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Abstract

For any a := (a1,ay,...,a,) € (RT)", define AP,(z,t) := (z + a1t)(z + ast)
(x4 ant) — 2" and Sa(z,y) = arz™ !+ agz" 2y + -+ + auy" L. The two ho-
mogeneous polynomials AP,(z,t) and tS,(z, y) are comparable in the positive
octant z,y,t € R™. Recently the authors [2] studied the inequality AP, (z,t) >
tSa(z,y) and its reverse and noted that the boundary between the correspond-
ing regions in the positive octant is fully determined by the equipoise curve

AP,(z,1) = Sa(z,y). In the present paper the asymptotic expansion of the Asyggﬁﬂgigé"c"‘:f\jgno;’fathe
equipoise curve is shown to exist, and is determined both recursively and ex- Polynomial Inequality
plicitly. Several special cases are then examined in detail, including the general

lution when n = 3, where the coefficients involve a type of generalised Cat R Hiice el
solution when n = 3, where the coefficients involve a type of generalised Cata- William P. Galvin

lan number, and the case where a = 1 + § is a sequence in which each term
is close to 1. A selection of inequalities implied by these results completes the

paper. Title Page |
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With any finite real sequence := (aq,as,...,a,) € R" we associate two
homogeneous polynomials, theoductpolynomial

Pa(z,t) == (z + art)(x + ast) - - - (z + ant) = H(x + a,t),

r=1

and thesumpolynomial
Sa(®,y) == a1z " 4+ ax" Py + -+ ayt T = Z apx" "y L
r=1

As shown in P], thefirst differenceof the product polynomial
AP,(x,t) := Pa(x,t) — Pa(z,0) = Pa(x,t) — 2"

andt times the sum polynomial are degre&@omogeneous polynomials which
are comparable in the positive octanty,t € R* := {r € R : r > 0} when

a € (R*)". Clearly they are closely related to the comparison of the product
11", (1 + a,) and the sunkt!_,a,. Indeed Weierstrass/] derived inequalities
equivalent to

I+ a<]||1+a) < =5 < D
2= Howed <=y =i

r=10r

whena € (R*)" and0 < X_,a, < 1, whence the productd”_, (1 + a,) and
I"_,(1 — a,) both converge a8 — oo if ¥X!_,a, converges to a limit strictly
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less thanl. The first and third of these inequalities correspondf6l, 1) <
AP,(1,1)and—S,(1,1) < AP,(1, —1) respectively, while the middle inequal-
ity simply follows from1 — a? < 1for 1 < r < n, with strict inequality
for at least one. The first inequality corresponds to results ij &t the point
(x,y,t) = (1,1, 1), but the third corresponds td, 1, —1), which is outside the
positive octant, and, although easily proved, it is not covered]in(A more
widely accessible source which closely parallels Weierstrass’s reasoning is [

To summarise the results ][ let us now suppose that > 2 anda
is strictly positive, soa, > 0 for 1 < r < n. Then the strict inequality
AP,(z,t) > tSa(z,y) holds in a region (the AP-region”) of the positive
octant which includes the intersection of the octant with the halfspaee
x + tm(a), wherem(a) := min{a, : 1 <r <n — 1}, and the reverse inequal-
ity AP,(z,t) < tSa(x,y) holds in a region (the S-region”) of the positive
octant which includes its intersection with the halfspace = + t M (a), where
M(a) := max{a, : 1 < r < n — 1}. The boundary between th&P-region
and theS-region is theequipoise surface

Ey(a) = {(z,y,t) € (RT)? : APy(w,t) = tSa(w,y)}.
The polynomials are homogeneousairso for any reat we have
APp(x,1) = APy(z,t) and Si(z,y) = tSa(z,y),

whereta := (tay, tas, ..., ta,) € R™. Hence for strictly positivea € (R*)"
with n > 2. it suffices to compare the polynomials in the intersection of the
positive octant with the plane= 1, so we consider thequipoise curve

