

Journal of Inequalities in Pure and Applied Mathematics

http://jipam.vu.edu.au/

Volume 3, Issue 5, Article 68, 2002

OSTROWSKI TYPE INEQUALITIES FOR ISOTONIC LINEAR FUNCTIONALS

S.S. DRAGOMIR

SCHOOL OF COMMUNICATIONS AND INFORMATICS
VICTORIA UNIVERSITY OF TECHNOLOGY
PO BOX 14428
MELBOURNE CITY MC
VICTORIA 8001, AUSTRALIA.

sever@matilda.vu.edu.au
URL: http://rgmia.vu.edu.au/SSDragomirWeb.html

Received 6 May, 2002; accepted 3 June, 2002 Communicated by P. Bullen

ABSTRACT. Some inequalities of Ostrowski type for isotonic linear functionals defined on a linear class of function $L:=\{f:[a,b]\to\mathbb{R}\}$ are established. Applications for integral and discrete inequalities are also given.

Key words and phrases: Ostrowski Type Inequalities, Isotonic Linear Functionals.

2000 Mathematics Subject Classification. Primary 26D15, 26D10.

1. Introduction

The following result is known in the literature as Ostrowski's inequality [13].

Theorem 1.1. Let $f:[a,b] \to \mathbb{R}$ be a differentiable mapping on (a,b) with the property that $|f'(t)| \le M$ for all $t \in (a,b)$. Then

(1.1)
$$\left| f(x) - \frac{1}{b-a} \int_{a}^{b} f(t) dt \right| \leq \left[\frac{1}{4} + \frac{\left(x - \frac{a+b}{2}\right)^{2}}{\left(b-a\right)^{2}} \right] (b-a) M$$

for all $x \in [a, b]$.

The constant $\frac{1}{4}$ is the best possible in the sense that it cannot be replaced by a smaller constant.

The following Ostrowski type result for absolutely continuous functions whose derivatives belong to the Lebesgue spaces $L_p[a,b]$ also holds (see [9], [10] and [11]).

ISSN (electronic): 1443-5756

© 2002 Victoria University. All rights reserved.

Theorem 1.2. Let $f : [a, b] \to \mathbb{R}$ be absolutely continuous on [a, b]. Then, for all $x \in [a, b]$, we have:

$$(1.2) \quad \left| f\left(x\right) - \frac{1}{b-a} \int_{a}^{b} f\left(t\right) dt \right|$$

$$\leq \begin{cases} \left[\frac{1}{4} + \left(\frac{x - \frac{a+b}{2}}{b-a}\right)^{2} \right] (b-a) \|f'\|_{\infty} & \text{if } f' \in L_{\infty}\left[a,b\right]; \\ \frac{1}{(p+1)^{\frac{1}{p}}} \left[\left(\frac{x-a}{b-a}\right)^{p+1} + \left(\frac{b-x}{b-a}\right)^{p+1} \right]^{\frac{1}{p}} (b-a)^{\frac{1}{p}} \|f'\|_{q} & \text{if } f' \in L_{q}\left[a,b\right], \\ \left[\frac{1}{2} + \left| \frac{x - \frac{a+b}{2}}{b-a} \right| \right] \|f'\|_{1}; \end{cases}$$

where $\|\cdot\|_r$ $(r \in [1, \infty])$ are the usual Lebesgue norms on $L_r[a, b]$, i.e.,

$$||g||_{\infty} := ess \sup_{t \in [a,b]} |g(t)|$$

and

$$\|g\|_{r} := \left(\int_{a}^{b} |g(t)|^{r} dt\right)^{\frac{1}{r}}, \ r \in [1, \infty).$$

The constants $\frac{1}{4}$, $\frac{1}{(p+1)^{\frac{1}{p}}}$ and $\frac{1}{2}$ respectively are sharp in the sense presented in Theorem 1.1.

The above inequalities can also be obtained from Fink's result in [12] on choosing n = 1 and performing some appropriate computations.

If one drops the condition of absolute continuity and assumes that f is Hölder continuous, then one may state the result (see [7]):

Theorem 1.3. Let $f:[a,b] \to \mathbb{R}$ be of r-H-Hölder type, i.e.,

$$(1.3) |f(x) - f(y)| \le H |x - y|^r, \text{ for all } x, y \in [a, b],$$

where $r \in (0,1]$ and H > 0 are fixed. Then for all $x \in [a,b]$ we have the inequality:

$$(1.4) \left| f(x) - \frac{1}{b-a} \int_a^b f(t) dt \right| \le \frac{H}{r+1} \left[\left(\frac{b-x}{b-a} \right)^{r+1} + \left(\frac{x-a}{b-a} \right)^{r+1} \right] (b-a)^r.$$

The constant $\frac{1}{r+1}$ is also sharp in the above sense.

Note that if r = 1, i.e., f is Lipschitz continuous, then we get the following version of Ostrowski's inequality for Lipschitzian functions (with L instead of H) (see [3])

$$\left| f(x) - \frac{1}{b-a} \int_{a}^{b} f(t) dt \right| \leq \left\lceil \frac{1}{4} + \left(\frac{x - \frac{a+b}{2}}{b-a} \right)^{2} \right\rceil (b-a) L.$$

Here the constant $\frac{1}{4}$ is also best.

