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ABSTRACT. We study a certain monotonicity property of ratios of means, which we call a strong
inequality. These strong inequalities were recently shown to be related to the so-called relative
metric. We also use the strong inequalities to derive new ordinary inequalities. The means
studied are the extended mean value of Stolarsky, Gini’s mean and Seiffert’s mean.
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1. I NTRODUCTION AND M AIN RESULTS

In this paper we study a certain monotonicity property of ratios of symmetric homogeneous
means of two variables. In this setting the monotonicity property can be interpreted as a strong
version of an inequality. The means considered are the extended mean value of Stolarsky [18],
Gini’s mean [6] and Seiffert’s mean [15].

These kind of strong inequalities were shown in [7] to provide sufficient conditions for the so-
called relative distance to be a metric. This aspect is described in Section 7, which also contains
the new relative metrics found in this paper. A question by H. Alzer on whether the results
of [7], specifically Lemma 4.2, could be generalized was the main incentive for the present
paper. Another motivation for this work was that monotonicity properties of ratios have been
found useful in several studies related to gamma and polygamma functions, see for instance [5],
[10], [1] and [2]. Such inequalities have also been used, implicitly, in studying means by M.
Vamanamurthy and M. Vuorinen in the paper [20], an aspect further exposed in Section 2.2.

Let us next introduce some terminology in order to state the main results. DenoteR> :=
(0,∞) and letf, g : [1,∞) → R> be arbitrary functions. We say thatf is strongly greater than
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2 PETER A. HÄSTÖ

or equal tog, in symbolsf � g, if x 7→ f(x)/g(x) is increasing. By asymmetric homogeneous
increasing mean(of two variables) we understand a symmetric functionM : R> × R> → R>

which satisfies
min{x, y} ≤ M(x, y) ≤ max{x, y}

andM(sx, sy) = sM(x, y) for all s, x, y ∈ R> and for whichtM(x) := M(x, 1) is increasing
for x ∈ [1,∞). The functiontM is called thetrace of M and uniquely determinesM , since
M(x, y) = ytM(x/y). If M andN are symmetric homogeneous increasing means we say that
M is strongly greater than or equal toN , M � N , if tM � tN .

Let us next introduce the means that will be considered in this paper. The extended mean
value,Es,t, was first considered by Stolarsky in [18] and later by Leach and Scholander, [11],
who gave several basic properties of the mean. It is defined for distinctx, y ∈ R> and distinct
s, t ∈ R \ {0} by

Es,t(x, y) :=

(
t

s

xs − ys

xt − yt

)1/(s−t)

and Es,t(x, x) := x. The extended mean value is defined for the parameter valuess = 0
ands = t by continuous extension, see Section 3.2. Let us also define the power means by
As := E2s,s, see also Section 3.1.

In the paper [12] Leach and Scholander provided a complete description of the values
s, t, p, q ∈ R for which Es,t ≥ Ep,q. The next theorem is the corresponding result for strong
inequalities. Notice that this result is a generalization of [7, Lemma 4.2], which in turn is
the strong version of Pittenger’s inequality, see [14]. We also state a corollary containing the
ordinary inequalities implied by the theorem.

Theorem 1.1. Let s, t, p, q ∈ R+ := [0,∞). ThenEs,t � Ep,q if and only ifs + t ≥ p + q and
min{s, t} ≥ min{p, q}.
Corollary 1.2. Lets, t, p, q ∈ R>, s > t andp > q. If p + q ≥ s + t andt ≥ q then

Es,t ≤ Ep,q ≤ (q/p)1/(p−q)(s/t)1/(s−t)Es,t.

Both inequalities are sharp.

Remark 1.3. Let M and N be symmetric homogeneous increasing means. The inequality
M ≤ N is understood to mean that the real value inequalityM(x, y) ≤ N(x, y) holds for all
x, y ∈ R>. The inequalityM ≤ cN is said to besharpif the constant cannot be replaced by a
smaller one. Notice that this does not necessarily mean that the inequality cannot be improved,
for instance the previous one could possibly be replaced byM ≤ cN − log{1 + N}.
Remark 1.4. The first inequality in the previous corollary follows directly from the result of
Leach and Scholander, and is not as good (in terms of the assumptions onp, q, s andt). The
upper bound does not follow from their result, however.

The Gini mean was introduced in [6] as a generalization of the power means. It is defined by

Gs,t(x, y) :=

(
xs + ys

xt + yt

)1/(s−t)

for x, y ∈ R> and distincts, t ∈ R. Like the extended mean value, the Gini mean is continu-
ously extended tos = t, see Section 3.3.

The Gini means turn out to be less well behaved than the other means that we consider in
terms of strong inequalities. We give here two main results on inequalities of Gini means,
however, the reader may also want to view the summary of results presented in Section 5.3. The
following theorem gives a sufficient condition for the Gini means to be strongly greater than or
equal to an extended mean value and is also a generalization of [7, Lemma 4.2].
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A M ONOTONICITY PROPERTY OFMEANS 3

Theorem 1.5. Let a, p, q ∈ R+. ThenGs,t � Ep,q for all s, t ≥ 0 with s + t = a if and only if
p + q ≤ 3a andmin{p, q} ≤ a.

If the parameters of the Gini mean are of similar magnitude then we are able to give a char-
acterization of the extended mean values that are strongly less than the Gini mean:

Theorem 1.6. Let s, t ∈ R> with 1/3 ≤ s/t ≤ 3 andp, q ∈ R+. ThenGs,t � Ep,q if and only
if p + q ≤ 3(s + t)

Again we have a corollary of ordinary inequalities:

Corollary 1.7. Lets, t, p, q ∈ R>, p > q andp+q ≤ 3(s+ t). Assume also that1/3 ≤ s/t ≤ 3
or q ≤ s + t. Then

Ep,q ≤ Gs,t ≤ (p/q)1/(p−q)Ep,q.

Both inequalities are sharp.

Remark 1.8. Contrary to the corollaries of the other theorems, this one provides, to the best
knowledge of the author, new inequalities.

The Seiffert mean was introduced in [15] and is defined by

P (x, y) :=
x− y

4 arctan(
√

x/y)− π

for distinct x, y ∈ R> andP (x, x) := x. The next theorem provides a characterization of
those Stolarsky means which are strongly less than the Seiffert mean. Notice that the Stolarsky
mean is of particular interest to us, since it has been implicated in finding relative metrics, as is
described in Section 7.

Theorem 1.9.DenoteSα := E1,1−α for 0 < α ≤ 1. ThenP � Sα if and only ifα ≥ 1/2.

Remark 1.10. We will call Sα = E1,1−α Stolarsky meansfollowing [20] and [7], since this
particular form of the extended mean value was studied in depth by Stolarsky in [19] and call
the familyEs,t extended mean values, even though they too originated from [18] by Stolarsky.

The previous theorem has the following corollary containing the corresponding ordinary in-
equalities.

Corollary 1.11. If 1/2 ≤ α ≤ 1 then

Sα ≤ P ≤ 1

π
(1− α)−1/αSα.

Both inequalities are sharp.

Remark 1.12. In the previous corollary the lower bound is decreasing and the upper bound is
increasing inα (for any fixedx). Hence the best estimate forP given by the previous corollary
is

(
√

x +
√

y)2

4
≤ P (x, y) ≤

(
√

x +
√

y)2

π
,

sinceS1/2 = A1/2. Notice also that the first of these inequalities was given by A. A. Jager in
[15] in order to solve H.-J. Seiffert’s problemE0,1 ≤ P ≤ E1,1. Once again however, the upper
bound is new. For another inequality ofP , see Corollary 6.4.