Ei(a) = {(z,y) € (R")?: AP,(x,1) = Sa(x,%)}.
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This separates thé\ P-region of the positive quadrant,y € R*, where
AP,(x,1) > Sa(z,y), from the S-region, whereAP,(z,1) < Sa(z,y). The
equipoise curve lies in the strip

r+m(a) <y<z+ M(a)

of the positive quadrant and is asymptoticte= « + «, where« is a certain
function ofa. In fact, if n > 3 the equipoise curve satisfies

y=x+a+ Bxr '+ 0(x?) asr — oo

whereq, ( are functions ok explicitly determined inf]. The equipoise curve
approaches the asymptote from thé’-region side if5 is negative, and from
the S-region side if$3 is positive.

Our main purpose in this paper is to extend our understandingaofd 5 as
functions ofa, by determining the subsequent members of an infinite sequence
of coefficients constituting the asymptotic expansion of the equipoise curve for
a. But first we shall show that the properties just summarized hold a little more
generally.
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To extend the results of’] it is convenient to introduce some notation. For
any sequence := (aj,as,...,a,) € R" and any integek in the interval
0<k<n,let

Ap(a) == (a1, ag,...,a;) and Q(a) := (Gn_ps1,-- -, an-1,0n)

be, respectively, thmmitial andfinal k-term subsequences af Thus A, (a) =
,(a) = aand, ifwis the empty sequencédy(a) = Qp(a) = w. Alsom(a) :
min{a, : 1 <r <n-—1} =minA, ;(a)andM(a) := max{a, : 1 <r
n— 1} =max A, 1(a). Asin [2] we also us&(a) := X"_,a,.

First, a simple reformulation of Corollary 2.2 of][becomes

IA I

Theorem 2.1.For any finite sequence € (R™)" withn > 3, and for all strictly
positiver, y,t € Rt if A,,_;(a) is not constantthen fay > x+tmax A,_(a)
we have

0 < tS(a)z" ' < APa(z,t) < tSa(z,7),

while fory < z + tmin A,,_;(a) andz := min{z, y} we have
AP,(z,t) > tSa(z,y) > tX(a)2" ! > 0.

To investigate the equalithP,(x,1) = Sa(zx,y), in [2] we imposed the
sufficient condition thah € (R™)" be strictly positive. However, we note that
if x,y are strictly positive then

0
a_ysa($a y) >0
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holds if and only if?,,_;(a) # 0, where0 € R"! is the constant sequence with
every term equal t6. We shall abbreviate this condition by saying “if and only
if 2,,_1(a) is nonzero”. Then continuity of,(x, y) as a function of; ensures
the following broadening of the scope of Lemma 3.14f |

Theorem 2.2. For any finite sequenca € (R")" with n > 2, and strictly
positivez,y € R*, if ©,_1(a) is nonzero then there is a functiag(z) such
that

< Sa(x7y) if Yy > ?Jo(x),
Asymptotic Expansion of the

APy(z,1) ¢ = Sa(w,y) ify=yo(r), Equipoise Curve of a

Polynomial Inequality

> Sa(SU, y) If Y < y0<x>' Roge_r B Eggleton_ and
Furthermore William P. Galvin
r+min A, j(a) <y(r) <z +max A4, 1(a). Title Page

As in [7], it is convenient now to define two families séquence functions Contents

Y, Wi, + R* — R, for any positive integern and all positive integerg < < »
n. These functions are needed to describe the coefficients in the asymptotic

. L < | 2
expansion of) = yy(z), the equipoise curve fai.
The kth elementary symmetric function, of a € R™ is the sum of all Go Back
productslix asx runs through thé-term subsequencesC a, thus Close
Yr(a) =3 {llx: x Ca,|x| = k}. Quit
Page 7 of 30

In particular,;(a) = ¥"_ja, andXy(a) = P . a.a, if n > 2. We

extend the definition by setting,(a) = 0 for any integert > n.
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The kth binomially-weighted suri¥/;, of a € R is the sequence function

Wi(a) = zn: <£ B D a.

