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Abstract

Some inequalities of Ostrowski type for isotonic linear functionals defined on a
linear class of function L := {f : [a, b] → R} are established. Applications for
integral and discrete inequalities are also given.
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1. Introduction
The following result is known in the literature as Ostrowski’s inequality [13].

Theorem 1.1.Letf : [a, b] → R be a differentiable mapping on(a, b) with the
property that|f ′ (t)| ≤ M for all t ∈ (a, b). Then

(1.1)

∣∣∣∣f (x)− 1

b− a

∫ b

a

f (t) dt

∣∣∣∣ ≤
[

1

4
+

(
x− a+b

2

)2
(b− a)2

]
(b− a) M

for all x ∈ [a, b].
The constant1

4
is the best possible in the sense that it cannot be replaced by a

smaller constant.

The following Ostrowski type result for absolutely continuous functions whose
derivatives belong to the Lebesgue spacesLp [a, b] also holds (see [9], [10] and
[11]).

Theorem 1.2. Let f : [a, b] → R be absolutely continuous on[a, b]. Then, for
all x ∈ [a, b], we have:

(1.2)

∣∣∣∣f (x)− 1

b− a

∫ b

a

f (t) dt

∣∣∣∣
≤



[
1
4

+
(

x−a+b
2

b−a

)2
]

(b− a) ‖f ′‖∞ if f ′ ∈ L∞ [a, b] ;

(b−a)
1
p

(p+1)
1
p

[(
x−a
b−a

)p+1
+
(

b−x
b−a

)p+1
] 1

p ‖f ′‖q if f ′ ∈ Lq [a, b] , 1
p

+ 1
q

= 1, p > 1;[
1
2

+
∣∣∣x−a+b

2

b−a

∣∣∣] ‖f ′‖1 ;
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mailto:sever@matilda.vu.edu.au
http://jipam.vu.edu.au/


Ostrowski Type Inequalities for
Isotonic Linear Functionals

S.S. Dragomir

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 4 of 27

J. Ineq. Pure and Appl. Math. 3(5) Art. 68, 2002

http://jipam.vu.edu.au

where‖·‖r (r ∈ [1,∞]) are the usual Lebesgue norms onLr [a, b], i.e.,

‖g‖∞ := ess sup
t∈[a,b]

|g (t)|

and

‖g‖r :=

(∫ b

a

|g (t)|r dt

) 1
r

, r ∈ [1,∞).

The constants1
4
, 1

(p+1)
1
p

and 1
2

respectively are sharp in the sense presented in

Theorem1.1.

The above inequalities can also be obtained from Fink’s result in [12] on
choosingn = 1 and performing some appropriate computations.

If one drops the condition of absolute continuity and assumes thatf is Hölder
continuous, then one may state the result (see [7]):

Theorem 1.3.Letf : [a, b] → R be ofr −H−Hölder type, i.e.,

(1.3) |f (x)− f (y)| ≤ H |x− y|r , for all x, y ∈ [a, b] ,

wherer ∈ (0, 1] and H > 0 are fixed. Then for allx ∈ [a, b] we have the
inequality:

(1.4)

∣∣∣∣f (x)− 1

b− a

∫ b

a

f (t) dt

∣∣∣∣
≤ H

r + 1

[(
b− x

b− a

)r+1

+

(
x− a

b− a

)r+1
]

(b− a)r .

The constant 1
r+1

is also sharp in the above sense.
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Note that ifr = 1, i.e.,f is Lipschitz continuous, then we get the following
version of Ostrowski’s inequality for Lipschitzian functions (withL instead of
H) (see [3])

(1.5)

∣∣∣∣f (x)− 1

b− a

∫ b

a

f (t) dt

∣∣∣∣ ≤
1

4
+

(
x− a+b

2

b− a

)2
 (b− a) L.

Here the constant1
4

is also best.
Moreover, if one drops the continuity condition of the function, and assumes

that it is of bounded variation, then the following result may be stated (see [4]).

