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ABSTRACT. Some inequalities of Ostrowski type for isotonic linear functionals defined on a
linear class of functiorl := {f : [a,b] — R} are established. Applications for integral and
discrete inequalities are also given.
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1. INTRODUCTION
The following result is known in the literature as Ostrowski’s inequality [13].

Theorem 1.1.Let f : [a,b] — R be a differentiable mapping ofa, b) with the property that
|/ (t)| < M forall t € (a,b). Then

b
bia/ f(t)dt‘ <

(1.2) ‘f (x) — 411 +

forall x € [a, b].
The constant is the best possible in the sense that it cannot be replaced by a smaller constant.

The following Ostrowski type result for absolutely continuous functions whose derivatives
belong to the Lebesgue spadgga, b] also holds (seé [9], [10] and [11]).
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2 S.S. RAGOMIR

Theorem 1.2.Let f : [a,b] — R be absolutely continuous ada, b|. Then, for allx € [a, b], we
have:

1.2) ‘f(:lr)— 1 /abf(t)dt‘

b—a
4

z— a0\ 2 :
[%ﬁ( — )}(b—a)ﬂf'uoo it f' € Luoa,b]:

IN

z—a\Pt1 — +1% 1 i
peveed (= R = M MO P R AN AR
1,1 _ .
> T = 1, p>1;

xT

_atb
2
b—a

1
=

|01
where||-||. (r € [1, cc]) are the usual Lebesgue norms bp[a, b}, i.e.,

9|l := ess sup |g ()]

te(a,b]
and
b T
ol = ([ lor ), r e oo
The constantg, ( 1 I and ; respectively are sharp in the sense presented in Th = m1.1.
p+1)P

The above inequalities can also be obtained from Fink’s resultin [12] on choesingand
performing some appropriate computations.

If one drops the condition of absolute continuity and assumesfti@Holder continuous,
then one may state the result (see [7]):

Theorem 1.3.Let f : [a,b] — R be ofr — H—H0older type, i.e.,

(1.3) [f () = fW)| < Hlx—y|", forall z,y e [a,b],

wherer € (0,1] and H > 0 are fixed. Then for alk: € [a, b] we have the inequality:
H

1 b b—az\ z—a\ ,
b—a/af(t)dt‘gr—i-l <b—a> +<b—a) ](b—a).

The constan;% is also sharp in the above sense.

Note that ifr = 1, i.e., f is Lipschitz continuous, then we get the following version of
Ostrowski’s inequality for Lipschitzian functions (with instead ofHf) (see [3])

1 b 1 T — o ’
b_a/f(t)dt‘g Z+<b—;) (b—a)L.

Here the constarit is also best.
Moreover, if one drops the continuity condition of the function, and assumes that it is of
bounded variation, then the following result may be stated (See [4]).

Theorem 1.4. Assume thaff : [a,0] — R is of bounded variation and denote N/ (f) its
total variation. Then

(1.4) ‘f (z) =

(1.5) ‘f (z) -

__atbd
r—

b—a

(1.6) ‘f (x) — % +

=Y RCLE ]\i/m
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forall x € [a, b].
The constan§ is the best possible.

If we assume more abolft i.e., f is monotonically increasing, then the inequalty {1.6) may
be improved in the following manner![5] (see al50 [2]).
Theorem 1.5.Let f : [a,b] — R be monotonic nondecreasing. Then forak [a, b], we have
the inequality:

(1.7) L

b—a

][f(b)—f(a)]~

All the inequalities in7) are sharp and the constér’nﬂ; the best possible.

The version of Ostrowski’s inequality for convex functions was obtained!in [6] and is incor-
porated in the following theorem:

Theorem 1.6.Let f : [a,b] — R be a convex function ofa, b]. Then for anyr € (a,b) we
have the inequality

(18) 5 (0= 2P L (@)~ (o= a £ (@)
< [ o-ase

< S [0 £ (0) — (0= @) £ (0)]

In both parts of the inequality (1.8) the constgnis sharp.

For other Ostrowski type inequalities, see [8].

In this paper we extend Ostrowski’'s inequality for arbitrary isotonic linear functioAals
L — R, whereL is a linear class of absolutely continuous functions definefo) . Some
applications for particular instances of linear functiondlare also provided.

2. PRELIMINARIES

Let L be alinear classof real-valued functions; : £ — R having the properties

(L1) f,g € Limply (af + 8g) € Lforall o, 5 € R;
(L2) 1 € L,ie.,if f(t)=1,t € E thenf € L.