The structure of the rest of this paper is as follows: in the next section we state some basic
properties of strong inequalities and show how the corollaries in this section follow from their
respective theorems. In Section 3 we present the complete definition of the means studied as
well as some simple results on their derivatives. Section 4 contains the complete characteriza-
tion of strong inequalities between extended mean values, that is the proof of Theorem 1.1. In
Section 5 we present the proofs of Theorems 1.5 and 1.6, relating extended mean values and
Gini means as well as some additional results summarized in Section 5.3. Section 6 contains
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4 PETER A. HÄSTÖ

the characterizations of strong inequalities between Seiffert’s mean and the Stolarsky means. In
Section 7 we present a brief summary of the result regarding relative metrics from [7] and show
how the theorems of this paper yield new families of metrics.

2. STRONG I NEQUALITIES

In this section we will consider some basic properties of strong inequalities and show how
the corollaries stated in the introduction are derived from their respective theorems.

2.1. Basic Properties of Strong Inequalities.Recall from the introduction that we say that
f is strongly greater than or equal tog, f � g, if x 7→ f(x)/g(x) is increasing, where
f, g : [1,∞) → R> are arbitrary functions. The relationf � g is defined to hold if and only if
g � f . The following lemma follows immediately from the definition sincexs is increasing if
and only ifx is increasing, fors > 0.

Lemma 2.1. Let f, g : [1,∞) → R> be arbitrary functions ands > 0. Definefs(x) := f(xs)
andgs(x) := g(xs). Then following conditions are equivalent:

(1) f � g,
(2) fs � gs and
(3) f s � gs.

Suppose next thatf, g : [1,∞) → R> are differentiable functions. Thenf � g if and only if
d(f/g)/dx ≥ 0 if and only if

0 ≤ d log{f/g}
dx

=
d log f

dx
− d log g

dx
.

We see that in this situation the strong inequality is equivalent to an ordinary inequality between
the logarithmic derivatives.

We end this subsection by showing that� is a partial order, as is suggested by its symbol. A
binary relationE ⊂ X ×X is called apartial order in the setX if

(1) x E x for all x ∈ X (reflexivity),
(2) if x E y andy E x thenx = y (antisymmetry) and
(3) if x E y andy E z thenx E z (transitivity). [17, Section 3.1].

Let f, g, h : [1,∞) → R> be arbitrary functions. Thenf � f , sincef/f = 1 is increasing,
hence the property of reflexivity is satisfied. Iff � g and g � h then f/g and g/h are
increasing, hence so is their product,f/h, which means thatf � h, hence� is transitive. The
antisymmetry condition is not quite satisfied, though – iff = cg with c > 1 thenf � g and
g � f butf 6= g. One easily sees that the antisymmetry condition holds in the set of symmetric
homogeneous means, hence� is a partial order in this set, which is the one that will concern us
in what follows.

2.2. Ordinary Inequalities from Strong Inequalities. In this section we will see how strong
inequalities imply ordinary inequalities. The method to be presented has been used in the con-
text of gamma and polygamma functions by several investigators, as noted in the introduction
and by M. Vamanamurthy and M. Vuorinen ([20]) in the context of means.

If M andN are symmetric homogeneous means thentM(1) = tN(1) = 1. Hence, ifM � N
then

tM(x)/tN(x) ≥ tM(1)/tN(1) = 1

for x ≥ 1. To get an upper bound we observe that iftM(x)/tN(x) is increasing on[1,∞) then

tM(x)

tN(x)
≤ lim

x→∞

tM(x)

tN(x)
=: c,
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A M ONOTONICITY PROPERTY OFMEANS 5

and sotM(x) ≤ ctN(x). Notice also that the constant in neither of the two inequalities can be
improved. Since bothM andN were assumed to be homogeneous, the previous inequalities
imply that

N(x, y) = ytN(x/y) ≤ ytM(x/y) = M(x, y) ≤ cytN(x/y) = cN(x, y),

wherex, y ∈ R>. Notice in particular that the relation� implies the relation≥, which is the
reason for the terminology “strong inequality”.

Applying this reasoning to the Theorems 1.1, 1.9 and 1.5 and 1.6 gives the Corollaries 1.2,
1.11 and 1.7, respectively, since

Es,t(x, 1) ∼ (s/t)1/(s−t)x, Gs,t(x, 1) ∼ x and P (x, 1) ∼ 2x/π

asx →∞ for distincts, t ∈ R>.

3. THE M EANS

In this section we give the precise definitions of the means that are studied. We will also
define and calculate a certain variety of their derivatives.

3.1. Classical Means.In this subsection we define some classical means and prove an inequal-
ity between them that is needed in Section 4.

TheArithmetic, Geometric, HarmonicandLogarithmic meansare defined forx, y ∈ R> by

A(x, y) :=
x + y

2
, G(x, y) :=

√
xy, H(x, y) :=

2xy

x + y

and

L(x, y) :=
x− y

log{x/y}
, x 6= y, L(x, x) := x,

respectively. Moreover, we denote byAs the power mean of orders: As(x, y) = [A(xs, ys)]1/s

for s ∈ R \ {0} andA0 = G. The next lemma is an improvement over the well known relation
L ≥ G, sinceA ≥ G.

Lemma 3.1. We haveL � A1/3G2/3.

Proof. We need to prove that

f(x) :=
L3(x, 1)

A(x, 1)G2(x, 1)
=

(x− 1)3

(x + 1)x log3 x

is increasing inx for x ≥ 1 (we used Lemma 2.1(3) withs = 3). A calculation gives

f ′(x) =
(x2 + 4x + 1) log{x} − 3(x2 − 1)

(x + 1)2x2 log4{x}
(x− 1)2.

Hencef ′(x) ≥ 0 if and only if

g(x) := log x− 3
x2 − 1

x2 + 4x + 1
≥ 0.

Since clearlyg(1) = 0, it suffices to show thatg is increasing, which follows from

(x2 + 4x + 1)2xg′(x) = (x2 + 4x + 1)2 − 3x(2x(x2 + 4x + 1)− (x2 − 1)(2x + 4))

= (x− 1)4 ≥ 0.

�
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6 PETER A. HÄSTÖ

3.2. The Extended Mean Value.Let x, y ∈ R> be distinct ands, t ∈ R \ {0}, s 6= t. We
define theextended mean valuewith parameterss andt by

Es,t(x, y) :=

(
t

s

xs − ys

xt − yt

)1/(s−t)

,

and also

Es,s(x, y) := exp

(
1

s
+

xs log x− ys log y

xs − ys

)
,

Es,0(x, y) :=

(
xs − ys

s log{x/y}

)1/s

and E0,0(x, y) :=
√

xy.

Regardless of whethers andt are distinct we also defineEs,t(x, x) := x. Notice that all the
cases are continuous continuations of the first general expression forEs,t(x, y) (this was proved
to be possible in [18]).

It should also be noted thatE2,1 = A, E0,0 = G, E−1,−2 = H andE1,0 = L, and more
generally,As = E2s,s for s ∈ R. Hence we see that all these classical means belong to the
family of extended mean values.

Let us next calculate the following variety of the logarithmic derivative:

es,t(x) := x
∂ log Es,t(x, 1)

∂x
− 1.

The reason for choosing this form has to do with the strong inequality (the logarithm, as was
seen in Section 2.1) and simplicity of form (multiplying byx and subtracting1). Assume that
x > 1 and alsos, t ∈ R \ {0}, s 6= t. Then

es,t(x) =
1

s− t

(
s

xs − 1
− t

xs − 1

)
,

es,s(x) =
1

xs − 1
− sxs log x

(xs − 1)2
,

es,0(x) =
1

xs − 1
− 1

s log x

and
e0,0(x) = −1/2.