Theorem 1.4. Assume thatf : [a, b] → R is of bounded variation and denote
by
∨b

a (f) its total variation. Then

(1.6)

∣∣∣∣f (x)− 1

b− a

∫ b

a

f (t) dt

∣∣∣∣ ≤
[

1

2
+

∣∣∣∣∣x− a+b
2

b− a

∣∣∣∣∣
]

b∨
a

(f)

for all x ∈ [a, b].
The constant1

2
is the best possible.

If we assume more aboutf , i.e., f is monotonically increasing, then the
inequality (1.6) may be improved in the following manner [5] (see also [2]).

Theorem 1.5. Let f : [a, b] → R be monotonic nondecreasing. Then for all
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x ∈ [a, b], we have the inequality:∣∣∣∣f (x)− 1

b− a

∫ b

a

f (t) dt

∣∣∣∣(1.7)

≤ 1

b− a

{
[2x− (a + b)] f (x) +

∫ b

a

sgn (t− x) f (t) dt

}
≤ 1

b− a
{(x− a) [f (x)− f (a)] + (b− x) [f (b)− f (x)]}

≤

[
1

2
+

∣∣∣∣∣x− a+b
2

b− a

∣∣∣∣∣
]

[f (b)− f (a)] .

All the inequalities in (1.7) are sharp and the constant1
2

is the best possible.

The version of Ostrowski’s inequality for convex functions was obtained in
[6] and is incorporated in the following theorem:

Theorem 1.6. Let f : [a, b] → R be a convex function on[a, b]. Then for any
x ∈ (a, b) we have the inequality

1

2

[
(b− x)2 f ′+ (x)− (x− a)2 f ′_ (x)

]
(1.8)

≤
∫ b

a

f (t) dt− (b− a) f (x)

≤ 1

2

[
(b− x)2 f ′− (b)− (x− a)2 f ′+ (a)

]
.

In both parts of the inequality (1.8) the constant1
2

is sharp.
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For other Ostrowski type inequalities, see [8].
In this paper we extend Ostrowski’s inequality for arbitrary isotonic linear

functionalsA : L → R, whereL is a linear class of absolutely continuous
functions defined on[a, b] . Some applications for particular instances of linear
functionalsA are also provided.
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2. Preliminaries
Let L be alinear classof real-valued functions,g : E → R having the proper-
ties

(L1) f, g ∈ L imply (αf + βg) ∈ L for all α, β ∈ R;

(L2) 1 ∈ L, i.e., if f (t) = 1, t ∈ E, thenf ∈ L.

An isotonic linear functionalA : L → R is a functional satisfying

(A1) A (αf + βg) = αA (f) + βA (g) for all f, g ∈ L andα, β ∈ R;

(A2) If f ∈ L andf ≥ 0, thenA (f) ≥ 0.

The mappingA is said to benormalisedif

(A3) A (1) = 1.

Usual examples of isotonic linear functional that are normalised are the fol-
lowing ones

A (f) :=
1

µ (X)

∫
X

f (x) dµ (x) , if µ (X) < ∞

or

Aw (f) :=
1∫

X
w (x) dµ (x)

∫
X

w (x) f (x) dµ (x) ,

wherew (x) ≥ 0,
∫

X
w (x) dµ (x) > 0, X is a measurable space andµ is a

positive measure onX.
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In particular, forx̄ = (x1, . . . , xn) , w̄ := (w1, . . . , wn) ∈ Rn with wi ≥ 0,
Wn :=

∑n
i=1 wi > 0 we have

A (x̄) :=
1

n

n∑
i=1

xi

and

Aw̄ (x̄) :=
1

Wn

n∑
i=1

wixi,

are normalised isotonic linear functionals onRn.

The following representation result for absolutely continuous functions holds.

Lemma 2.1. Let f : [a, b] → R be an absolutely continuous function on[a, b]

and definee (t) = t, t ∈ [a, b], g (t, x) =
∫ 1

0
f ′ [(1− λ) x + λt] dλ, t ∈ [a, b]

andx ∈ [a, b] . If A : L → R is a normalised linear functional on a linear class
L of absolutely continuous functions defined on[a, b] and(x− e) · g (·, x) ∈ L,
then we have the representation

(2.1) f (x) = A (f) + A [(x− e) · g (·, x)] ,

for x ∈ [a, b] .