An isotonic linear functionad : L — R is a functional satisfying

(A1) A(af + Bg) = aA(f) + BA(g) forall f,g € L anda, 3 € R;
(A2) If f € Landf >0, thenA (f) > 0.

The mappingA is said to benormalisedif
(A3) A(1) =
Usual examples of isotonic linear functional that are normalised are the following ones

1 .
—m/Xﬂx)du(x), it 41(X) < oo
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or

1
Al = ey J @ @),

wherew (z) > 0, [, w (z)du (x) > 0, X is a measurable space andis a positive measure on
X.
In particular, forz = (z1,...,2,),w = (wy,...,w,) € R*withw; >0, W, :=>""  w; >

0 we have
1 n
A(z) = — ;
(17) n izlxz

and
n

Ag (Z) = Win ; W, T4,
are normalised isotonic linear functionals &h.
The following representation result for absolutely continuous functions holds.
Lemma 2.1. Let f : [a,b] — R be an absolutely continuous function ¢nb| and define
e(t)y=t,t€ab],g(t,x)= folf’[(l —AN)x+ Mt]d\ t € [a,b]andx € [a,b] . If A: L - R
is a normalised linear functional on a linear clagsof absolutely continuous functions defined
onla,bland(z —e) - g (-,z) € L, then we have the representation

(2.1) fe)=A(f) + Al(x —e)-g (- 2)],
forx € [a,b].

Proof. For anyz, t € [a,b] with ¢ # x, one has

f@—f@) _ J W :/Olf’[(l—)\)x+>\t]d)\=g(t737)>

T —1 x—t
giving the equality

(2.2) flx)=f@)+(@—1t)g(tz)
foranyt,x € [a,b].
Applying the functionald, we get
A(f (@) 1) =A(f+(x—e)g(,2)),
foranyz € [a,b].
Since

and
Alf+(@—e)-g(z)=A(f)+ Az —e)-g(, 1)),
the equality[(2.]L) is obtained. O
The following particular cases are of interest:

Corollary 2.2. Let f : [a,b] — R be an absolutely continuous function fanb] . Then we have
the representation:

1 b
(2.3) f(z)= W/a w(t) f(t)dt

m/abw(t)(x—t) (/Olf’[(1—A)x+At}dA)dt

+
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foranyz € [a,b], wherep : [a,b] — R is a Lebesgue integrable function withw (t) dt # 0.
In particular, we have

(2.4) /f dt+— b(:p—t)(/Olf’[(l—)\)x+)\t]d)\>dt

for eachz € [a, b} :
The proof is obvious by Lemnja 2.1 applied for the normalised linear functionals

1 b
A”“”:ﬁzaﬁﬁll“”“”“’A“)‘

defined on
L:={f:]a,b] = R, f is absolutely continuous ofu, |} .
The following discrete case also holds.

Corollary 2.3. Let f : [a,b] — R be an absolutely continuous function fanb| . Then we have
the representation:

25) f(x) = WLnZwif(xi)—FWLnZwi(x—xi) (/0 f’[(1—>\)x+)\xi]d>\)

foranyz € [a,b], wherez; € [a,b], w; € R (i ={1,...,n})withW,, :=>"" w; #0.
In particular, we have

(2.6) Z f () Z (z — ;) (/0 F 1A =Nz + Az d/\)
foranyx € [a, b] .

3. OSTROWSKI TYPE INEQUALITIES

The following theorem holds.

Theorem 3.1. With the assumptions of Lemina]2.1, and assuming4hal. — R is isotonic,
then we have the inequalities

B If (@) - A()
([ A(le=ellfpgn) T 2= el € L. f' € Locla,b];

IN

1 . 1
e = el 1 ayy) 1 T et 17, € L £ € LyJab],
p>1, l_|_l:1-

A(1F Ny ) i1 € L
where
[l ) 00 = €88 sup | (?)| and
Y te[m,n]
(t€[n,m])

= | [ 0P| 521
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If we denote
Mo (2) = A (12 = |1 0
My (@) = A (2= efF [l
My () = A (1 )

then we have the inequalities:

(3:2) My (2)
(1 spo0 A (12 = el) it o=l €L, '€ Lolab];
< (A, )] Ale = eI s e — el € L
f/ELoo[a7b]a a>1, é+%:1a
| B—a) + o= 2 A (I o) T 1P e € L f' € Lucfasb].
(3.3) M, (z)

( 1 . 1
X {1 g 1 iy } A (l7 = €l7) i o —eli € L, f' € L [a,b);