Note that for alls, t ∈ R we havees,t(1+) := limx→1 es,t(x) = −1/2. It will be of much use to
us that

es,s(x) = lim
t→s

es,t(x), es,0(x) = lim
t→0

es,t(x) and e0,0(x) = lim
t,s→0

es,t(x),

since this will allow us to consider only the general formula (with distincts, t ∈ R \ {0}) and
have the remaining cases follow by continuity. Let us record the following simple result which
will be needed further on.
Lemma 3.2. For every pairs, t ∈ R we havees,t(x) ≤ 0 for all x ∈ (1,∞).

Proof. It suffices to show this for distincts, t ∈ R \ {0}. Assume further thats > t. We have to
show that

s

xs − 1
≤ t

xt − 1
.

If t > 0 we just multiply by(xt − 1)(xs − 1), whereupon the claim is clear, sincesxt − txs is
decreasing inx and hence less than or equal tos− t. Next if s > 0 > t we have to prove that

s

xs − 1
≤ −tx−t

x−t − 1
.

J. Inequal. Pure and Appl. Math., 3(5) Art. 71, 2002 http://jipam.vu.edu.au/

http://jipam.vu.edu.au/


A M ONOTONICITY PROPERTY OFMEANS 7

or, equivalently,s− t ≤ (−t)xs + sxt. Since the right hand side is increasing inx this is clear.
The case0 > s > t follows like the caset > 0, since(xt − 1)(xs − 1) is again positive. �

We conclude this subsection by stating that for alls, t ∈ R we have

lim
x→1+

∂es,t(x)

∂x
=

s + t

12
,

a fact which is easy, though tedious, to check (differentiate and use l’Hospital’s rule four times;
the proof is quite similar to that of Lemma 3.3).

3.3. The Gini Mean. The Gini mean was introduced in [6] and is a generalization of the power
means. It is defined by

Gs,t(x, y) :=

(
xs + ys

xt + yt

)1/(s−t)

,

wherex, y ∈ (0,∞) ands, t ∈ R are distinct. We also define

Gs,s(x, y) := exp

(
xs log x + ys log y

xs + ys

)
.

Notice that the power means are the elementsGs,0 = As in this family of means. The loga-
rithmic mean is not part of the Gini mean family, in fact, Alzer and Ruscheweyh have recently
shown that the only means common to the extended mean value and the Gini mean familes are
the power means, [3].

We easily find that

gs,t(x) := x
∂ log Gs,t(x, 1)

∂x
− 1 =

1

s− t

(
t

xt + 1
− s

xs + 1

)
,

for s 6= t andx > 1 and

gs,s(x) =
sxs log x

(xs + 1)2
− 1

xs + 1
.

As with the extended mean value we find thatgs,s = limt→s gs,t. We again havegs,t(1) = −1/2
and it is easily derived thatg′s,t(1) = (s + t)/4.

3.4. The Seiffert Mean. The Seiffert mean was introduced in [15] and is defined by

P (x, y) :=
x− y

4 arctan(
√

x/y)− π
=

x− y

2 arcsin((x− y)/(x + y))

for distinctx, y ∈ R> andP (x, x) := x. For this mean we have

p(x) := x
∂ log P (x, 1)

∂x
− 1 =

1

x− 1
− 2

√
x

x + 1

1

4 arctan(
√

x/y)− π
,

for x > 1. Also, it can be calculated thatp(1+) = −1/2. Let us for once explicitly calculate
the limiting value of the derivative at1:
Lemma 3.3. We have

lim
x→1+

dp(x)

dx
=

1

6
.

Proof. A direct calculation gives

p′(x) = − 1

(x− 1)2
+

x− 1√
x(x + 1)2

1

4 arctan(
√

x)− π
+

4

(x + 1)2

1

(4 arctan(
√

x)− π)2

=

(
2

x + 1

1

4a− π
− 1

x− 1

) (
2

x + 1

1

4a− π
+

1

x− 1

)
+

x− 1√
x(x + 1)2

1

4a− π
,
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where we have denoteda := arctan(
√

x). Hence, when we write4 arctan(
√

x)−π = c(x−1),
we have

p′(1+) = lim
x→1

(
2

x + 1

1

4 arctan(
√

x)− π
− 1

x− 1

)
1

x− 1

(
2

c(x + 1)
+ 1

)
+

1

c
√

x(x + 1)2

= lim
x→1

2

(
2

x + 1

1

4 arctan(
√

x)− π
− 1

x− 1

)
1

x− 1
+

1

4
,

sincec → 1 asx → 1+ and all the factors are continuous. It remains to evaluate

lim
x→1+

2x−1
x+1

− 4 arctan(
√

x) + π

(x− 1)2(4 arctan(
√

x)− π)
= lim

y→π/4+

π − 4y − 2 cos(2y)

4 cos2(2y)(4y − π)
cos4 y,

where we used the substitutiony = arctan(
√

x). We have, using l’Hospital’s rule and the
substitutionz := 2y

lim
z→π/2

π − 2z − 2 cos z

(2z − π)(1 + cos(2z))
= lim

z→π/2

−2 + 2 sin z

2(1 + cos(2z))− 2(2z − π) sin(2z)

= lim
z→π/2

cos z

−4 sin(2z)− 2(2z − π) cos(2z)

= lim
z→π/2

− sin z

−12 cos(2z) + 4(2z − π) sin(2z)
= − 1

12
.

Sincelimy→π/4 cos4(y) = 1/2 we find thatp′(1+) = 2(−1/12)(1/2) + 1/4 = 1/6, as claimed.
�

Let us also introduce another mean of Seiffert’s, from [16], for which we will prove just one
inequality. Define

T (x, y) :=
x− y

2 arctan x−y
x+y

for distinctx, y ∈ R andT (x, x) = x. This mean satisfiesA ≤ T ≤ A2, see [16]. We have

t(x) := x
∂ log T (x, 1)

∂x
− 1 =

1

x− 1
− x

x2 + 1

(
arctan

x− 1

x + 1

)−1

.

4. THE EXTENDED M EAN VALUE

In this section we will prove Theorem 1.1, which is the used in the proof of the other theo-
rems. The proof consists essentially of two lemmas which show that the extended mean value
behaves nicely with respect to the strong inequality as we move in the parameter plane. We start
with the horizontal direction and then go for the diagonal.

Lemma 4.1. Let r, t ∈ R. ThenEt,s � Er,s if and only ift ≥ r.

Proof. It suffices to show thater,s is increasing inr. We differentiate with respect tor and find
thater,s is increasing when

0 ≤ (r − s)2∂er,s

∂r
= (r − s)

xr − 1− xr log xr

(xr − 1)2
+

s

xs − 1
− r

xr − 1
=: f(s).

We havef(r) = 0, hence it suffices to show thatf ′(s) ≤ 0 if and only if s ≤ r. Differentiating
with respect tos gives

f ′(s) =
xr log xr − xr + 1

(xr − 1)2
− xs log xs − xs + 1

(xs − 1)2
.
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A M ONOTONICITY PROPERTY OFMEANS 9

Sincexs ≤ xr if and only if s ≤ r it suffices to show thatg(y) = (y log y − y + 1)(y − 1)−2 is
decreasing. We calculate

g′(y) =
(y − 1) log y − 2(y log y − y + 1)

(y − 1)3
=

2(y − 1)− (y + 1) log y

(y − 1)3
.

Henceg′(y) ≤ 0 if and only if 2(y − 1) ≤ (y + 1) log y exactly wheny > 1. Since

log y − 2
y − 1

y + 1

is increasing iny and equals0 for y = 1, this is seen to be so. �

Lemma 4.2. Leta ≥ 2s ≥ 2q ≥ 0. Then

Ea−s,s � Ea−q,q.