Moreover, if one drops the continuity condition of the function, and assumes that it is of bounded variation, then the following result may be stated (see [4]).

Theorem 1.4. Assume that $f:[a,b] \to \mathbb{R}$ is of bounded variation and denote by $\bigvee_a^b(f)$ its total variation. Then

$$\left| f(x) - \frac{1}{b-a} \int_{a}^{b} f(t) dt \right| \leq \left[\frac{1}{2} + \left| \frac{x - \frac{a+b}{2}}{b-a} \right| \right] \bigvee_{a}^{b} (f)$$

for all $x \in [a, b]$.

The constant $\frac{1}{2}$ is the best possible.

If we assume more about f, i.e., f is monotonically increasing, then the inequality (1.6) may be improved in the following manner [5] (see also [2]).

Theorem 1.5. Let $f : [a,b] \to \mathbb{R}$ be monotonic nondecreasing. Then for all $x \in [a,b]$, we have the inequality:

$$(1.7) \left| f(x) - \frac{1}{b-a} \int_{a}^{b} f(t) dt \right|$$

$$\leq \frac{1}{b-a} \left\{ \left[2x - (a+b) \right] f(x) + \int_{a}^{b} sgn(t-x) f(t) dt \right\}$$

$$\leq \frac{1}{b-a} \left\{ (x-a) \left[f(x) - f(a) \right] + (b-x) \left[f(b) - f(x) \right] \right\}$$

$$\leq \left[\frac{1}{2} + \left| \frac{x - \frac{a+b}{2}}{b-a} \right| \right] \left[f(b) - f(a) \right].$$

All the inequalities in (1.7) are sharp and the constant $\frac{1}{2}$ is the best possible.

The version of Ostrowski's inequality for convex functions was obtained in [6] and is incorporated in the following theorem:

Theorem 1.6. Let $f:[a,b] \to \mathbb{R}$ be a convex function on [a,b]. Then for any $x \in (a,b)$ we have the inequality

(1.8)
$$\frac{1}{2} \left[(b-x)^2 f'_{+}(x) - (x-a)^2 f'_{-}(x) \right] \\ \leq \int_a^b f(t) dt - (b-a) f(x) \\ \leq \frac{1}{2} \left[(b-x)^2 f'_{-}(b) - (x-a)^2 f'_{+}(a) \right].$$

In both parts of the inequality (1.8) the constant $\frac{1}{2}$ is sharp.

For other Ostrowski type inequalities, see [8].

In this paper we extend Ostrowski's inequality for arbitrary isotonic linear functionals $A: L \to \mathbb{R}$, where L is a linear class of absolutely continuous functions defined on [a,b]. Some applications for particular instances of linear functionals A are also provided.

2. Preliminaries

Let L be a linear class of real-valued functions, $g: E \to \mathbb{R}$ having the properties

- (L1) $f, g \in L$ imply $(\alpha f + \beta g) \in L$ for all $\alpha, \beta \in \mathbb{R}$;
- (L2) $1 \in L$, i.e., if f(t) = 1, $t \in E$, then $f \in L$.

An isotonic linear functional $A: L \to \mathbb{R}$ is a functional satisfying

- (A1) $A(\alpha f + \beta g) = \alpha A(f) + \beta A(g)$ for all $f, g \in L$ and $\alpha, \beta \in \mathbb{R}$;
- (A2) If $f \in L$ and $f \ge 0$, then $A(f) \ge 0$.

The mapping A is said to be normalised if

(A3)
$$A(1) = 1$$
.

Usual examples of isotonic linear functional that are normalised are the following ones

$$A(f) := \frac{1}{\mu(X)} \int_{X} f(x) d\mu(x), \quad \text{if } \mu(X) < \infty$$

or

$$A_{w}\left(f\right):=\frac{1}{\int_{X}w\left(x\right)d\mu\left(x\right)}\int_{X}w\left(x\right)f\left(x\right)d\mu\left(x\right),$$

where $w\left(x\right)\geq0$, $\int_{X}w\left(x\right)d\mu\left(x\right)>0$, X is a measurable space and μ is a positive measure on X.

In particular, for $\bar{x}=(x_1,\ldots,x_n)$, $\bar{w}:=(w_1,\ldots,w_n)\in\mathbb{R}^n$ with $w_i\geq 0$, $W_n:=\sum_{i=1}^n w_i>0$ we have

$$A\left(\bar{x}\right) := \frac{1}{n} \sum_{i=1}^{n} x_i$$

and

$$A_{\bar{w}}\left(\bar{x}\right) := \frac{1}{W_n} \sum_{i=1}^{n} w_i x_i,$$

are normalised isotonic linear functionals on \mathbb{R}^n .

The following representation result for absolutely continuous functions holds.

