.

Proof. As usual, we can assume thatf, g ∈ A+. ConsiderA0 the uniformly completeΦ-
subalgebra ofA generated byf, g ande. In view of Lemma 2.6 in [5],A is countably generated
as a vector lattice. Hence by [6, 1.2 (ii)],A0 is a slender vector sublattice ofA. On the other
hand, it follows from Lemma 1.3 in [6] thatT mapsA0 into a slender vector sublatticeL of
B. Let V denote the vector sublattice ofB generated byL and the unit elementeB of B. By
[6, 1.2 (iii)], V is slender. Consider at this point theV -closureB0 of V in B. SinceB is
uniformly complete, so isB0 (by Lemma 1.1 (iii) in [6]). Now,eB is a strong order unit inB
and thereforeeB is a strong order unit inB0. In summary,B0 is a uniformly complete slender
vector lattice witheB as strong order unit. We infer thatB0 is supplied with a multiplication∗
in such a manner thatB0 is aΦ-algebra witheB as multiplicative identity (see [8, p. 166] for
a constructive proof of the existence of∗). But in view of Proposition3.6 in [4], ∗ coincides
with the multiplication inB andB0 is thus a uniformly complete slenderΦ-subalgebra ofB.
Consequently,T can be seen as a positive linear map between two uniformly complete slender
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6 KARIM BOULABIAR

Φ-algebras, so we may suppose without loss of generality that bothA andB are slender. Take
now an arbitrary multiplicative positive functionalω onB. Applying Theorem 5 to the positive
functionalωT onA, we derive

ωT (fg) ≤ (ωT (fp))1/p (ωT (gq))1/q .

Sinceω is multiplicative, we get

ωT (fg) ≤ ω
[
(T (fp))1/p (T (gq))1/q

]
and thus

ω
[
(T (fp))1/p (T (gq))1/q − T (fg)

]
≥ 0.

The last inequality holds for every multiplicative positive functionalω on B and, by Corollary
2.5 (i) in [5], for any real-valued lattice homomorphismω onB (recall that a real-valuedlattice
homomorphismω onB is a linear functionalω onB such thatω (|f |) = |ω (f)| for all f ∈ B).
SinceB is assumed to be slender, the setH (B) of all real-valued lattice homomorphisms onB
separates the points ofB, that is, if f ∈ B andω (f) = 0 for all ω ∈ H (B) thenf = 0 (by
Theorem 2.2 in [6]). In particular, iff ∈ B andω (f) ≥ 0 for all ω ∈ H (B) thenf ≥ 0. It
follows via the inequality above that

(T (fp))1/p (T (gq))1/q − T (fg) ≥ 0,

which is the desired inequality. �

Comment. The key step in the proof of Corollary 6 above is the construction of theΦ-algebra
B0 such thatH (B0) separates the points ofB0. But theΦ-algebraB already has this separation
property. Indeed, sinceB is a uniformly completeΦ-algebra the multiplicative identity of which
is a strong order unit,B is isomorphic as aΦ-algebra to aC (X) for some compact Hausdorff
topological spaceX (see, for instance, [7, 3.2, p. 84]). The construction ofB0 seems thus to
be superfluous. However, such a construction allows us to avoid any use of Axiom of Choice,
which is our wish in this paper. Notice that the representation ofB by C (X) relies heavily on
Zorn’s Lemma.
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