Proof. We show thatea−s,s is increasing ins < a/2, which is clearly equivalent to the claim.
Now

∂ea−s,s(x)

∂s
=

2

(a− 2s)2

(
a− s

xa−s − 1
− s

xs − 1

)
+

1

a− 2s

(
1− xa−s + (a− s)xa−s log x

(xa−s − 1)2
− xs − 1− sxs log x

(xs − 1)2

)
.

Let us denotea− s =: r. The inequality∂ea−s,s/∂s ≥ 0 becomes

xr log xr

(xr − 1)2
+

xs log xs

(xs − 1)2
≥ 1

r − s

(
2

s

xs − 1
− 2

r

xr − 1
+

r − s

xs − 1
+

r − s

xr − 1

)
=

r + s

r − s

(
1

xs − 1
− 1

xr − 1

)
.

Let us multiply both sides by(xs − 1)(xr − 1). The inequality becomes

xs − 1

xr − 1
xr log xr +

xr − 1

xs − 1
xs log xs ≥ r + s

r − s
(xr − xs).

Let us next use the equalities(xs−1)/(xr−1) = 1−(xr−xs)/(xr−1) and(xr−1)/(xs−1) =
1 + (xr − xs)/(xs − 1) and divide byxr − xs:

fr,s(x) :=

(
sxs

xs − 1
− rxr

xr − 1
+

rxr + sxs

xr − xs

)
log x− r + s

r − s

=

(
s

xs − 1
− r

xr − 1
+

sxr + rxs

xr − xs

)
log x− r + s

r − s
≥ 0.

We will demonstrate that this is so by showing thatfr,r(x) = 0, that

lim
s→0

∂fr,s

∂r
= 0, and that

∂2fr,s

∂r∂s
≥ 0.

The last two conditions imply that∂fr,s/∂r ≥ 0. This, together with the first condition implies
thatfr,s ≥ 0 if s ≥ 0, which completes the proof.

We first show thatfr,r(x) = 0:

lim
s→r

fr,s(x) = lim
s→r

(sxr + rxs)(r − s) log x− (r + s)(xr − xs)

(xr − xs)(r − s)

= lim
s→r

−2(xr + rxs log x) log x + 2xs log x + (r + s)xs log2 x

2xs log x
= 0.

J. Inequal. Pure and Appl. Math., 3(5) Art. 71, 2002 http://jipam.vu.edu.au/

http://jipam.vu.edu.au/


10 PETER A. HÄSTÖ

Upon calculating∂fr,s/∂r,

∂fr,s

∂r
=

(
xr log xr

(xr − 1)2
− 1

xr − 1
− xr+s log xr+s

(xr − xs)2
+

xs

xr − xs

)
log x +

2s

(r − s)2
,

we immediately find that∂fr,s/∂r|s=0 = 0. Next we calculate

∂2fr,s

∂r∂s
=

xr+s log2 x

(xr − xs)2
− xr+s(xr − xs) log2 x + (r + s)(xr + xs)xr+s log3 x

(xr − xs)3
+ 2

r − s + 2s

(r − s)3

= −(r + s)(xr + xs)xr+s log3 x

(xr − xs)3
+ 2

r + s

(r − s)3
.

Therefore∂2fr,s/∂r∂s is positive when

2

(r − s)3
≥ (xr + xs)xr+s log3 x

(xr − xs)3
,

where we used thatr + s = a > 0.
Sincexr ≥ xs this last inequality is equivalent with

L(xr, xs)3 ≥ A(xr, xs)G(xr, xs)2,

which follows from Lemma 3.1, and so we are done. �

Proof of Theorem 1.1.Let us assume without loss of generality thats ≥ t andp ≥ q.
Suppose first thatEs,t � Ep,q holds. This is equivalent with the conditiones,t(x) ≥ ep,q(x).

As x → 1+ there is equality in the inequality. Hencee′s,t(1+) ≥ e′p,q(1+), for otherwise
es,t(x) < ep,q(x) in some neighborhood (with respect to[1,∞)) of x = 1. It follows that
(s + t)/12 ≥ (p + q)/12, or, equivalently,s + t ≥ p + q. As x →∞ we have

es,t ∼ −
t

s− t
x−t

if 0 < t < s, et,t ∼ −tx−t log x andes,0 ∼ −1/ log{xs}. Hence we see that the condition
es,t(x) ≥ ep,q(x) implies thatt ≥ q.

Assume conversely thats + t ≥ p + q andt ≥ q. Then we have

Es,t � Es+t−q,q � Ep+q−q,q = Ep,q,

where the first inequality follows from Lemma 4.2 sincet ≥ q and the second inequality follows
from Lemma 4.1, sinces + t ≥ p + q. �

5. THE GINI M EAN

The Gini mean was defined in Section 3.3. In this section we will derive partial results on
when a Gini mean is strongly greater than or equal to an extended mean value. We will see that
although the Gini mean was easier to define (required less cases) than the extended mean value,
it is a lot more difficult to handle, since it does not satisfy the kinds of lemmas that were proved
for the extended mean value in Section 4.

It is well known thatGs,q ≥ Gt,q if and only if s ≥ t (proved for instance in [13, Theorem 1.1
(h)]). The next example shows that this inequality does not generalize to a strong inequality.

Example 5.1.Let s > t > q > 0. ThenGs,q andGt,q are not comparable in the partial order�.
Indeed,gs,q(x) > gt,q(x) holds for smallx > 1, since both have the same limit (viz.−1/2) as
x → 1+ andgs,q has a greater derivative atx = 1+, as was shown in Section 3.3. On the other
handgs,q(x) < gt,q(x) for x large enough, since

gs,q ∼ qx−q/(s− q) < qx−q/(t− q) ∼ gt,q
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asx →∞.

5.1. The Easy Case – when there are strong inequalities between Gini means.Despite the
previous example we can derive some strong inequalities between Gini means, which is what
we will do next. Note theGs+t,0 is the power meanAs+t.
Lemma 5.1. If s, t ≥ 0 thenGs,t � Gs+t,0.

Proof. Assume without loss of generality thats+ t > 0. Using the transformationx 7→ x2/(s+t)

we may assume thats + t = 2 (here we use Lemma 2.1(2)). Assume further thats = 1 + d
andt = 1− d whered ≥ 0 and for the time being suppose further thatd > 0. The claim of the
lemma is that

g1+d,1−d(x) =
1

2d

(
1− d

x1−d + 1
− 1 + d

x1+d + 1

)
≥ − 1

x2 + 1
= g2,0(x).

Let us multiply this inequality by2d(x1−d + 1)(x1+d + 1) (which is obviously positive) to get
the equivalent inequality

(1− d)(x1+d + 1)− (1 + d)(x1−d + 1) ≥ −2d
x2 + x1+d + x1−d + 1

x2 + 1
.

Collect the terms multiplied byd:

x1+d − x1−d = (x1+d + 1)− (x1−d + 1)

≥ (x1+d + x1−d + 2)d− 2d
x2 + x1+d + x1−d + 1

x2 + 1

= (x1+d + x1−d)(1− 2/(x2 + 1))d

= (x1+d + x1−d)(x2 − 1)d/(x2 + 1).

Multiplying the first and the last expression byxd−1 gives the inequality

x2d − 1 ≥ (x2d + 1)(x2 − 1)d/(x2 + 1).