Lemma 2.1. Let $f:[a,b] \to \mathbb{R}$ be an absolutely continuous function on [a,b] and define e(t) = t, $t \in [a,b]$, $g(t,x) = \int_0^1 f'[(1-\lambda)x + \lambda t] d\lambda$, $t \in [a,b]$ and $x \in [a,b]$. If $A: L \to \mathbb{R}$ is a normalised linear functional on a linear class L of absolutely continuous functions defined on [a,b] and $(x-e) \cdot g(\cdot,x) \in L$, then we have the representation

(2.1)
$$f(x) = A(f) + A[(x - e) \cdot g(\cdot, x)],$$

for $x \in [a, b]$.

Proof. For any $x, t \in [a, b]$ with $t \neq x$, one has

$$\frac{f\left(x\right) - f\left(t\right)}{x - t} = \frac{\int_{t}^{x} f'\left(u\right)}{x - t} = \int_{0}^{1} f'\left[\left(1 - \lambda\right)x + \lambda t\right] d\lambda = g\left(t, x\right),$$

giving the equality

(2.2)
$$f(x) = f(t) + (x - t)g(t, x)$$

for any $t, x \in [a, b]$.

Applying the functional A, we get

$$A(f(x) \cdot \mathbf{1}) = A(f + (x - e)g(\cdot, x)),$$

for any $x \in [a, b]$.

Since

$$A(f(x) \cdot \mathbf{1}) = f(x) A(\mathbf{1}) = f(x)$$

and

$$A(f + (x - e) \cdot g(\cdot, x)) = A(f) + A((x - e) \cdot g(\cdot, x)),$$

the equality (2.1) is obtained.

The following particular cases are of interest:

Corollary 2.2. Let $f : [a, b] \to \mathbb{R}$ be an absolutely continuous function on [a, b]. Then we have the representation:

(2.3)
$$f(x) = \frac{1}{\int_{a}^{b} w(t) dt} \int_{a}^{b} w(t) f(t) dt + \frac{1}{\int_{a}^{b} w(t) dt} \int_{a}^{b} w(t) (x - t) \left(\int_{0}^{1} f' [(1 - \lambda) x + \lambda t] d\lambda \right) dt$$

for any $x \in [a, b]$, where $p : [a, b] \to \mathbb{R}$ is a Lebesgue integrable function with $\int_a^b w(t) dt \neq 0$. In particular, we have

(2.4)
$$f(x) = \frac{1}{b-a} \int_{a}^{b} f(t) dt + \frac{1}{b-a} \int_{a}^{b} (x-t) \left(\int_{0}^{1} f'[(1-\lambda)x + \lambda t] d\lambda \right) dt$$

for each $x \in [a, b]$.

The proof is obvious by Lemma 2.1 applied for the normalised linear functionals

$$A_w\left(f\right) := \frac{1}{\int_a^b w\left(t\right) dt} \int_a^b w\left(t\right) f\left(t\right) dt, \quad A\left(f\right) := \frac{1}{b-a} \int_a^b f\left(t\right) dt$$

defined on

$$L:=\left\{f:[a,b]\to\mathbb{R},\;f\;\;\text{is absolutely continuous on}\;\left[a,b\right]\right\}.$$

The following discrete case also holds.

Corollary 2.3. Let $f:[a,b] \to \mathbb{R}$ be an absolutely continuous function on [a,b]. Then we have the representation:

(2.5)
$$f(x) = \frac{1}{W_n} \sum_{i=1}^n w_i f(x_i) + \frac{1}{W_n} \sum_{i=1}^n w_i (x - x_i) \left(\int_0^1 f'[(1 - \lambda) x + \lambda x_i] d\lambda \right)$$

for any $x \in [a, b]$, where $x_i \in [a, b]$, $w_i \in \mathbb{R}$ $(i = \{1, ..., n\})$ with $W_n := \sum_{i=1}^n w_i \neq 0$. In particular, we have

(2.6)
$$f(x) = \frac{1}{n} \sum_{i=1}^{n} f(x_i) + \frac{1}{n} \sum_{i=1}^{n} (x - x_i) \left(\int_{0}^{1} f'[(1 - \lambda) x + \lambda x_i] d\lambda \right)$$

for any $x \in [a, b]$.

3. OSTROWSKI TYPE INEQUALITIES

The following theorem holds.

Theorem 3.1. With the assumptions of Lemma 2.1, and assuming that $A: L \to \mathbb{R}$ is isotonic, then we have the inequalities

$$(3.1) \quad |f(x) - A(f)| \\ \leq \begin{cases} A\left(|x - e| \|f'\|_{[x,\cdot],\infty}\right) & \text{if } |x - e| \|f'\|_{[x,\cdot],\infty} \in L, \ f' \in L_{\infty}\left[a,b\right]; \\ A\left(|x - e|^{\frac{1}{q}} \|f'\|_{[x,\cdot],p}\right) & \text{if } |x - e|^{\frac{1}{q}} \|f'\|_{[x,\cdot],p} \in L, \ f' \in L_{p}\left[a,b\right], \\ p > 1, \ \frac{1}{p} + \frac{1}{q} = 1; \\ A\left(\|f'\|_{[x,\cdot],1}\right) & \text{if } \|f'\|_{[x,\cdot],1} \in L, \end{cases}$$

where

$$\|h\|_{[m,n],\infty} := ess \sup_{\substack{t \in [m,n] \ (t \in [n,m])}} |h(t)| \text{ and }$$
 $\|h\|_{[m,n],p} := \left| \int_{-\infty}^{n} |h(t)|^{p} dt \right|^{\frac{1}{p}}, \ p \ge 1.$