r=1

In particular,W;(a) = ¥7_,a, andWy(a) = X", (r — 1)a, if n > 2. Note that
Wi(a) = ¥;(a) holds for anya. Once again we extend the definition by setting
Wi(a) = 0 for any integerk > n. Now Theorem2.2 justifies the following
broadening of the scope of Theorem 3.1 and Corollary 3.2]of [

Theorem 2.3. For any finite sequence € (R*)™ withn > 2, and strictly pos-
itive z,y € R*, if Q,_4(a) is nonzero then the equality P,(z, 1) = Sa(z,y)
holds for largex when
y=x+a+pz ' +0(zx?) asz— oo,
where
a:=Ys(a)/Wy(a) and B := (33(a) — a*Ws(a))/Wy(a).

Note thats = 0 if n = 2. We will extend Theoren2.3in the next section.
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Let us first establish the existence of the asymptotic expansidr @f) for
suitablea.

Theorem 3.1. For any finite sequenca € (R")” withn > 2 and,_;(a)
nonzero, there is an infinite sequenee= (ay, as,...) € R*> such that the
equipoise curvey; (a) has asymptotic expansion

Yy~ (1 + Zasx_s> asr — oo.
s=1

Proof. By Theorem2.3, there is am; € R such thatt;(a) isy = . + oy +
O(z7') asz — oo. Now assume for some positive integ®&rthat there is a
sequencéay, as, ..., ay) € RY such that?, (a) is

N
y=21x (1 + Zasaﬁs> + fn(z),

with O(fx(z)) = O(x™") asz — oo. Then
AP,(z,1) = Sa(z,y)

n N r—1
= Z a,x" " (x (1 + Z ozsxs> + fN(a:)>
_ Tilarl,nl <1 + i;;s) r—1

r=1 s=1
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n

+Y (r = Daa" 2 fy(z) + 0" V).
r=1
Note thatO(z" 2 fy(z)) = O(x""~2). Our assumption fotV implies that
coefficients of powers of down as far ag” " ~! on the right match the corre-
sponding coefficients il P,(x, 1), so it follows that

n

> (r=Dafy(z) = ca™™ + Oz,

r=1
where the coefficient is equal to the difference between the coefficients of
2" N=2in AP,(x,1) and inX"_a,2" (1 + Y a,x7*)""!. The coefficient
of fx(z)is nonzero becausal_ (a) isnonzero. Letvy .1 :=¢/X"_(r—1)a,.

ThenE(a) is
N+1
y=ux (1 + Z a5x5> +O0(z™N7h.
s=1

The theorem now follows by induction a¥. O

Under the conditions of Theore® 1, the equipoise curvé’,(a) has an
asymptotic expansion with coefficient sequence- (ay, ay,...) asz — oo.
SinceWy(a) = ¥, (r — 1)a,, the proof of Theoren8.1 shows thatuy =
cn/Wa(a), wherecy is the difference between the coefficientszof¥ in the
expansions

AL 5 (a) + Sala)e ! + Sy(a) sz

xrn
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and

n N-1 r—1 00
Z a, (1 + Z asx8> = Z CN,k(a)x’k,

k=0

socy = YXny1(a) — Cyn(a). Of course, we have yet to determine the coeffi-
cientsCy i (a), but note immediately that'y ,(a) = 0 for all sufficiently large

k.

Letd := (di,...,dy_1) € (ZT)V~! be a nonnegative integer sequence such
that 2V 'sd, = k and©Y7'd, = m. Thend is apartition of k& with length A . .
s . E . - . i symptotic Expansion of the
N — 1 andweightm. Corresponding to eaahwith weightm < r — 1, there is Equipoise Curve of a
aterm inz* in the expansion of1 + X7 'a,z~*)" "' | with coefficient PR (W=
1 Roger B. Eggleton and
(r—1)! di _do dn-1 William P. Galvin

'O{lOé2 ...OfN_l.