Proof. For anyx, t ∈ [a, b] with t 6= x, one has

f (x)− f (t)

x− t
=

∫ x

t
f ′ (u)

x− t
=

∫ 1

0

f ′ [(1− λ) x + λt] dλ = g (t, x) ,

http://jipam.vu.edu.au/
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giving the equality

(2.2) f (x) = f (t) + (x− t) g (t, x)

for anyt, x ∈ [a, b] .

Applying the functionalA, we get

A (f (x) · 1) = A (f + (x− e) g (·, x)) ,

for anyx ∈ [a, b] .

Since
A (f (x) · 1) = f (x) A (1) = f (x)

and
A (f + (x− e) · g (·, x)) = A (f) + A ((x− e) · g (·, x)) ,

the equality (2.1) is obtained.

The following particular cases are of interest:

Corollary 2.2. Let f : [a, b] → R be an absolutely continuous function on
[a, b] . Then we have the representation:

(2.3) f (x) =
1∫ b

a
w (t) dt

∫ b

a

w (t) f (t) dt

+
1∫ b

a
w (t) dt

∫ b

a

w (t) (x− t)

(∫ 1

0

f ′ [(1− λ) x + λt] dλ

)
dt

http://jipam.vu.edu.au/
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for anyx ∈ [a, b] , wherep : [a, b] → R is a Lebesgue integrable function with∫ b

a
w (t) dt 6= 0.
In particular, we have

(2.4) f (x) =
1

b− a

∫ b

a

f (t) dt

+
1

b− a

∫ b

a

(x− t)

(∫ 1

0

f ′ [(1− λ) x + λt] dλ

)
dt

for eachx ∈ [a, b] .

The proof is obvious by Lemma2.1 applied for the normalised linear func-
tionals

Aw (f) :=
1∫ b

a
w (t) dt

∫ b

a

w (t) f (t) dt, A (f) :=
1

b− a

∫ b

a

f (t) dt

defined on

L := {f : [a, b] → R, f is absolutely continuous on[a, b]} .

The following discrete case also holds.

Corollary 2.3. Let f : [a, b] → R be an absolutely continuous function on
[a, b] . Then we have the representation:

(2.5) f (x) =
1

Wn

n∑
i=1

wif (xi)

+
1

Wn

n∑
i=1

wi (x− xi)

(∫ 1

0

f ′ [(1− λ) x + λxi] dλ

)

http://jipam.vu.edu.au/
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for any x ∈ [a, b] , wherexi ∈ [a, b] , wi ∈ R (i = {1, . . . , n}) with Wn :=∑n
i=1 wi 6= 0.

In particular, we have

(2.6) f (x) =
1

n

n∑
i=1

f (xi) +
1

n

n∑
i=1

(x− xi)

(∫ 1

0

f ′ [(1− λ) x + λxi] dλ

)
for anyx ∈ [a, b] .
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3. Ostrowski Type Inequalities
The following theorem holds.

Theorem 3.1.With the assumptions of Lemma2.1, and assuming thatA : L →
R is isotonic, then we have the inequalities

(3.1) |f (x)− A (f)|

≤



A
(
|x− e| ‖f ′‖[x,·],∞

)
if |x− e| ‖f ′‖[x,·],∞ ∈ L, f ′ ∈ L∞ [a, b] ;

A
(
|x− e|

1
q ‖f ′‖[x,·],p

)
if |x− e|

1
q ‖f ′‖[x,·],p ∈ L, f ′ ∈ Lp [a, b] ,

p > 1, 1
p

+ 1
q

= 1;

A
(
‖f ′‖[x,·],1

)
if ‖f ′‖[x,·],1 ∈ L,

where

‖h‖[m,n],∞ := ess sup
t∈[m,n]

(t∈[n,m])

|h (t)| and

‖h‖[m,n],p :=

∣∣∣∣∫ n

m

|h (t)|p dt

∣∣∣∣ 1p , p ≥ 1.