If we denote

$$M_{\infty}(x) := A\left(|x - e| \|f'\|_{[x,\cdot],\infty}\right),$$

$$M_{p}(x) := A\left(|x - e|^{\frac{1}{q}} \|f'\|_{[x,\cdot],p}\right),$$

$$M_{1}(x) := A\left(\|f'\|_{[x,\cdot],1}\right),$$

then we have the inequalities:

$$(3.2) M_{\infty}(x)$$

$$\leq \begin{cases} ||f'||_{[a,b],\infty} A(|x-e|) & \text{if } |x-e| \in L, \ f' \in L_{\infty}[a,b]; \\ \left[A\left(||f'||_{[x,\cdot],\infty}^{\beta}\right)\right]^{\frac{1}{\beta}} [A(|x-e|^{\alpha})]^{\frac{1}{\alpha}} & \text{if } ||f'||_{[x,\cdot],\infty}^{\beta}, |x-e|^{\alpha} \in L, \\ f' \in L_{\infty}[a,b], \ \alpha > 1, \ \frac{1}{\alpha} + \frac{1}{\beta} = 1; \\ \left[\frac{1}{2}(b-a) + \left|x - \frac{a+b}{2}\right|\right] A\left(||f'||_{[x,\cdot],\infty}\right) & \text{if } ||f'||_{[x,\cdot],\infty} \in L, \ f' \in L_{\infty}[a,b]. \end{cases}$$

$$(3.3) M_{p}(x)$$

$$\leq \begin{cases} \max\left\{\|f'\|_{[a,x],p}, \|f'\|_{[x,b],p}\right\} A\left(|x-e|^{\frac{1}{q}}\right) & \text{if } |x-e|^{\frac{1}{q}} \in L, \ f' \in L_{p}[a,b]; \\ \left[A\left(\|f'\|_{[x,\cdot],p}^{\beta}\right)\right]^{\frac{1}{\beta}} \left[A\left(|x-e|^{\frac{\alpha}{q}}\right)\right]^{\frac{1}{\alpha}} & \text{if } \|f'\|_{[x,\cdot],p}^{\beta}, |x-e|^{\frac{\alpha}{q}} \in L, \\ f' \in L_{p}[a,b], \ \alpha > 1, \ \frac{1}{\alpha} + \frac{1}{\beta} = 1; \\ \left[\frac{1}{2}(b-a) + |x-\frac{a+b}{2}|\right]^{\frac{1}{q}} A\left(\|f'\|_{[x,\cdot],p}\right) & \text{if } \|f'\|_{[x,\cdot],p} \in L, \ f' \in L_{p}[a,b] \end{cases}$$

and

(3.4)
$$M_{1}(x) \leq \begin{cases} \frac{1}{2} \|f'\|_{[a,b],1} + \frac{1}{2} \left| \|f'\|_{[a,x],1} - \|f'\|_{[x,b],1} \right|, \\ \left[A \left(\|f'\|_{[x,\cdot],1}^{\beta} \right) \right]^{\frac{1}{\beta}}, \quad \beta > 1. \end{cases}$$

Proof. Using (2.1) and taking the modulus, we have

$$|f(x) - A(f)| = |A((x - e) \cdot g(\cdot, x))|$$

$$\leq A(|(x - e) \cdot g(\cdot, x)|)$$

$$= A(|x - e| |g(\cdot, x)|).$$

For $t \neq x$ $(t, x \in [a, b])$ we may state

$$|g(t,x)| \le \int_0^1 |f'((1-\lambda)x + \lambda t)| d\lambda$$

$$\le ess \sup_{\lambda \in [0,1]} |f'((1-\lambda)x + \lambda t)|$$

$$= ||f'||_{[x,t],\infty}.$$

Hölder's inequality will produce

$$|g(t,x)| \le \int_0^1 |f'((1-\lambda)x + \lambda t)| d\lambda$$

$$\le \left[\int_0^1 |f'((1-\lambda)x + \lambda t)|^p d\lambda \right]^{\frac{1}{p}}$$

$$= \left(\frac{1}{x-t} \int_t^x |f'(u)|^p du \right)^{\frac{1}{p}}$$

$$= |x-t|^{-\frac{1}{p}} ||f'||_{[x,t],p}, \quad p > 1, \frac{1}{p} + \frac{1}{q} = 1;$$

and finally

$$|g(t,x)| \le \int_0^1 |f'((1-\lambda)x + \lambda t)| d\lambda = \frac{1}{t-x} ||f'||_{[x,t],1}.$$

Consequently

(3.6)
$$|(x-e)| |g(\cdot,x)| \le \begin{cases} |x-e| ||f'||_{[x,\cdot],\infty} & \text{if } f' \in L_{\infty}[a,b]; \\ |x-e|^{\frac{1}{q}} ||f'||_{[x,\cdot],p} & \text{if } f' \in L_{p}[a,b], \\ ||f'||_{[x,\cdot],1} \end{cases}$$

for any $x \in [a, b]$.