(T —m — 1)'d1'd2' ce dN—l!
For convenience we abbreviate such expressions with the following compact Title Page
notation for the product

N-1 Contents
8 oy’ X =
and the multinomial coefficient - < >
(Z(d)) — m! Go Back
d P Close

whereX(d) = m. Thus the coefficient of the term irm* corresponding tal in _
. N— r—1 Quit
the expansion ofl1 + £ 'a,z )" becomes
Page 11 of 30

r— 1) <Z(d)>
a(d),
<Z (d> d J. Ineq. Pure and Appl. Math. 3(5) Art. 84, 2002

http://jipam.vu.edu.au



http://jipam.vu.edu.au/
mailto:
mailto:roger@math.ilstu.edu
mailto:
mailto:
mailto:mmwpg@cc.newcastle.edu.au
http://jipam.vu.edu.au/

where the first factor is the binomial coefficie(ﬁﬁ), which by definition is)
whenm > r — 1.

Let P(k, N —1,m) C (Z*)"~! be the set of all partitions df with length
N — 1 and weightm. Then in the expansion 0t7_a, (1 + SN )"
the coefficient of the term im—* corresponding to any particuldre P(k, N —

1,m)is .
2 ()o@ = (G)ocomunte

r=1
Summing over all partitions irP(k, N — 1,m) and all relevant weights
m yields Cyx(a), the total coefficient of:™". Whenk = N we obtain the
coefficientCy x(a) needed foray. Simplifying notation with P(N,m) =
P(N,N —1,m), and noting tha?’(N, 1) = (), we have
Theorem 3.2. For any finite sequenca € (R*)" withn > 2 and,_,(a)
nonzero, the asymptotic expansion of the equipoise ctir(e) is

Yy~ x (1 + Zasx5> asxr — oo,
s=1

where the coefficient sequenee= (a1, as, ...) € R*> is given by

ay = 2N-H(El) — C’N7N(a)
Wg(a)

for eachN > 1, with

=3[ T )(Z)am) Wi (a).

m=2 \deP(N,m
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In particular, whenV = 1 we haveP(1,m) = 0 soCy(a) = 0, since its
inner sum is empty. This gives, = ¥,(a)/ Wa(a), consistent with Theorem
2.3. Again, whenN = 2 the sequencg) € R! is the unique partition of with
length1, so P(2,2) = {(2)} and the inner sum fof:»(a) is (})a(2) = o2,
whenceCy(a) = aiWs(a). Thenay = (Z3(a) — adWs(a))/ Wa(a), again
consistent with Theorer.3. Substituting here for; and suppressing the ar-
gumenta to simplify notation yields

(8%

WhenN = 3 we haveP(3,2) = {(1,1)} andP(3,3) = {(3,0)}, so Theorem
3.2yieldsas from Cs 3(a) = 2a;0Ws(a) + a3,y (a). Substituting fora; and
ap and suppressing the argumentow yields

W3 '

Qs

Evidently continuing this process will yield an expression for any just
in terms of the elementary symmetric functions and the binomially-weighted
functions of the sequence In the next theorem we characterize the summands
in this explicit expression faty, but first we introduce some notation. For any
integer sequencé € (Z)V let

2(d) = [[Sra(@)® and W(d) := [ Wen(a)®.

r=1 r=1
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As previously, we shall usually suppress explicit mention of the argument
from expressions of this type. We also need the following family of partition
pairs:

N

Q(N) := {(d,e) td,e € (ZNY,) rd, =N,

r=1

N N
D re,=2N—-2,) (d+e,)=2N - 1} :
r=1 r=1

that is, pairgd, e) of partitions of N and2/N — 2 respectively, each of length
N, with sum of weights equal tdN — 1. (This places no effective restriction
ond, but does constraia significantly.)

Theorem 3.3. For each integerN > 1, the coefficientvy in the asymptotic
expansion of the equipoise curig(a) satisfies an identity of the form

anWi¥N = > c(d,e)S(d)W(e),
(d,e)eQ(N)
where each coefficientd, e) is an integer dependent only on the partition pair
(d.e).