Let us setxd =: z or, equivalently,d = log{z}/ log x. Then we get the equivalent inequality

z2 + 1

z2 − 1
log z ≤ x2 + 1

x2 − 1
log x,

which is further equivalent with the functionf(y) := (y + 1) log{y}/(y − 1) being increasing,
sincex ≥ z. Now

f ′(y) =
y2 − 1− 2y log y

y(y − 1)2
≥ 0

if and only if y2 − 1 − 2y log y ≥ 0, which follows, sincey − y−1 − 2 log y is increasing iny
for y ≥ 1. This ends the proof for the cased > 0. The cased = 0 follows, sinceg1+d,1−d is
continuous ind. �

Proof of Theorem 1.5.If s, t ≥ 0 anda = s + t then

Gs,t � Ga,0 = Aa = E2a,a,

where the strong inequality follows from Lemma 5.1. It then follows from Theorem 1.1 that

Gs,t � E2a,a � Ep,q,

if p + q ≤ 3a andmin{p, q} ≤ a.
Suppose conversely thatGs,t � Ep,q holds for alls, t ≥ 0 with s + t = a. Then it holds in

particular fors = a andt = 0 and so

Ga,0 = E2a,a � Ep,q.
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It then follows from Theorem 1.1 thatp + q ≤ 2a + a andmin{p, q} ≤ min{2a, a} = a, as
claimed. �

5.2. The Difficult Case – when there are no strong inequalities between Gini means.We
now turn to deriving strong inequalities between Gini means and extended mean values that
are not mediated by power means. Since it was shown in Example 5.1 that there is not much
possibility of deriving auxiliary inequalities between Gini means and since the author has had
no success in direct derivation of inequalities between extended mean values and Gini means,
another scheme of mediation is developed. It consists of using a Gini mean as an intermediary
for a small value ofx and the fact that most Gini means grow asymptotically faster than extended
mean values to take care of large values ofx.

We start by considering a certain monotonicity property ofgs,t. This lemma corresponds to
Lemma 4.2 for the extended mean value.

Lemma 5.2. The quantityg1+d,1−d(x) is decreasing in0 ≤ d ≤ 1 for fixedx ∈ [1, 491/2].

Proof. Let us assume thatd > 0; the cased = 0 follows by continuity. A simple calculation
gives

f(d) := d
∂g1+d,1−d

∂d
= − 1

(x/z + 1)d
+

x/z log{x/z}
(x/z + 1)2

+
1

(xz + 1)d
+

xz log{xz}
(xz + 1)2

,

where we have denotedxd =: z. Let us multiply the inequalityf(d) ≤ 0, which is equivalent
with the claim of the lemma, by(xz + 1)(x/z + 1) and used = log z/ log x:

(x/z − xz)
log x

log z
+

(x2 + x/z) log{x/z}
x/z + 1

+
(x2 + xz) log{xz}

xz + 1

= (x/z − xz)
log x

log z
+

(
log{x/z}
x/z + 1

+
log{xz}
xz + 1

)
(x2 − 1) + 2 log x ≤ 0.

Let us divide this inequality byx log x and rearrange

(5.1)

(
log{x/z}
x/z + 1

+
log{xz}
xz + 1

)
x− 1/x

log x
+

2

x
≤ z − 1/z

log z
.

We will show that the left hand side is decreasing inz ∈ [1, x] and that the right hand side is
increasing inz. Now the latter claim is equivalent with

d

dz

z − 1/z

log z
=

(z2 + 1) log z − (z2 − 1)

z2 log2 z
≥ 0,

which is clear, sincelog z − (z2 − 1)/(z2 + 1) is increasing inz and hence positive. It remains
to prove that

g(z) :=
log{x/z}
x/z + 1

+
log{xz}
xz + 1

is decreasing inz. A calculation gives

zg′(z) =
xz + 1− xz log{xz}

(xz + 1)2
− x/z + 1− (x/z) log{x/z}

(x/z + 1)2
= h(xz)− h(x/z),

whereh(y) := (y + 1 − y log y)/(y + 1)2. The functionh is sketched in Figure 5.1 and has
the following pertinent characteristics: its only zero is aty0 = 3.591..., its only minimum at
y1 = 11.016... and it is then increasing, but negative.
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x+1−x log x

(x+1)2
y =

Figure 5.1: The functionh.

Suppose now thatx is such that the condition

(5.2) (x/z ≤ y0) ∨ (xz ≤ 14 ∧ x/z ≤ 7)

holds for allz ∈ [1, x]. We then claim thath(x/z) ≤ h(xz) holds: because, for a givenz, one
of the following conditions holds:

(1) y1 ≥ xz,
(2) y1 < xz andx/z ≤ y0 or
(3) y1 < xz ≤ 14 andx/z ≤ 7.

If (1) holds thenh(x/z) ≥ h(xz) sinceh is decreasing on[1, y1] andxz ≥ x/z. If (2) holds
thenh(x/z) ≥ 0 ≥ h(xz). If (3) holds then we have

h(x/z) ≥ h(7) > −0.088 > −0.097 > h(14) ≥ h(xz).

If x ≤ 7 then the condition (5.2) holds. For ifx 6≤ y0z thenx/z ≤ x ≤ 7 andxz ≤ x2/y0 <
49/3.6 < 13.7 so that the second condition holds. We have shown, then, that forx ≤ 7 we have
zg′(z) = h(xz) − h(x/z) ≤ 0 for all z ∈ [1, x] and so we see thatg is decreasing in the same
range.

Let us now return to inequality (5.1). Since the left hand side is decreasing inz and the
right hand side is increasing in the same, it clearly suffices to show that the inequality holds for
z = 1+. Calculating, we see we have to show that

2 log x

x + 1

x− 1/x

log x
+

2

x
≤ 2,

which is actually an equality and hence the claim is clear. �
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Remark 5.3. The restriction onx in the previous lemma is not superfluous, for the claim does
not hold for largex and alld. However, numerical evidence does suggest that∂gd(x)/∂d has
character− or −|+, hence we would have a certain monotonicity property for largex also.
Unfortunately the author has not been able to prove this fact.

We now proceed to the second phase of the scheme presented, showing that for largex, Gs,t

has a large derivative. Note that the constant11/189 is chosen to suffice for Remark 5.10.

Lemma 5.4. If 11/189 ≤ s/t ≤ 189/11 ands + t = 1 thengs,t(x) ≥ 0 for x ≥ 47.

Proof. Assume without loss of generality thats > t. We have to prove that

f(x) := (s− t)(xs + 1)(xt + 1)gs,t(x) = t(xs + 1)− s(xt + 1) ≥ 0

for x ≥ 47. Since
xf ′(x) = ts(xs − xt) ≥ 0

it suffices to show thatf(47) ≥ 0. Let us dividef(47) by s and denotev := t/s. The inequality
becomes

g(v) := v(471/(1+v) + 1)− 47v/(1+v) − 1 ≥ 0.

Clearlyg(1) = 0 and we also find thatg(11/189) > 0.035. Hence it suffices to show thatg′(v)
has characteristic+|− for v ∈ [11/189, 1]. A calculation gives

g′(v) := 471/(1+v) + 1− log 47

(1 + v)2

(
47v/(1+v) + v471/(1+v)

)
.

Let us write the inequalityg′(v) ≥ 0 in terms of the original variable,s = 1/(1 + v), divide by
log{47s} and rearrange some:

47s + 1

log 47s
≥ s471−s + (1− s)47s.

We will show that the left hand side is increasing ins and that the right hand side is decreasing
in s. From this it follows, on checking the boundary valuess = 1/2 ands = 189/200, thatg′

has characteristic−|+, which completes the proof.
Since47s is obviously increasing ins we have first to show thath(y) := (y + 1)/ log y is

increasing fory ∈ [471/2, 470.945]. We have

(log y)2h′(y) = log y − 1− 1/y.

Sincelog y − 1− 1/y is increasing iny, it is clear that

h′(y) ≥ log
√

47− 1− 47−1/2

log2 47
≈ 0.058 > 0.