Applying the functional A to (3.6) and using (3.5) we deduce the inequality (3.1). We have

$$M_{\infty}(x) \le \sup_{t \in [a,b]} \left\{ \|f'\|_{[x,t],\infty} \right\} A(|x-e|)$$

$$= \max \left\{ \|f'\|_{[a,x],\infty}, \|f'\|_{[x,b],\infty} \right\} A(|x-e|)$$

$$= \|f'\|_{[a,b],\infty} A(|x-e|)$$

and the first inequality in (3.2) is proved.

Using Hölder's inequality for the functional A, i.e.,

$$(3.7) |A(hg)| \le [A(|h|^{\alpha})]^{\frac{1}{\alpha}} \left[A(|g|^{\beta}) \right]^{\frac{1}{\beta}}, \quad \alpha > 1, \quad \frac{1}{\alpha} + \frac{1}{\beta} = 1,$$

where hg, $|h|^{\alpha}$, $|g|^{\beta} \in L$, we have

$$M_{\infty}(x) \leq \left[A\left(\left|x - e\right|^{\alpha}\right)\right]^{\frac{1}{\alpha}} \left[A\left(\left\|f'\right\|_{[x,\cdot],\infty}^{\beta}\right)\right]^{\frac{1}{\beta}}$$

and the second part of (3.2) is proved.

In addition,

$$M_{\infty}(x) \leq \sup_{t \in [a,b]} |x - t| A\left(\|f'\|_{[x,\cdot],\infty}\right)$$

$$= \max\{x - a, b - x\} A\left(\|f'\|_{[x,\cdot],\infty}\right)$$

$$= \left[\frac{1}{2}(b - a) + \left|x - \frac{a + b}{2}\right|\right] A\left(\|f'\|_{[x,\cdot],\infty}\right)$$

and the inequality (3.2) is completely proved.

We also have

$$M_{p}(x) \leq \sup_{t \in [a,b]} \left\{ \|f'\|_{[x,t],p} \right\} A\left(|x-e|^{\frac{1}{q}}\right)$$
$$= \max \left\{ \|f'\|_{[a,x],p}, \|f'\|_{[x,b],p} \right\} A\left(|x-e|^{\frac{1}{q}}\right).$$

Using Hölder's inequality (3.7) one has

$$M_p(x) \le \left[A\left(|x - e|^{\frac{\alpha}{q}} \right) \right]^{\frac{1}{\alpha}} \left[A\left(||f'||_{[x,\cdot],p}^{\beta} \right) \right]^{\frac{1}{\beta}}, \ \alpha > 1, \ \frac{1}{\alpha} + \frac{1}{\beta} = 1$$

and

$$M_{p}(x) \leq \sup_{t \in [a,b]} \left\{ |x-t|^{\frac{1}{q}} \right\} A\left(||f'||_{[x,\cdot],p} \right)$$

$$= \max\left\{ (x-a)^{\frac{1}{q}}, (b-x)^{\frac{1}{q}} \right\} A\left(||f'||_{[x,\cdot],p} \right)$$

$$= \left[\frac{1}{2}(b-a) + \left| x - \frac{a+b}{2} \right| \right]^{\frac{1}{q}} A\left(||f'||_{[x,\cdot],p} \right),$$

proving the inequality (3.3).

Finally,

$$A\left(\|f'\|_{[x,\cdot],1}\right) \le \sup_{t \in [a,b]} \left\{ \|f'\|_{[x,t],1} \right\} A\left(\mathbf{1}\right)$$

$$= \max\left\{ \|f'\|_{[a,x],1}, \|f'\|_{[x,b],1} \right\}$$

$$= \frac{1}{2} \|f'\|_{[a,b],1} + \frac{1}{2} \left| \|f'\|_{[a,x],1} - \|f'\|_{[x,b],1} \right|.$$

By Hölder's inequality, we have

$$A\left(\|f'\|_{[x,\cdot],1}\right) \le \left[A\left(\|f'\|_{[x,\cdot],1}^{\beta}\right)\right]^{\frac{1}{\beta}}, \quad \beta > 1,$$

and the last part of (3.4) is also proved.

4. The Case where |f'| is Convex

The following theorem also holds.