Proof. Note thatQ(1) = {((1),(0))} anday W, = ¥,, so the theorem holds
whenN = 1, with ¢((1), (0)) = 1. Now fix N > 1, and suppose inductively
that the theorem holds for all, with 1 < s < N. By Theorem3.2,

N

QNWQQN—l _ 2N+1W22N—2 . Z Z

M=2 \DeP(N,M

M
(D) a(D) | WEN2 Wy
)
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The first term on the right is of the required form, since it(id, e)X(d)W (e)
with ¢(d, e) = 1, whered = (0,...,0,1),e = (2N —2,0,...,0) € (Z*)" are
lengthV partitions of N and2/NV — 2 respectively, with sum of weightsV — 1.

Now consider the outer sum on the right in the identity. Each summand
is of the form

M
> (D)WQQN_MOK(D) W2 W .
DeP(N,M)

Since2N — M = ©¥7(2s — 1) D, for eachD € P(N, M), we have

Dy
N-1 N-1

WiN Ma(D) = ] (aW3* ) >

(d,e)eQ(s)
e’') € Q(s) then
3(d+d)W(e+¢€),

c(d,e)X(d)W(e)

s=1 s=1
where the last step is by hypothesis(df e), (d’
S(d)W(e) - B(d)W(e') =

so it follows that every term in the expansion of the sum ayés), raised to
the powerD;, is of the forme(d, e)3(d)W (e) wherec(d, e) is an integer and
d,e € (Z*)® are partitions ofsD, and(2s — 2) D, respectively, with sum of
weights(2s — 1)D;. To calculate the product over we modify these length
s partitions by adjoining a furtheN — s zero terms to each. Partitions corre-
sponding to different values efcan then be added. The sum$f- 1 pairs, one
for each value of, is a pair(d, e) of length NV partitions, wherel is a partition
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of XV 'sD, = N ande is a partition of=Y" ' (2s — 2) D, = 2N — 2M, and the
sum of weights ofl ande is ¥ (2s — 1) D, = 2N — M. Before we sum over
M, recall that each such term is multiplied By, ~>WW,,, = W (e*), where
€ (Z*)N hase; = M — 2,¢%, = 1 and all other term§. Thuse* is a length
N partition of2M — 2 with weight M/ — 1. Hence(d, e + e*) is a pair of length
N partitions of N and2N — 2 respectively, with sum of weightdaV — 1, so
(d,e+e*) € Q(N). This does not depend explicitly al¥, so the sum over
M is a sum of terms of the form(d, e)3(d)W (e) where(d, e) € Q(N). All
coefficientsc(d, e) involve sums of products of multinomial coefficients and
integer coefficients from with 1 < s < N, so everyc(d, e) is an integer. The
theorem now follows by induction oN. O

For example, the s&p(4) comprises eight partition pairs, each pair being a
length4 partition of4 and a lengthl partition of6, with sum of weights. Thus
a,WJ is a sum of eight products 6f,'s andW,’s, with coefficients as noted:

(d,e) € Q(4) c(d.e) (d,e) € Q(4) c(d,e)
((0,0,0,1),(6,0,0,0))  +1 ((2,1,0,0),(2,2,0,0))  +6
((1,0,1,0),(4,1,0,0))  —2 ((4,0,0,0),(2,0,0,1)) -1
((0,2,0,0),(4,1,0,0)) -1 ((4,0,0,0),(1,1,1,0))  +5
((2,1,0,0),(3,0,1,0))  —3 ((4,0,0,0),(0,3,0,0)) =5

In particular, the term i, 1V with the largest coefficient 822, W21V2, and
the term independent 6%, is —533W5.

Corollary 3.4. For any positive integetV, there are integers:(d, e) corre-
sponding to pairs of partitiongd,e) € Q(N) such that the degreeN — 1
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homogeneous polynomial 21V variables,

N N

Fn(uy,...,un;vq,...,05) = Z c(d,e)Hu;Hv?,

(d.e)eQ(N) r=l 5=l
when evaluated at, = %,,4(a), v, = Wi4(a),1 < r,s < N, takes the value
Fn(Zs(a),..., Sy (a); Wa(a),..., Waii(a) = anWa(a)* .