Next we want to show thatm(s) := s471−s+(1−s)47s is decreasing ins for s ∈ [1/2, 189/200].
Let us differentiate:

m′(s) = 471−s − 47s + ((1− s)47s − s471−s) log 47.

Thenm′(s) ≤ 0 if and only if

n(471−s) =
log 471−s − 1

471−s
≤ log 47s − 1

47s
= n(47s),

where we have denotedn(z) := (log z− 1)/z. This function has the following relevant charac-
teristics: only zero ate and only maximum ate2. In what follows we will essentially approxi-
maten(z) by a step function which allows us to arrive at the desired conclusion.
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Since47s ≥ 471−s by assumption ons, we see thatn(471−s) ≤ n(47s) if 47s ≤ e2 or,
equivalently,s ≤ 0.5194, sincen(z) is increasing forz ≤ e2. If s > 0.5194 then471−s < 6.363
andn(471−s) < 0.1336. Sincen(8.7) > 0.1337 it follows that

n(47s) ≥ min{n(470.5194), n(8.7)} > n(470.4806) ≥ n(471−s)

for 0.5194 ≤ s ≤ 0.5618 < log 8.7/ log 47. Making a second iteration, we find that for
s ≥ 0.5618 we haven(471−s) < 0.1272, andn(10.8) > 0.1277. Hence

n(47s) ≥ n(10.8) > n(470.4382) ≥ n(471−s)

for 0.5618 ≤ s ≤ 0.6180 < log 10.8/ log 47. Continuing with a third and a fourth iteration we
find that

n(47s) ≥ n(16) > n(470.382) ≥ n(471−s)

for 0.6180 ≤ s ≤ 0.72 < log 16/ log 47 and that

n(47s) ≥ n(47) > n(470.28) ≥ n(471−s)

for 0.72 ≤ s ≤ 1 = log 47/ log 47 and so we are done. �

Using the previous two lemmas we will be able to derive strong inequalities for many Gini
means by proving just a few simple inequalities, which effectively amount to solving polyno-
mial inequalities.

Lemma 5.5. Let r > 0. ThenG3r,r � Ep,q if and only ifp + q ≤ 12r.

Proof. Assume first thatp+q ≤ 12r. SinceEp,q � Eu,u, whereu ≥ (p+q)/2, by Theorem 1.1,
it suffices to prove thatG3r,r � Eu,u with u = 6r. This is equivalent with

xr − 2

x2r − xr + 1
=

1

2r

(
r

xr + 1
− 3r

x3r + 1

)
= g3r,r ≥ eu,u =

1

xu − 1
− uxu log x

(xu − 1)2
.

Let us sety := xr and multiply by(xu − 1)2/xu:

(y6 − 1)2

2y6

y − 2

y2 − y + 1
≥ 1− y−6 − 6 log y.

This inequality surely holds fory = 1, hence it suffices to show that the left hand side has a
greater derivative than the right hand side fory > 1:

3(y5 − y−7)
y − 2

y2 − y + 1
− (y6 − 1)2

2y7

y2 − 4y + 1

(y2 − y + 1)2
≥ 6y−7 − 6/y.

Let us multiply both sides byy7/(y6 − 1):

3(y6 + 1)
y − 2

y2 − y + 1
− y6 − 1

2

y2 − 4y + 1

(y2 − y + 1)2
y ≥ −6.

We can then move the two terms with minus signs to the opposite sides, divide byy(y2−1) and
multiply by 2(y2 − y + 1)2 to get

6(y4 − 2y3 + y2 − 2y + 1)(y2 − y + 1) ≥ (y4 + y2 + 1)(y2 − 4y + 1).

Multiplying out and rearranging gives the inequality

5y6 − 14y5 + 22y4 − 26y3 + 22y2 − 14y + 5 ≥ 0.

Dividing by (y − 1)2 gives

5y4 − 4y3 + 9y2 − 4y + 5 ≥ 0,

which holds since5y4 ≥ 4y3 and9y2 ≥ 4y for y ≥ 1.
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The converse implication, thatG3r,r � Ep,q implies p + q ≤ 12r, follows sincer =
g3r,r(1+) ≥ ep,q(1+) = (p + q)/12, which concludes the proof. �

Proof of Theorem 1.6.Suppose first thatGs,t � Ep,q.Then

(s + t)/4 = gs,t(1+) � ep,q = (p + q)/12,

hencep + q ≤ 3(s + t), which proves one implication.
Suppose conversely thatp + q ≤ 3(s + t) and1/3 ≤ s/t ≤ 3. It follows from Lemma 5.2

that gs,t(x) ≥ g3r/4,r/4(x) for x ∈ [1, 491/(s+t)] andr := s + t. It follows from Lemma 5.5
thatg3r/4,r/4(x) ≥ e3r/2,3r/2(x) for the samex. Usinge3r/2,3r/2(x) ≥ ep,q(x) from Theorem 1.1
completes the proof in the case of small values ofx.

If x > 471/(s+t) we have
gs,t(x) ≥ 0 ≥ ep,q(x),

where the first inequality follows from Lemma 5.4 and the second one from Lemma 3.2. Hence
the claim is clear in this case as well. �

Let us now give one more specific Gini mean extended mean value inequality (with corollary)
before moving on to summarize the results of this section.

Lemma 5.6. We haveG9,1 � E16,14.

Proof. We have to show that

1

8

(
1

x + 1
− 9

x9 + 1

)
≥ 1

2

(
16

x16 − 1
− 14

x14 − 1

)
.

Let us multiply this by8(x + 1)(x9 + 1)(x16 − 1)(x14 − 1)x−20 and move all the terms to the
same side. We get the equivalent inequality

f(x) := x19 − x−19 − 9(x11 − x−11)− 8(x10 − x−10) + 56(x6 − x−6)

+ 55(x5 − x−5)− 64(x4 − x−4)− 65(x3 − x−3) ≥ 0.

Sincef(1) = 0 it suffices to show thatf ′(x) ≥ 0 for x ≥ 1. Let g(x) := xf ′(x). We
will show that g is increasing inx, from which it follows thatg(x) ≥ 0 for x ≥ 1, since
g(1) = f ′(1) = 0. Sinceg is positive if and only iff ′ is (for x > 0), it follows thatf ′(x) ≥ 0.
Now

h(x) := xg′(x)

= 361(x19 − x−19)− 1089(x11 − x−11)− 800(x10 − x−10) + 2016(x6 − x−6)

+ 1375(x5 − x−5)− 1024(x4 − x−4)− 585(x3 − x−3),

and g is increasing if and only ifh(x) ≥ 0. Sinceh(1) = 0, it suffices to show thath is
increasing and sinceh′(1) = 0, thatm(x) := xh′(x) is increasing. We have

m′(x) = 130123(x19 − x−19)− 131769(x11 − x−11)− 80000(x10 − x−10)

+ 72576(x6 − x−6) + 34375(x5 − x−5)− 16384(x4 − x−4)− 5265(x3 − x−3).

Since

72576(x6 − x−6) + 34375(x5 − x−5) ≥ 16384(x4 − x−4) + 5265(x3 − x−3)

we may drop the last four terms in the expression ofm′(x). It then suffices to show that (we
have divided by10000 and rounded suitably)

n(x) := 13(x19 − x−19)− 14(x11 − x−11)− 8(x10 − x−10) ≥ 0
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for x ≥ 1. Differentiating one last time we find

xn′(x) = 247(x19 + x−19)− 154(x11 + x−11)− 80(x10 + x−10).

Sincexy + x−y is increasing iny > 0 for fixed x ≥ 1, we clearly haven′(x) ≥ 0, hence
n(x) ≥ n(1) = 0 and so we are done. �

Corollary 5.7. Let s > t > 0 and p > q > 0 be such thats/t ≤ 9 and p/q ≥ 8/7. Then
Gs,t � Ep,q if and only ifp + q ≤ 3(s + t).