Theorem 4.1. Let $f:[a,b] \to \mathbb{R}$ be an absolutely continuous function such that $f':(a,b) \to \mathbb{R}$ is convex in absolute value, i.e., |f'| is convex on (a,b). If $A:L\to\mathbb{R}$ is a normalised isotonic linear functional and |x-e|, |x-e| $|f'|\in L$, then

$$(4.1) |f(x) - A(f)| \le \frac{1}{2} [|f'(x)| A(|x - e|) + A(|x - e||f'|)]$$

$$\le \begin{cases} \frac{1}{2} [|f'||_{[a,b],\infty} + |f'(x)|] A(|x - e|), & \text{if } f' \in L_{\infty} [a,b]; \\ \frac{1}{2} [|f'(x)| A(|x - e|) + [A(|x - e|^{\alpha})]^{\frac{1}{\alpha}} [A(|f'|^{\beta})]^{\frac{1}{\beta}}] & \text{if } |x - e|^{\alpha}, |f'|^{\beta} \in L, \\ \frac{1}{2} [|f'(x)| A(|x - e|) + [\frac{1}{2}(b - a) + |x - \frac{a + b}{2}|] A(|f'|)] & \text{if } |f'| \in L. \end{cases}$$

Proof. Since |f'| is convex, we have

$$|g(t,x)| \le \int_0^1 |f'(1-\lambda)x + \lambda t| d\lambda$$

$$= |f'(x)| \int_0^1 (1-\lambda) d\lambda + |f'(t)| \int_0^1 \lambda d\lambda$$

$$= \frac{|f'(x)| + |f'(t)|}{2}.$$

Thus,

$$|f(x) - A(f)| \le A\left(|x - e| \cdot \frac{|f'(x)| + |f'(t)|}{2}\right)$$

= $\frac{1}{2} [|f'(x)| A(|x - e|) + A(|x - e| |f'|)]$

and the first part of (4.1) is proved.

We have

$$A(|x - e| |f'|) \le ess \sup_{t \in [a,b]} \{|f'(t)|\} \cdot A(|x - e|)$$

= $||f'||_{[a,b],\infty} A(|x - e|)$.

By Hölder's inequality for isotonic linear functionals, we have

$$A(|x-e||f'|) \le [A(|x-e|^{\alpha})]^{\frac{1}{\alpha}} \left[A(|f'|^{\beta})\right]^{\frac{1}{\beta}}, \ \alpha > 1, \ \frac{1}{\alpha} + \frac{1}{\beta} = 1$$

and finally,

$$\begin{split} A\left(\left|x-e\right|\left|f'\right|\right) &\leq \sup_{t \in [a,b]} \left|x-t\right| \cdot A\left(\left|f'\right|\right) \\ &= \max\left(x-a,b-x\right) \cdot A\left(\left|f'\right|\right) \\ &= \left(\frac{1}{2}\left(b-a\right) + \left|x-\frac{a+b}{2}\right|\right) A\left(\left|f'\right|\right). \end{split}$$

The theorem is thus proved.

5. SOME INTEGRAL INEQUALITIES

If we consider the normalised isotonic linear functional $A(f) = \frac{1}{b-a} \int_a^b f$, then by Theorem 3.1 for $f:[a,b] \to \mathbb{R}$ an absolutely continuous function, we may state the following integral inequalities

(5.1)
$$\left| f(x) - \frac{1}{b-a} \int_{a}^{b} f(t) dt \right| \\ \leq \frac{1}{b-a} \int_{a}^{b} |x-t| \, \|f'\|_{[x,t],\infty} dt$$

$$\left\{ \begin{array}{l} \|f'\|_{[a,b],\infty} \left[\frac{1}{4} + \left(\frac{x - \frac{a+b}{2}}{b-a} \right)^2 \right] (b-a) \quad \text{(Ostrowski's inequality)} \\ & \qquad \qquad \text{provided } f' \in L_{\infty} \left[a, b \right]; \\ \left[\frac{1}{b-a} \int_a^b \|f'\|_{[x,t],\infty}^{\beta} \, dt \right]^{\frac{1}{\beta}} \left[\frac{(b-x)^{\alpha+1} + (x-a)^{\alpha+1}}{(\alpha+1) \, (b-a)} \right]^{\frac{1}{\alpha}} \\ & \qquad \qquad \text{if } f' \in L_{\infty} \left[a, b \right], \ \|f'\|_{[x,\cdot],\infty} \in L_{\beta} \left[a, b \right], \ \alpha > 1, \ \frac{1}{\alpha} + \frac{1}{\beta} = 1; \\ \left[\frac{1}{2} + \frac{\left| x - \frac{a+b}{2} \right|}{b-a} \right] \int_a^b \|f'\|_{[x,t],\infty} \, dt \\ & \qquad \qquad \text{if } f' \in L_{\infty} \left[a, b \right], \ \text{and if } \|f'\|_{[x,\cdot],\infty} \in L_1 \left[a, b \right], \end{array} \right.$$

for each $x \in [a, b]$;

$$|f(x) - \frac{1}{b-a} \int_{a}^{b} f(t) dt |$$

$$\leq \frac{1}{b-a} \int_{a}^{b} |x-t|^{\frac{1}{q}} ||f'||_{[x,t],p} dt$$

$$= \begin{cases} q \max \left\{ ||f'||_{[a,x],p}, ||f'||_{[x,b],p} \right\} \left[\frac{(b-x)^{\frac{1}{q}+1} + (x-a)^{\frac{1}{q}+1}}{(b-a)(q+1)} \right], \\ p > 1, \frac{1}{p} + \frac{1}{q} = 1 \text{ and } f' \in L_{p} [a,b]; \end{cases}$$