If we denote

M∞ (x) := A
(
|x− e| ‖f ′‖[x,·],∞

)
,

Mp (x) := A
(
|x− e|

1
q ‖f ′‖[x,·],p

)
, and M1 (x) := A

(
‖f ′‖[x,·],1

)
,
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then we have the inequalities:

(3.2) M∞ (x)

≤



‖f ′‖[a,b],∞ A (|x− e|) if |x− e| ∈ L, f ′ ∈ L∞ [a, b] ;[
A
(
‖f ′‖β

[x,·],∞

)] 1
β

[A (|x− e|α)]
1
α

if ‖f ′‖β
[x,·],∞ , |x− e|α ∈ L, f ′ ∈ L∞ [a, b] , α > 1, 1

α
+ 1

β
= 1;[

1
2
(b− a) +

∣∣x− a+b
2

∣∣]A(‖f ′‖[x,·],∞

)
if ‖f ′‖[x,·],∞ ∈ L, f ′ ∈ L∞ [a, b] .

(3.3) Mp (x)

≤



max
{
‖f ′‖[a,x],p , ‖f ′‖[x,b],p

}
A
(
|x− e|

1
q

)
if |x− e|

1
q ∈ L, f ′ ∈ Lp [a, b] ;[

A
(
‖f ′‖β

[x,·],p

)] 1
β
[
A
(
|x− e|

α
q

)] 1
α

if ‖f ′‖β
[x,·],p , |x− e|

α
q ∈ L, f ′ ∈ Lp [a, b] , α > 1, 1

α
+ 1

β
= 1;[

1
2
(b− a) +

∣∣x− a+b
2

∣∣] 1
q A
(
‖f ′‖[x,·],p

)
if ‖f ′‖[x,·],p ∈ L, f ′ ∈ Lp [a, b]

and

(3.4) M1 (x) ≤


1
2
‖f ′‖[a,b],1 + 1

2

∣∣∣‖f ′‖[a,x],1 − ‖f ′‖[x,b],1

∣∣∣ ,[
A
(
‖f ′‖β

[x,·],1

)] 1
β

, β > 1.
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Proof. Using (2.1) and taking the modulus, we have

|f (x)− A (f)| = |A ((x− e) · g (·, x))|(3.5)

≤ A (|(x− e) · g (·, x)|)
= A (|x− e| |g (·, x)|) .

For t 6= x (t, x ∈ [a, b]) we may state

|g (t, x)| ≤
∫ 1

0

|f ′ ((1− λ) x + λt)| dλ

≤ ess sup
λ∈[0,1]

|f ′ ((1− λ) x + λt)|

= ‖f ′‖[x,t],∞ .

Hölder’s inequality will produce

|g (t, x)| ≤
∫ 1

0

|f ′ ((1− λ) x + λt)| dλ

≤
[∫ 1

0

|f ′ ((1− λ) x + λt)|p dλ

] 1
p

=

(
1

x− t

∫ x

t

|f ′ (u)|p du

) 1
p

= |x− t|−
1
p ‖f ′‖[x,t],p , p > 1,

1

p
+

1

q
= 1;

and finally

|g (t, x)| ≤
∫ 1

0

|f ′ ((1− λ) x + λt)| dλ =
1

t− x
‖f ′‖[x,t],1 .
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Consequently

(3.6) |(x− e)| |g (·, x)| ≤



|x− e| ‖f ′‖[x,·],∞ if f ′ ∈ L∞ [a, b] ;

|x− e|
1
q ‖f ′‖[x,·],p if f ′ ∈ Lp [a, b] ,

‖f ′‖[x,·],1

for anyx ∈ [a, b] .

Applying the functionalA to (3.6) and using (3.5) we deduce the inequality
(3.1).