From the2 N variablesu,,v,(1 < r;s < N) let us form2N — 1 “rational”
variables:
Uy

pri=— (1<r<N) and TS::US-‘rl (1<s<N-1).
Ur (%1

ThenF, (ug;v1) =uy = p1v; andFy(uy, us; vy, V) = U0} —uive = (pa — p3 ) 030y,

whence
F2<u17 U2; Ul,’UQ)

Fi(uy;v
Fi(uiv) =p and 3 = (p2 — p)71-
1)1 Ul

A corresponding identity can be obtained for edGh Indeed if V > 2 then

N-1

m
CN,N = OziVWN+1 + Z Z (d>oz(d) Wm+1,
)

m=2 \deP(N,m
by Theoren®.2, whence

. _ 2N -2 N, N-2
FN(“Iv"')”NaU17"'aUN)_qul —U Y UN+RNa
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whereRy = Ry(uq,...,uy_1;v1,...,0x_1) iS @ polynomial which does not

involve the variables y andvy. Now

2N-2 _ N, N-2  _ N 2N-1
UNVy —uy vy un = (pnv = Py ) TN0]

whence induction oV utilizing Theorem3.2and Corollary3.4 establishes the
general identity forFy in Corollary 3.5 below. Once again, some additional

notation allows us to express the result compactly. Fordny (Z*)Y and
e € (ZT)N-1 we write

N N-1
p(d) := Hp[ and 7(e):= H TS
r=1 s=1

Also for any partition paifd, e) € Q(N) note that the sequendg € (Z)N !
given byd* := Qy_1(d + e) is a length\NV — 1 partition of N — 1, since

N-1 N
Z rd; = Z(T —1)(d: +er)
r=1 r=2

N

N N
= Zrdr + Zre, — Z(d’” +e)
r=1 r=1

r=1

= N+(2N—-2)—2N—-1)=N—1.

Let P(V) be the set of all lengthV partitions of NV, and for eachl* € P(N—1),
let us define the subfamily of partition pai€*'(d*) := {(d,e) € Q(N) :
Qy_1(d + e) = d*}. Then induction establishes
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Corollary 3.5. For any integerN > 2, the polynomialFy satisfies the identity

Fn(uy,...,un;vy,...,0
wle T VoS ey (d + o)

(d,e)eQ(N)
= Z fd*(,Ol,---,,ON)T(d*),
d*cP(N-1)
where
fa(pro-pn) == > c(d,e)p(d).
(d,e)eQ*(d*)
In particular we have
fay=p2 = pi,

f(2,0) = QP:;’ — 2p1p2, f(O,l) = pP3— Pi

f5.00) = 6pip2—p3—5p1,  faro = 5p1—3pip2—2p1p3,  flo01) = Pa—pi-

For eachd* € P(N — 1), the polynomialfg- in the N variablesp, . .., px
has coefficients which are a subfamily of the coefficients introduced in Theorem
3.3 Each(d,e) € Q(N) determines a uniqué* = Qx_1(d +e) € P(N —1),
so the families{c(d,e) : (d,e) € Q*(d*)} comprise a partition of the family
of coefficients{c(d, e) : (d,e) € Q(NN)} introduced in Theorer.3. For each
d* € P(N —1),lete € (Z*)" be such tha)y_;(e) = d* ande; = XV 'd?.
Thene is a lengthV partition of 2NV — 2 with weight2N — 1, and(d,e) €
Q*(d*) whend = (N, 0,...,0). Hencefq- contains the term(d, e)p), and it
follows that f4- is of degreeV. In particular our earlier calculations show that
fa-(p1, ..., pn) = pny — pY¥ whend* = (0,...,0,1) € P(N — 1), and when
evaluated ap; = ... = py = 1 this polynomial takes the value so the sum
of its coefficients i). Then induction establishes
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Corollary 3.6. For any N > 2 and eachd* € P(N — 1), the polynomial
fa=(p1, ..., pn) is of degreeV, and the sum of its coefficients(is

Since eachyfy- satisfiesfa-(1, ..
have

., 1) = 0, it immediately follows that we

Corollary 3.7. For any integerN > 2, the polynomiaF'n (u1, . .., un; v, ..., UN)
has sum of coefficients equaltcand in fact satisfies the identifyy (u1, . . ., uy;
Ugy...,uy) =0,
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We shall now consider evaluations of the coefficient sequenega;, as, . . .)
of the asymptotic expansion of the equipoise cutyéa), for particular choices
ofa e (R")".