Proof. We have already seen thatGs,t � Ep,q implies thatp + q ≤ 3(s + t) so we need only
show thats/t ≤ 9, p/q ≥ 8/7 andp + q ≤ 3(s + t) imply the strong inequality. The proof
of this is exactly the same as the proof of Theorem 1.6; use Lemma 5.2 and Corollary 5.7 and
finish up by Theorem 1.1 for small values ofx and use Lemmas 5.4 and 3.2 for large values of
x. �

5.3. Summary of Results on Gini Means.Let us now summarize the results from Theo-
rems 1.5 and 1.6 and Corollary 5.7 in pictorial form. Since the inequality

Gs,t � Ep,q

has one degree of homogeneity in the parameters (by Lemma 2.1) we are left with a three
dimensional graph. On this graph we will show only the casep + q = 3(s + t), which is the
critical case in the sense that the inequality does not hold for smallers + t.

q/p

0

1/2

7/8

1

t/s

0 1/9 1/3 1

Holds here

Does not

hold there

?

Figure 5.2: When doesGs,t � Ep,q hold?

We next give a result which shows that the inequality does not hold for certain values ofs, t,
p andq.
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Lemma 5.8. Let s ≥ t ≥ 0 andp ≥ q ≥ 0 with p + q = 3(s + t) > 0. ThenGs,t 6� Ep,q for
x ≤ 9− 4

√
5 if

y >
5(x2 + 1)− 3(x + 1)

√
x2 − 18x + 1

4x2 + 18x + 4
,

wherex := t/s andy := q/p.

Remark 5.9. The curve determined by the inequality in the lemma is show in the upper left
corner of Figure 5.2.

Proof. Assume thatGs,t � Ep,q so thatgs,t(z) ≥ ep,q(z) holds for allz ∈ [1,∞). We may
assume without loss of generality thatp + q = 3 = 3(s + t) and thats, t, p, q > 0. If we
multiply the inequality by(zt + 1)(zs + 1)(zp − 1)(zq − 1) we get the equivalent inequality

f(z) :=
tzs − szt + t− s

s− t
(zp − 1)(zq − 1)− pzq − qzp + q − p

p− q
(zt + 1)(zs + 1) ≥ 0.

Sincef(1) = 0 it follows thatf ′(1) ≥ 0 (sincef ∈ C∞). Upon calculatingf ′(1) we find that
it equals zero, as well. Continuing in this manner we find thatf ′′(1) = f (3)(1) = f (4)(1) = 0.
With the fifth derivative we start getting somewhere, indeed, we find that

f (5)(1) = (p− 1)(p− 2) + 5s(1− s),

hence the conditionf (5)(1) ≥ 0 implies that

(p− 1)(p− 2) + 5s(1− s) =
(2− y)(1− 2y)

(1 + y)2
+

5x

(1 + x)2
≥ 0,

where we have solvedp from the system of equationsp + q = 3 andq/p = y andx from
s + t = 1 andt/s = x. Solving this second degree equation iny gives the desired result. �

Remark 5.10. It follows from the previous lemma thatGs,t � Ep,q does not hold for every
p, q ∈ R+ with p + q = 3(s + t) unless

(5.3)

√
5− 2

4
=

9− 4
√

5

4
√

5− 8
≤ s/t ≤ 4(

√
5 + 2).

Moreover, numerical evidence suggests that this bound is also sharp, that is to say thatGs,t �
Ep,q would hold if and only ifs andt satisfy (5.3). Since11/189 < (

√
5−2)/4, it would suffice

to show that
G4
√

5−8,9−4
√

5 � E3/2,3/2

in order to prove this claim, using Lemma 5.2.

6. SEIFFERT ’ S M EAN

In this section we derive exact bounds on when Stolarsky’s mean is strongly less than or equal
to the Seiffert mean,P (x, y), defined in Section 3.4. We also give an example of an extended
mean value which is strongly greater than the Seiffert mean.

Proof of Theorem 1.9.Assume first thatP � Sα, or, equivalently,p(x) ≥ sα(x), wheresα :=
e1,1−α. We know from Section 3 thatp(1+) = sα(1+) = −1/2 and we see thatp(x) ≥ sα(x)
implies that the derivative ofp is greater than that ofsα at 1+. Now the conditionp′(1+) ≥
s′α(1+) is equivalent to1/6 ≥ (2− α)/12 or α ≥ 0, again using results from Section 3.

We see that asx → ∞ we havep(x) ∼ −(2/π)x−1/2 andsα(x) ∼ (1 − 1/α)xα−1 if α > 0
andsα(x) ∼ −x−1 log{x} for α = 0, and sop ≥ sα implies thatα− 1/2 ≥ 0.
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Suppose conversely then thatα ≥ 1/2. SinceSβ � Sα if and only if α ≥ β by Theorem 1.1,
it suffices to show thatP � S1/2, or equivalently

1

x− 1
− 2

√
x

x + 1

1

4 arctan(
√

x)− π
≥ 2

x− 1
− 1

x1/2 − 1
,

which can be written as
1

y − 1
− 1

y2 − 1
=

y

y2 − 1
≥ 2y

y2 + 1

1

4 arctan y − π
,

where we used the substitutiony =
√

x. This is equivalent to

f(y) := 4 arctan y − π − 2(y2 − 1)/(y2 + 1) ≥ 0.

Clearlyf(1) = 0. Since

(y2 + 1)2f ′(y) = 4(y2 + 1)− 8y = 4(y − 1)2 ≥ 0

it is clear thatf(y) ≥ f(1) = 0, which concludes the proof. �

Although it does not have any relevance to the question of relative metrics, we will now give
a reverse type inequality, which in turn gives a better ordinary inequality that the previous result,
as is seen in Corollary 6.4. This proposition is the strong version of the inequalityP ≤ A2/3

proved by A. A. Jager in [15]. Recall thatAp denotes the power meanE2p,p.
Proposition 6.1. Letp ∈ R. ThenAp � P if and only ifp ≥ 2/3.

Proof. Suppose first thatAp � P . Thene′2p,p(1+) = (2p + p)/12 ≥ 1/6 = p′(1+), by the
formulae derived in Section 3, hencep ≥ 2/3.

Suppose conversely thatp ≥ 2/3. SinceAp � Aq if and only if p ≥ q by Theorem 1.1, we
see that it suffices to check the claim forp = 2/3. The conditionA2/3 � P is equivalent with

1

x− 1
− 2

√
x

x + 1

1

4 arctan(
√

x)− π
≤ − 1

x2/3 + 1
.

Let x =: y6 and rearrange to get

2
(y6 − 1)(y4 + 1)

(y6 + 1)(y2 + 1)y
≥ 4 arctan(y3)− π.

Since this equation holds fory = 1, it suffices to check that the left hand side has a greater
derivative than the right hand side. Let us differentiate both sides of the inequality and multiply
by (y6 + 1)2(y2 + 1)2y2:

(10y10+6y6−4y5)(y6+1)(y2+1)−(y6−1)(y4+1)(9y8+7y6+3y2+1) ≥ 6(y6+1)(y2+1)2y4.

This eighteenth degree polynomial can be written as

(y6 − 1)(y4 − 1)(y2 − 1)2[y4 + 5y2 + 1] ≥ 0,

which clearly holds. �

Corollary 6.2. Letp, q ∈ R> with 1/2 ≤ p/q ≤ 2. ThenP � Ep,q if and only ifp + q ≥ 2.

Proof. A trivial modification of the first paragraph of the previous proof shows thatEp,q � P
implies thatp + q ≥ 2.