We have

M∞ (x) ≤ sup
t∈[a,b]

{
‖f ′‖[x,t],∞

}
A (|x− e|)

= max
{
‖f ′‖[a,x],∞ , ‖f ′‖[x,b],∞

}
A (|x− e|)

= ‖f ′‖[a,b],∞ A (|x− e|)

and the first inequality in (3.2) is proved.
Using Hölder’s inequality for the functionalA, i.e.,

(3.7) |A (hg)| ≤ [A (|h|α)]
1
α

[
A
(
|g|β
)] 1

β
, α > 1,

1

α
+

1

β
= 1,

wherehg, |h|α, |g|β ∈ L, we have

M∞ (x) ≤ [A (|x− e|α)]
1
α

[
A
(
‖f ′‖β

[x,·],∞

)] 1
β
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and the second part of (3.2) is proved.
In addition,

M∞ (x) ≤ sup
t∈[a,b]

|x− t|A
(
‖f ′‖[x,·],∞

)
= max {x− a, b− x}A

(
‖f ′‖[x,·],∞

)
=

[
1

2
(b− a) +

∣∣∣∣x− a + b

2

∣∣∣∣]A
(
‖f ′‖[x,·],∞

)
and the inequality (3.2) is completely proved.

We also have

Mp (x) ≤ sup
t∈[a,b]

{
‖f ′‖[x,t],p

}
A
(
|x− e|

1
q

)
= max

{
‖f ′‖[a,x],p , ‖f ′‖[x,b],p

}
A
(
|x− e|

1
q

)
.

Using Hölder’s inequality (3.7) one has

Mp (x) ≤
[
A
(
|x− e|

α
q

)] 1
α
[
A
(
‖f ′‖β

[x,·],p

)] 1
β

, α > 1,
1

α
+

1

β
= 1

and

Mp (x) ≤ sup
t∈[a,b]

{
|x− t|

1
q

}
A
(
‖f ′‖[x,·],p

)
= max

{
(x− a)

1
q , (b− x)

1
q

}
A
(
‖f ′‖[x,·],p

)
=

[
1

2
(b− a) +

∣∣∣∣x− a + b

2

∣∣∣∣] 1
q

A
(
‖f ′‖[x,·],p

)
,
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proving the inequality (3.3).
Finally,

A
(
‖f ′‖[x,·],1

)
≤ sup

t∈[a,b]

{
‖f ′‖[x,t],1

}
A (1)

= max
{
‖f ′‖[a,x],1 , ‖f ′‖[x,b],1

}
=

1

2
‖f ′‖[a,b],1 +

1

2

∣∣∣‖f ′‖[a,x],1 − ‖f ′‖[x,b],1

∣∣∣ .
By Hölder’s inequality, we have

A
(
‖f ′‖[x,·],1

)
≤
[
A
(
‖f ′‖β

[x,·],1

)] 1
β

, β > 1,

and the last part of (3.4) is also proved.
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4. The Case where|f ′| is Convex
The following theorem also holds.

Theorem 4.1. Let f : [a, b] → R be an absolutely continuous function such
that f ′ : (a, b) → R is convex in absolute value, i.e.,|f ′| is convex on(a, b) . If
A : L → R is a normalised isotonic linear functional and|x− e|, |x− e| |f ′| ∈
L, then

(4.1) |f (x)− A (f)| ≤ 1

2
[|f ′ (x)|A (|x− e|) + A (|x− e| |f ′|)]

≤



1
2

[
‖f ′‖[a,b],∞ + |f ′ (x)|

]
A (|x− e|) , if f ′ ∈ L∞ [a, b] ;

1
2

[
|f ′ (x)|A (|x− e|) + [A (|x− e|α)]

1
α

[
A
(
|f ′|β

)] 1
β

]
if |x− e|α , |f ′|β ∈ L, α > 1, 1

α
+ 1

β
= 1;

1
2

[
|f ′ (x)|A (|x− e|) +

[
1
2
(b− a) +

∣∣x− a+b
2

∣∣]A (|f ′|)
]

if |f ′| ∈ L.