1 1
< [a(r,)]) " [aQe=d®)]™ I, e el e L,
freLlylab], a>1, L +1=1;
)« ] )
1 .
| BO-a+le =0 A1 e,) T 1y € Lo S € Lylah
and
0 g + 3 1 N = 1
(3.4) M1(ZL“)§

a(1r12,)] " 8>

Proof. Using [2.]) and taking the modulus, we have

(3.5) [f(x) = AN =1A((z—€)-g(, 1))
<A(l(z—e)-g(, )
= A(lz —ellg (- z)]).

|
)
Fort # x (t,z € [a,b]) we may state

(.0 < [ 17 (= D2+ a0]in

<ess sup |f (1 =X\ x+ At)|
A€[0,1]

= g0

J. Inequal. Pure and Appl. Math3(5) Art. 68, 2002 http://jipam.vu.edu.au/


http://jipam.vu.edu.au/

OSTROWSKIINEQUALITY

Holder’s inequality will produce

m&wﬂﬁAlf«l—Mx+Mﬂw

s[l\f«l—»x+xm%mr

- (L [wra)

_1 1 1
= |z —t| > Hf’H[x’t]’p, p>1, ];—i— 5 =1;
and finally
1
1
9t < 1 (@ =N+ A0 = = 1P -

Consequently

(o —el 1/ 100 1F '€ Lo [a, 0]
(3.6) (@ =e)llgC o)l < e —elo lfll, T €Lyab]

1l

foranyz € [a,b)].
Applying the functionalA to (3.6) and usind (3]5) we deduce the inequality|(3.1).
We have

MOO S /xtooA B
(@) < 0 {17 o0} A (12 = €]

tela,b

= max {1 gy s 1 gy } A (=€)

= 1" g 00 A (2 = €])

and the first inequality irf (3] 2) is proved.
Using Holder’s inequality for the functiond, i.e.,

7 Ahg)| < [A(RN= A (191°)]” l, —+-=1
(3.7) Ahg) < A= [A(1917)]7s a1 —+ 5 =1,
wherehg, |h|%, |g|° € L, we have

M (2) < [A (2 = el*)= [A (IF1,) ]

and the second part gf (3.2) is proved.
In addition,

w@l=

Ma (1) < sup o =1 A (1.

tela,b]

=max{r —a,b—xa} A (”f/H[x]OO)

1 a+b /
- [5 (b—a)+ |x— 5 H A(Hf “[:z:,-],oo)

and the inequality| (3]2) is completely proved.
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We also have

¥y (0) < 500 {11, } 4 (= fF)

1
= 085 {1 g} A (2= ]
Using Holder's inequality[ (3]7) one has

1

My @) < [ (1o = ef)] [ (170,,)) e s 2=

and

My (@) < sup {Jo =t} 4 (17 o)

t€fa,b

—max {(@ =)t (b= A ()

a+bl]s
- [30-a+ o= A (1r,).

proving the inequality{ (3]3).
Finally,

A1 ea) = 50 {15 f A
= 10 {1l g1 1 1§
1 1
= 51 Mo + 5 |1 N = 1 e

By Hoélder’s inequality, we have

1

A Mga) = [A(WF1500) |7 B> 1,

and the last part of (3.4) is also proved. O

4. THE CASE WHERE |f’| IS CONVEX

The following theorem also holds.

Theorem4.1.Letf : [a,b] — R be an absolutely continuous function such tfiat (a,b) — R
is convex in absolute value, i.¢f/| is convex orfa,b) . If A: L — R is a normalised isotonic
linear functional andx — e|, |x — e||f’| € L, then

(4.1) | (z) = A(f)] < % 1/ (@) Az —el) + A(lz — el |f])]

(31 sy + 11 @] Al = el). i f' € Loo [0 1]

IN

7@l ade e+ 1ade— et [a (1#19)]] i ool e 2
a>1,é+%:1;
L L0F @A —e)+ [2b—a)+ o — =2 A(FD] T |F] € L
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Proof. Since|f’| is convex, we have
1
() < [ 17(@= N+ A]dn
0

=|f’<:c>!/0 (1—>\)d)\+!f’(t)\/0 A\

_ @+ O
2

Thus,

|ﬂm—AumgA(m_dﬂf@NHf@0

2

1 (@) A(jz —el) + A(lz — el [/']D]

DN | —

and the first part of (4]1) is proved.
We have

A(lz — e[ |f]) < ess sup {|f' (£)[} - A(]x —e])

t€la,b]