First, note thaty1(a) = 0 = Wy (a) for all N > n. This causes no
concern if we use Corollar$.4 to determinea by evaluatingFy at u, =
Yor1(a),vs = Weii(a),1 < r,s < N. On the other hand, it is not immedi-
ately obvious how we should use Corollaéhyp to determinexy when N > n,
since the rational variable. = u,./v, does not have a stand-alone value when

= 0,v, = 0. However, for each partition paiid,e) € Q(N) the prod-
uct p(d)7(Qy_1(d + e)) contains the factopd 7o 1¢ = udper /v e which
takes the valu® whenwu, = 0 andv, = 0, since(),_;(a) nonzero ensures
thatv, = Ws(a) is nonzero. Thus, Corollarg.5 yields ay as the value of
Fy /vt whenu, = %,41(a),v, = Wei(a),1 < r,s < N, by noting
that the only productgy-7(d*) that can be nonzero correspond to partitions
d* € P(N — 1) with Qy_,(d*) = 0.

Example 4.1.1f a € (RT)? with Q,(a) nonzero, it is trivial to verify that the
equipoise curvé, (a) is the straight liney = x + «, witha; = a; anday =0
for N > 2.

Example 4.2.1f a € (R™)? with OQ,(a) nonzero, the equipoise curg (a)

is a hyperbola with asymptotg¢ = = + a4. Corollary 3.5 yields a as the
value of fq-7(d*) ford* = (N — 1,0,...,0) € P(N — 1), with the evaluation
p1 = Ea(a)/ Wa(a), po = Xs(a)/ Ws(a) andm, = Ws(a)/ Wa(a), noting that
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any products op, andr; are equal to zero ifi; = 0. We have
ar=p1, = (p—p)T1, oz = (2p{=2p1p2) 7, aa = (6p1p2—ps—5p7)T7,

and so on. However we do not explicitly know the coefficient§xaf, o o)

in general. On the other hand, Theorén2 conveniently determinesy recur-
sively in this case. In fact, with; and o, as determined above, we have all
later terms given by the recurrence

W ( ) N—1 Asymptotic Expansion of the
3la Equipoise Curve of a
ay = _W2 (a> (; 04304]\[5) for N > 3. Polynomial Inequality
B Roge_r B Eggleton_ and
The substitution3y := —ray for N > 1 converts the recurrence to a pure William P Galvin
convolution
= Title Page
ﬁN = Z ﬁsﬁN—s for N Z 3a
s=1 Contents
corresponding to the classical recurrence satisfied by Catalan numbers, but now PP Y
vyith initial conditions3; = —p; 7 and3, = (p% — p2)TE. There is.an extgnsive . p R
literature on Catalan numbers. An accessible and readily available discussion
is the subject of Chapter 7 of]. Go Back
Introducing the generating function Close
0o Quit
F(Z) = [z + ﬁ222 +...+ BNZN +...= ZﬂTZT, Page 22 of 30
r=1
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and lettingZ := 7, z, we find thatF” satisfiest"(z)? — F'(z) — Z(p1 + p2Z) = 0,
so

1—/14+4Z7 A
F(z) = Vit 2(P1+Pz )‘
Binomial series expansion now leads to an explicit closed-form solutigsfor

whence

2N —2s —1\N — 25,5, N —s—1

s=0

LN/2]
—1)* 2N —2s5 -1
ay = (—m)"! Z L( >p]1\728p§ for N > 1.