Assume conversely that1/2 ≤ p/q ≤ 2 anda := p + q ≥ 2. Then

Ep,q � E2a/3,a/3 � E4/3,2/3 = A2/3 � P,

where the first inequality follows from Lemma 4.2 sincep + q = 2a/3 + a/3 anda/3 ≤ p, q ≤
2a/3 and the second inequality follows from Lemma 4.1 asa ≥ 2. �
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Remark 6.3. It is not clear how far the condition1/2 ≤ p/q ≤ 2 in the previous corollary can
be relaxed. By consideringx → ∞, as was done in the proof of Theorem 1.9, we see that the
claim does not hold forp + q = 2 with p < 1/2, i.e. p/q < 1/3.

We also have the following corollary of ordinary inequalities, which follows by the method
presented in Section 2.2.

Corollary 6.4. Letx, y ∈ R> Then

23/2

π
A2/3(x, y) ≤ P (x, y) ≤ A2/3(x, y).

Both inequalities are sharp.

Remark 6.5. The estimate ofP in Corollary 6.4 is better than the one in Corollary 1.11 in
the sense that the former has the ratioπ/23/2 ≈ 1.1107 between the upper and lower bounds,
whereas the latter has a ratio of at least4/π ≈ 1.2732. Note also that it is probably possible
to find an extended mean value which has a smaller such ratio but satisfies neitherE � P nor
P � E.

Let us end this section by proving the following strong version of the inequalityA ≤ T ,
whereT denotes the second Seiffert mean. In fact, the proof is so simple, that it would not
be worth giving, were it not for the fact that we will be able to put the lemma to good use in
Section 7.

Lemma 6.6. Letp ∈ R. ThenAp � T if p ≤ 1 and alsoT � Sα for all α ∈ (0, 1].

Proof. Clearly it suffices to prove the claim forp = 1. Using the formulae fore2,1(x) andt(x)
we find that it suffices to show that

1

x− 1
− x

x2 + 1

(
arctan

x− 1

x + 1

)−1

≥ − 1

x + 1
.

This becomes

arctan
x− 1

x + 1
≥ 1

2

x2 − 1

x2 + 1
.

There is equality forx = 1, so we differentiate to find the sufficient condition

1

x2 + 1
≥ 2x

(x2 + 1)2
,

which is immediately clear. SinceA � Sα for all α ∈ (0, 1] by Theorem 1.1 the second claim
follows by the transitivity of�. �

7. NEW RELATIVE M ETRICS

In this section we show how the results of this paper relate to the so-calledM–relative metric,
which has been recently studied by the author in [7], [8] and [9]. Let us remind the reader that
by a Stolarsky mean we understand a extended mean value with parameters1 and1− α, hence
Sα = E1,1−α.

Let us denote byX := Rn \ {0} for the rest of this section. LetM : R> × R> → R> be a
symmetric function and letρM : X ×X → R> be defined by

ρM(x, y) :=
|x− y|

M(|x|, |y|)
for all x, y ∈ X. The functionρM is called theM–relative distance, and, when it is a metric,
theM–relative metric. The following result gives the connection between strong inequalities
andM–relative metric that has been alluded to previously in this paper.
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Theorem 7.1. [7, Lemma 3.1]Let 0 < α ≤ 1 and M : R> × R> → R> be a symmetric
homogeneous increasing mean.

(1) If M � Sα thenρMα is a metric inX.
(2) If ρMα is a metric inX thenM ≥ Sα.
(3) If ρMα is a metric inX thentM(x2)/tM(x) ≥ tSα(x2)/tSα(x) for all x > 1.

Remark 7.2. The second condition of the previous theorem says almost thattM/tSp is increas-
ing in a neighborhood of1 and the third almost that it is increasing in a neighborhood of∞. It
turns out that all the means studied in this paper are sufficiently regular for this “almost” result
becomes a real result.

Combining this result with the theorems from Section 1 gives the following corollaries:

Corollary 7.3. Let 0 ≤ q ≤ p and α ∈ (0, 1]. ThenρEα
p,q

is a metric inX if and only if
p + q ≥ 2− α andq ≥ 1− α.

Proof. Assume first thatp + q ≥ 2 − α andq ≥ 1 − α. Then by Theorem 1.1Ep,q � E1,1−α

and soρEα
p,q

is a metric inX by Theorem 7.1(1).
If p + q < 2 − α thenEp,q(x, 1)/E1,1−α(x, 1) is decreasing for smallx, sinceep,q < e1,1−α

in some neighborhood ofx. This means that the inequalityEp,q(x, 1) ≥ E1,1−α(x, 1) does not
hold, and soρEα

p,q
is not a metric inX, by Theorem 7.1(2).

If p = q andq < 1 − α thenp + q < 2 − 2α ≤ 2 − α and we proceed as in the previous
paragraph to show thatρEα

p,q
is not a metric. Ifq < p andq < 1−α thenEp,q(x, 1)/E1,1−α(x, 1)

is decreasing for largex, sinceep,q ∼ −qx−q/(p − q) < (1/α − 1)xα−1 ∼ e1,1−α whenα < 1
andep,q ∼ −qx−q/(p − q) < −1/ log x ∼ e1,0 (the caseq = 0 follows similarly). It follows
that the third condition of Theorem 7.1 is not satisfied for largex, which means thatρEα

p,q
is not

a metric inX. �

Remark 7.4. If we setp = q/2 in the previous corollary we get Theorem 1.1 of [7], which is
thus a special case of the previous result. Similarly, in Corollary 7.5 we regain this theorem if
we setq = 0.

Corollary 7.5. Let p, q ∈ [0,∞). If p + q ≥ max{(2 − α)/3, 1 − α} thenρGα
p,q

is a metric in
X .

Proof. Follows immediately from Theorem 1.5 and Theorem 7.1(1). �

Corollary 7.6. Let p, q ∈ [0,∞) and p/q ≤ 3. ThenρGα
p,q

is a metric inX if and only if
3(p + q) ≥ 2− α.

Proof. ThatρGα
p,q

is a metric inX implies that3(p+q) ≥ 2−α follows from the last paragraph of
the proof of Theorem 1.5. The other implication follows from Theorem 1.6 and Theorem 7.1(1).

�

Corollary 7.7. If α ∈ (0, 1] thenρP α is a metric inX if and only if1/2 ≤ α ≤ 1.

Proof. If α ≥ 1/2 thenρP α is a metric by Theorem 7.1(1). Ifα < 1/2 thenP/Sα is de-
creasing for largex, as was seen in the proof of Theorem 1.9, henceρP α is not a metric, by
Theorem 7.1(3). �

For the Seiffert mean we get particularly simple metrics, which was the principal reason for
considering strong inequalities of this mean. For instance

ρP (x, y) = 2
|x− y]

|x| − |y|
arcsin

(
|x| − |y|
|x|+ |y|

)
,
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for |x| 6= |y| andρP (x, y) = |x− y|/|x| for |x| = |y|. We get an even simpler form forx andy
on the same ray originating in the origin:

ρP (se, te) = 2 arcsin{(s− t)/(s + t)}

wheres > t > 0 ande is a vector inX.

Corollary 7.8. If 0 < α ≤ 1 thenρT α is a metric inX.

Proof. Follows directly from Lemma 6.6 and Theorem 7.1(1). �

As in the previous case we get some very simple metrics from this corollary. For instance if
x > y > 0 and0 < α ≤ 1 then

ρT α(xe, ye) = (x− y)1−α(2 arctan{(x− y)/(x + y)})α,

where e is an arbitrary unit vector inX. Again, the caseα = 1 is particularly simple:
ρT α(xe, ye) = 2 arctan{(x− y)/(x + y)}.
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