$$\leq \begin{cases} q^{\frac{1}{\alpha}} \left(\frac{1}{b-a} \int_{a}^{b} ||f'||_{[x,t],p}^{\beta} dt \right)^{\frac{1}{\beta}} \left[\frac{(b-x)^{\frac{\alpha}{q}+1} + (x-a)^{\frac{\alpha}{q}+1}}{(b-a)(q+\alpha)} \right]^{\frac{1}{\alpha}} & \text{if } f' \in L_{p} [a,b], \\ \text{and } ||f'||_{[x,\cdot],p} \in L_{\beta} [a,b], & \text{where } \alpha > 1, \frac{1}{\alpha} + \frac{1}{\beta} = 1 \end{cases}$$

$$= \begin{cases} \frac{1}{2} + \frac{|x-\frac{a+b}{2}|}{b-a} \right]^{\frac{1}{q}} \frac{1}{b-a} \int_{a}^{b} ||f'||_{[x,t],p} dt \\ & \text{if } f' \in L_{p} [a,b], \text{ and } ||f'||_{[x,\cdot],p} \in L_{1} [a,b], \end{cases}$$

for each $x \in [a, b]$ and

$$(5.3) \qquad \left| f\left(x\right) - \frac{1}{b-a} \int_{a}^{b} f\left(t\right) dt \right|$$

$$\leq \frac{1}{b-a} \int_{a}^{b} \|f'\|_{[x,t],1} dt$$

$$\leq \left\{ \begin{array}{l} \frac{1}{2} \|f'\|_{[a,b],1} + \frac{1}{2} \left| \|f'\|_{[a,x],1} - \|f'\|_{[x,b],1} \right| & \text{if } f' \in L_{1}\left[a,b\right]; \\ \left(\frac{1}{b-a} \int_{a}^{b} \|f'\|_{[x,t],1}^{\beta} dt \right)^{\frac{1}{\beta}} \\ & \text{if } f' \in L_{1}\left[a,b\right], \ \|f'\|_{[x,.],1} \in L_{\beta}\left[a,b\right], \ \text{where } \beta > 1, \end{array} \right.$$

for each $x \in [a, b]$.

If we assume now that $f:[a,b] \to \mathbb{R}$ is absolutely continuous and such that |f'| is convex on (a,b), then by Theorem 4.1 we obtain the following integral inequalities established in [1]

$$(5.4) \left| f(x) - \frac{1}{b-a} \int_{a}^{b} f(t) dt \right|$$

$$\leq \frac{1}{2} \left[|f'(x)| \left[\frac{1}{4} + \left(\frac{x - \frac{a+b}{2}}{b-a} \right)^{2} \right] (b-a) + \frac{1}{b-a} \int_{a}^{b} |x-t| |f'(t)| dt \right]$$

$$= \begin{cases} \frac{1}{2} \left[||f'||_{[a,b],\infty} + |f'(x)| \right] \left[\frac{1}{4} + \left(\frac{x - \frac{a+b}{2}}{b-a} \right)^{2} \right] (b-a) & \text{if } f' \in L_{\infty} [a,b]; \\ \frac{1}{2} \left\{ |f'(x)| \left[\frac{1}{4} + \left(\frac{x - \frac{a+b}{2}}{b-a} \right)^{2} \right] (b-a) + \left[\frac{(b-x)^{\alpha+1} + (x-a)^{\alpha+1}}{(\alpha+1)(b-a)} \right]^{\frac{1}{a}} \left[\frac{1}{b-a} \int_{a}^{b} |f'(t)|^{\beta} dt \right]^{\frac{1}{\beta}} \right\} \\ & \text{if } f' \in L_{\beta} [a,b], \ \alpha > 1, \ \frac{1}{\alpha} + \frac{1}{\beta} = 1; \\ \frac{1}{2} \left\{ |f'(x)| \left[\frac{1}{4} + \left(\frac{x - \frac{a+b}{2}}{b-a} \right)^{2} \right] (b-a) + \left[\frac{1}{2} + \frac{|x - \frac{a+b}{2}|}{b-a} \right] \int_{a}^{b} |f'(t)| dt \right\} \\ & \text{if } f' \in L_{1} [a,b], \end{cases}$$

for each $x \in [a, b]$.

6. SOME DISCRETE INEQUALITIES

For a given interval [a, b], consider the division

$$I_n: a = x_0 < x_1 < \cdots < x_{n-1} < x_n = b$$

and the intermediate points $\xi_i \in [x_i, x_{i+1}]$, $i = \overline{0, n-1}$. If $h_i := x_{i+1} - x_i > 0$ $(i = \overline{0, n-1})$ we may define the following functionals

$$A(f; I_n, \xi) := \frac{1}{b-a} \sum_{i=0}^{n-1} f(\xi_i) h_i \qquad \text{(Riemann Rule)}$$

$$A_T(f; I_n) := \frac{1}{b-a} \sum_{i=0}^{n-1} \frac{f(x_i) + f(x_{i+1})}{2} \cdot h_i \qquad \text{(Trapezoid Rule)}$$

$$A_M(f; I_n) := \frac{1}{b-a} \sum_{i=0}^{n-1} f\left(\frac{x_i + x_{i+1}}{2}\right) \cdot h_i \qquad \text{(Mid-point Rule)}$$

$$A_S(f; I_n) := \frac{1}{3} A_T(f; I_n) + \frac{2}{3} A_M(f; I_n) . \qquad \text{(Simpson Rule)}$$

We observe that, all the above functionals are obviously linear, isotonic and normalised.