Proof. Since|f ′| is convex, we have

|g (t, x)| ≤
∫ 1

0

|f ′ ((1− λ) x + λt)| dλ

= |f ′ (x)|
∫ 1

0

(1− λ) dλ + |f ′ (t)|
∫ 1

0

λdλ

=
|f ′ (x)|+ |f ′ (t)|

2
.
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Thus,

|f (x)− A (f)| ≤ A

(
|x− e| · |f

′ (x)|+ |f ′ (t)|
2

)
=

1

2
[|f ′ (x)|A (|x− e|) + A (|x− e| |f ′|)]

and the first part of (4.1) is proved.
We have

A (|x− e| |f ′|) ≤ ess sup
t∈[a,b]

{|f ′ (t)|} · A (|x− e|)

= ‖f ′‖[a,b],∞ A (|x− e|) .

By Hölder’s inequality for isotonic linear functionals, we have

A (|x− e| |f ′|) ≤ [A (|x− e|α)]
1
α

[
A
(
|f ′|β

)] 1
β

, α > 1,
1

α
+

1

β
= 1

and finally,

A (|x− e| |f ′|) ≤ sup
t∈[a,b]

|x− t| · A (|f ′|)

= max (x− a, b− x) · A (|f ′|)

=

(
1

2
(b− a) +

∣∣∣∣x− a + b

2

∣∣∣∣)A (|f ′|) .

The theorem is thus proved.
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5. Some Integral Inequalities
If we consider the normalised isotonic linear functionalA (f) = 1

b−a

∫ b

a
f , then

by Theorem3.1 for f : [a, b] → R an absolutely continuous function, we may
state the following integral inequalities∣∣∣∣f (x)− 1

b− a

∫ b

a

f (t) dt

∣∣∣∣(5.1)

≤ 1

b− a

∫ b

a

|x− t| ‖f ′‖[x,t],∞ dt

≤



‖f ′‖[a,b],∞

[
1
4

+
(

x−a+b
2

b−a

)2
]

(b− a) (Ostrowski’s inequality)

providedf ′ ∈ L∞ [a, b] ;[
1

b−a

∫ b

a
‖f ′‖β

[x,t],∞ dt
] 1

β
[

(b−x)α+1+(x−a)α+1

(α+1)(b−a)

] 1
α

if f ′ ∈ L∞ [a, b] , ‖f ′‖[x,·],∞ ∈ Lβ [a, b] , α > 1, 1
α

+ 1
β

= 1;[
1
2

+
|x−a+b

2 |
b−a

] ∫ b

a
‖f ′‖[x,t],∞ dt

if f ′ ∈ L∞ [a, b] , and if ‖f ′‖[x,·],∞ ∈ L1 [a, b] ,

for eachx ∈ [a, b] ;

(5.2)

∣∣∣∣f (x)− 1

b− a

∫ b

a

f (t) dt

∣∣∣∣ ≤ 1

b− a

∫ b

a

|x− t|
1
q ‖f ′‖[x,t],p dt
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≤



q max
{
‖f ′‖[a,x],p , ‖f ′‖[x,b],p

}[
(b−x)

1
q +1

+(x−a)
1
q +1

(b−a)(q+1)

]
,

p > 1, 1
p

+ 1
q

= 1 andf ′ ∈ Lp [a, b] ;

q
1
α

(
1

b−a

∫ b

a
‖f ′‖β

[x,t],p dt
) 1

β

[
(b−x)

α
q +1

+(x−a)
α
q +1

(b−a)(q+α)

] 1
α

if f ′ ∈ Lp [a, b] ,

and ‖f ′‖[x,·],p ∈ Lβ [a, b] , whereα > 1, 1
α

+ 1
β

= 1[
1
2

+
|x−a+b

2 |
b−a

] 1
q

1
b−a

∫ b

a
‖f ′‖[x,t],p dt

if f ′ ∈ Lp [a, b] , and ‖f ′‖[x,·],p ∈ L1 [a, b] ,

for eachx ∈ [a, b] and∣∣∣∣f (x)− 1

b− a

∫ b

a

f (t) dt

∣∣∣∣(5.3)