= 1 lap1,00 Al = el) -

By Hdlder’s inequality for isotonic linear functionals, we have

Ll TN N 1.1_
Al =ellf) < [Ae = el [A(177)]" a1 S+ 5=t
and finally,
Alz —el[f]) < sup |z —t|- A(|f])
te€(a,b]
=max (z —a,b—1x)- A(|f'])
1 a+b ,
= (30-a+e="3]) a0r0.
The theorem is thus proved. O

5. SOME INTEGRAL INEQUALITIES

If we consider the normalised isotonic linear functiodalf) = ﬁ fab f, then by Theorem
for f : [a,b] — R an absolutely continuous function, we may state the following integral
inequalities

b
60 |7t [ rwa

< et
— b —al, [x,t],00
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( 1 T a+b
! - 2 (b—a) (Ostrowski’s inequality)
a

1" 67,00 e
providedf’ € Lo, [a,b];

(b—2)"" 4 (z—a
AL [ @+ D-a)
”ﬁGLmL]memmewwﬂ,a>Lé+%:h

1 x— a—“’
S+ ]/"Hfmm] i
if /'€ Loo[a, 0], andif || f'|[, | € L1]a, 0],

)a+1 o

IN

for eachr € [a, b] ;

%a/abf(t)dt‘

_L A d
< 57a ) il 1 g dt

(

(5.2)

1 1
(b—z)a " f(z—a)at!

00 {1 s 1 } | e
p>1, s+ =1andf € L,a,b];

RI=

1
1 b 3 bz g —a g .
(55 N ) | 2058 i e 1
and ||f/||[g;,.],p € Lgla,b], wherea > 1, é + % -1

IN

1 ’w—%b’ % 1 b pr
st | e Jo 1 e p dt

if € Lyla, 0], and || /|l € L1 [a,b],

\

for eachz € [a, b] and

(5.3) kf@)—gfég/“fu>ﬁ\

S VTR
— b—a . [x,t],1

1 1 .
5 Hf,H[a b,1 + 5 ’Hf/”[ax] 1 Hf,“[r,b},l if f/ S Ll [a7 b] )

(75 [ 191 )

L if f € Lifa,b], [[f'll ;1 € Lgla,b], wheref > 1,

IN

for eachr € [a, b] .
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If we assume now that : [a, b] — R is absolutely continuous and such thAt is convex on
(a,b), then by Theorer 41 we obtain the following integral inequalities established in [1]

1 b ‘
1 x—“T”’ ’ 1 b .
5[ { - )](ba)er ; |z —t]|f (t)dt]

L1 Ny + 1 @] {%ﬁ (52) ] (b—a) it '€ Loc[a,8];

Hireli (55) ] e-a

(5.4) ‘ —

S

< ¢ [ e IHW m I’}
if f’ ELg [a, b] =1;

Hiren[i+(52) ] 0-a+ +u} ffrf' <t>\dt}

\ T £ € Lyfa,b],

for eachr € [a, b] .

6. SOME DISCRETE | NEQUALITIES

For a given intervala, b] , consider the division
L,:a=xg<z1 < - <Zp1<xTp=02"

and the intermediate poin{s € [z;, x;11],i=0,n— 1. If by ;== x;07 —2; > 0 (2 =0,n— 1)
we may define the following functionals

A(f3 1y €) - Zf &) hi (Riemann Rule)
Ap (fi1,) = — Zf zi) +f (i) ) (Trapezoid Rule)
Aw (fi 1) Z ¥ (x ””1) b, (Mid-point Rule)
As (fi 1) = §AT (f; In) + §AM (f;1In) - (Simpson Rule)

We observe that, all the above functionals are obviously linear, isotonic and normalised.

Consequently, all the inequalities obtained in Sectigns 2[and 3 may be applied for these
functionals.

If, for example, we use the following inequality (see Theofem 3.1)

(6.1) [f (@) = AN < 1 gy Alz —el), = € [a, ],

J. Inequal. Pure and Appl. Math3(5) Art. 68, 2002 http://jipam.vu.edu.au/
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providedf : [a,b] — R is absolutely continuous and € L. [a, b] , then we get the inequalities

n—1

(6.2) ‘f(w)— S e

1=0

— ||f||ab]oob Z|x §Z|hl7

1 f z+f(11)
(6.3) ‘f(x b_az : Tivt) p,

n—1
1 ‘x_xi‘+‘x_xi+1’
< I . h;
W Moo g 2 ,

n—1

1
<1 61,00 mz T —
=0

T+ Xij

hia
2

(6.4) ‘f(m)—ﬁz:f (%) h
=0

for eachr € [a, b] .
Similar results may be stated if one uses for example Theprgm 4.1. We omit the details.
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