Consequently, all the inequalities obtained in Sections 2 and 3 may be applied for these functionals.

If, for example, we use the following inequality (see Theorem 3.1)

(6.1)
$$|f(x) - A(f)| \le ||f'||_{[a,b]} A(|x - e|), \quad x \in [a,b],$$

provided $f:[a,b]\to\mathbb{R}$ is absolutely continuous and $f'\in L_\infty\left[a,b\right]$, then we get the inequalities

(6.2)
$$\left| f(x) - \frac{1}{b-a} \sum_{i=0}^{n-1} f(\xi_i) h_i \right| \le \|f'\|_{[a,b],\infty} \frac{1}{b-a} \sum_{i=0}^{n-1} |x - \xi_i| h_i,$$

(6.3)
$$\left| f(x) - \frac{1}{b-a} \sum_{i=0}^{n-1} \frac{f(x_i) + f(x_{i+1})}{2} \cdot h_i \right| \leq \|f'\|_{[a,b],\infty} \cdot \frac{1}{b-a} \sum_{i=0}^{n-1} \frac{|x - x_i| + |x - x_{i+1}|}{2} h_i,$$

(6.4)
$$\left| f(x) - \frac{1}{b-a} \sum_{i=0}^{n-1} f\left(\frac{x_i + x_{i+1}}{2}\right) \cdot h_i \right| \le \|f'\|_{[a,b],\infty} \frac{1}{b-a} \sum_{i=0}^{n-1} \left| x - \frac{x_i + x_{i+1}}{2} \right| h_i,$$

for each $x \in [a, b]$.

Similar results may be stated if one uses for example Theorem 4.1. We omit the details.

REFERENCES

- [1] N.S. BARNETT, P. CERONE, S.S. DRAGOMIR, M.R. PINHEIRO AND A. SOFO, Ostrowski type inequalities for functions whose modulus of derivatives are convex and applications, *Res. Rep. Coll.*, **5**(2) (2002), Article 1. [ONLINE: http://rgmia.vu.edu.au/v5n2.html]
- [2] P. CERONE AND S.S. DRAGOMIR, Midpoint type rules from an inequalities point of view, in *Analytic-Computational Methods in Applied Mathematics*, G.A. Anastassiou (Ed), CRC Press, New York, 2000, 135-200.
- [3] S.S. DRAGOMIR, The Ostrowski's integral inequality for Lipschitzian mappings and applications, *Comp. and Math. with Appl.*, **38** (1999), 33-37.
- [4] S.S. DRAGOMIR, On the Ostrowski's inequality for mappings of bounded variation and applications, *Math. Ineq. & Appl.*, **4**(1) (2001), 33–40.
- [5] S.S. DRAGOMIR, Ostrowski's inequality for monotonous mappings and applications, *J. KSIAM*, **3**(1) (1999), 127–135.
- [6] S.S. DRAGOMIR, An Ostrowski type inequality for convex functions, *Res. Rep. Coll.*, **5**(1) (2002), Article 5. [ONLINE: http://rgmia.vu.edu.au/v5n1.html]
- [7] S.S. DRAGOMIR, P. CERONE, J. ROUMELIOTIS AND S. WANG, A weighted version of Ostrowski inequality for mappings of Hölder type and applications in numerical analysis, *Bull. Math. Soc. Sci. Math. Roumanie*, **42**(90)(4) (1992), 301–314.
- [8] S.S. DRAGOMIR AND Th.M. RASSIAS (Eds.), Ostrowski Type Inequalities and Applications in Numerical Integration, Kluwer Academic Publishers, Dordrecht/Boston/London, 2002.
- [9] S.S. DRAGOMIR AND S. WANG, A new inequality of Ostrowski's type in L_1 -norm and applications to some special means and to some numerical quadrature rules, *Tamkang J. of Math.*, **28** (1997), 239–244.
- [10] S.S. DRAGOMIR AND S. WANG, Applications of Ostrowski's inequality to the estimation of error bounds for some special means and some numerical quadrature rules, *Appl. Math. Lett.*, **11** (1998), 105–109.

- [11] S.S. DRAGOMIR AND S. WANG, A new inequality of Ostrowski's type in L_p -norm and applications to some special means and to some numerical quadrature rules, *Indian J. of Math.*, **40**(3) (1998), 245–304.
- [12] A.M. FINK, Bounds on the deviation of a function from its averages, *Czech. Math. J.*, **42**(117) (1992), 289–310.
- [13] A. OSTROWSKI, Über die Absolutabweichung einer differentienbaren Funktionen von ihren Integralmittelwert, *Comment. Math. Hel*, **10** (1938), 226–227.