≤ 1

b− a

∫ b

a

‖f ′‖[x,t],1 dt

≤


1
2
‖f ′‖[a,b],1 + 1

2

∣∣∣‖f ′‖[a,x],1 − ‖f ′‖[x,b],1

∣∣∣ if f ′ ∈ L1 [a, b] ;(
1

b−a

∫ b

a
‖f ′‖β

[x,t],1 dt
) 1

β

if f ′ ∈ L1 [a, b] , ‖f ′‖[x,.],1 ∈ Lβ [a, b] , whereβ > 1,

for eachx ∈ [a, b] .
If we assume now thatf : [a, b] → R is absolutely continuous and such that

|f ′| is convex on(a, b) , then by Theorem4.1 we obtain the following integral
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inequalities established in [1]

(5.4)

∣∣∣∣f (x)− 1

b− a

∫ b

a

f (t) dt

∣∣∣∣

≤ 1

2

|f ′ (x)|

1

4
+

(
x− a+b

2

b− a

)2
 (b− a) +

1

b− a

∫ b

a

|x− t| |f ′ (t)| dt



≤



1
2

[
‖f ′‖[a,b],∞ + |f ′ (x)|

] [
1
4

+
(

x−a+b
2

b−a

)2
]

(b− a) if f ′ ∈ L∞ [a, b] ;

1
2

{
|f ′ (x)|

[
1
4

+
(

x−a+b
2

b−a

)2
]

(b− a)

+
[

(b−x)α+1+(x−a)α+1

(α+1)(b−a)

] 1
α
[

1
b−a

∫ b

a
|f ′ (t)|β dt

] 1
β

}
if f ′ ∈ Lβ [a, b] , α > 1, 1

α
+ 1

β
= 1;

1
2

{
|f ′ (x)|

[
1
4

+
(

x−a+b
2

b−a

)2
]

(b− a) +

[
1
2

+
|x−a+b

2 |
b−a

] ∫ b

a
|f ′ (t)| dt

}
if f ′ ∈ L1 [a, b] ,

for eachx ∈ [a, b] .
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6. Some Discrete Inequalities
For a given interval[a, b] , consider the division

In : a = x0 < x1 < · · · < xn−1 < xn = b

and the intermediate pointsξi ∈ [xi, xi+1] , i = 0, n− 1. If hi := xi+1 − xi > 0(
i = 0, n− 1

)
we may define the following functionals

A (f ; In, ξ) :=
1

b− a

n−1∑
i=0

f (ξi) hi (Riemann Rule)

AT (f ; In) :=
1

b− a

n−1∑
i=0

f (xi) + f (xi+1)

2
· hi (Trapezoid Rule)

AM (f ; In) :=
1

b− a

n−1∑
i=0

f

(
xi + xi+1

2

)
· hi (Mid-point Rule)

AS (f ; In) :=
1

3
AT (f ; In) +

2

3
AM (f ; In) . (Simpson Rule)

We observe that, all the above functionals are obviously linear, isotonic and
normalised.

Consequently, all the inequalities obtained in Sections2 and3 may be ap-
plied for these functionals.

If, for example, we use the following inequality (see Theorem3.1)

(6.1) |f (x)− A (f)| ≤ ‖f ′‖[a,b] A (|x− e|) , x ∈ [a, b] ,
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providedf : [a, b] → R is absolutely continuous andf ′ ∈ L∞ [a, b] , then we
get the inequalities

(6.2)

∣∣∣∣∣f (x)− 1

b− a

n−1∑
i=0

f (ξi) hi

∣∣∣∣∣ ≤ ‖f ′‖[a,b],∞
1

b− a

n−1∑
i=0

|x− ξi|hi,

(6.3)

∣∣∣∣∣f (x)− 1

b− a

n−1∑
i=0

f (xi) + f (xi+1)

2
· hi

∣∣∣∣∣
≤ ‖f ′‖[a,b],∞ · 1

b− a

n−1∑
i=0

|x− xi|+ |x− xi+1|
2

hi,

(6.4)

∣∣∣∣∣f (x)− 1

b− a

n−1∑
i=0

f

(
xi + xi+1

2

)
· hi

∣∣∣∣∣
≤ ‖f ′‖[a,b],∞

1

b− a

n−1∑
i=0

∣∣∣∣x− xi + xi+1

2

∣∣∣∣hi,

for eachx ∈ [a, b] .

Similar results may be stated if one uses for example Theorem4.1. We omit
the details.
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