Asymptotic Expansion of the
Equipoise Curve of a

Here the quotient of the trinomial coefficient wi2tv' — 2s — 1 can be regarded Polynomial Inequality
as a generalized Catalan number. For example, this explicit solution readily Roger B. Eggleton and
yields William P. Galvin
o [Y9N LT N L5 _
5= 9\5,0,4) " 7\3,1,3)1* T 5\1,2,2) 12| Title Page

whences = (14p7—20p% p2+6p1 p3) 7. Note by Corollary3.6that eachy,- has Contents

coefficient sum zero, so the generalised Catalan numbers have zero alternating <44 33
sumforN > 2:

< | 2
[N/2] s
Z& 2N —2s—1 —0 Go Back
2N —2s —1\N — 25,8, N —s—1 '
5=0 » Close
Alternatively, this identity can be deduced from the quadratic identityfar) Quit

whenp? = py. PuttingZ* := p;7 2 then givesF'(2)? — F(z) — Z*(1+ Z*) = 0,
and binomial series expansion of the solution yields the zero alternating sum
noted.
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Example 4.3. Let us now consider the constant sequeace 1 € (R*)" in
which each term is equal to. ThenX,(1) = (}) = Wi(1) for 1 < k < n,
so in this casex; = 1 and Corollaries3.4 and 3.7 imply thatay = 0 for
N > 2. Hence, as in Examplé.1, the equipoise curv& (1) is the straight line
y = « + 1. This is confirmed by noting that P (z,1) = (z + 1)"* — 2™ and
Si(x,y) = (2" —y")/(x —y),S0AP;(z,1) = Si(x,y) holds whery = = + 1.

Example 4.4.Let) := (61,99, ...,6,) € R™ be a sequence in which every term
satisfies|d,| < e for some small strictly positive € R*. Thena := 1+ €
(R™)™ is a small perturbation of the constant sequemicket¥(d) := 1. Then
for eachk > 1 we have

n

Si(1+06) = zkj (" N 5)23(5) and  Wi(1+4) = (k> + Wi(6).

k—s
s=0

It is convenient to scale the functions, and W), by dividing by>(1) =
Wi(1) = (}) whenl < k < n:forall a € (R")" we define

Si(a) = Su(a)/Su(1)  and  Wila) = Wi(a)/Wi(1).

(It can easily be shown that; (a) is the expected value of the product of terms
in a k-term subsequence af and W (a) is the expected value of the last term
in a k-term subsequence af) It is also appropriate to defin€;(0) = 1. Then

for 1 < k < n the earlier identities become

S+ =Y (’;) S5 and Wi+ 6) =1+ W),

s=0
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We keep fixed and let — 0%, soO(2;(6)) = O(*) andO(W;(8)) = O(e).
In particular,

ay = 14 2%%5(8) — W5 (8) + O(é%).

For any integers > 0, put

(025

and for anyd € (Z*+)N~! defineX(d) := IIY ;' \%. Now evaluating the coef-
ficientay at 1 + § using Corollaries3.4 and 3.5 is convenient so long as we
know fq- explicitly for eachd* € P(N — 1). We have)( fq:) = O(¢) because
pr =14 0(e) for 1 <r <n—1and fq- has zero coefficient sum by Corollary
3.6. AsT, = A\, + O(e) for 1 < s < n — 2, it follows for N > 2 that

ay = Z fd*(pl,...,pN) (d*) + O(e?)

d*eP(N—
where
fd*(Ph - 7PN)
N
= Y cde) (Nz;(a) +>d, [Z5(0) - W:H((S)]) +O(e).
(d,e)eQ*(d*) r=1

On the other hand, using Theoréh® to evaluateny at1 + ¢ yields o, as
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above and forV > 2 yieldsayy via the recurrence

oy = — Z_(S + 1)/\3041\[_5 — N)\N—l (ZT((S) — W;((S))

Ao (Z50) — Wiy (8)) + 0(e).

It follows by induction for/N > 2 thata has zero sum for the coefficients of
the family of functionsZ;(0) andW; (9) with2 < k < N + 1.

Note in particular the special case in whigh () = 0, sod, = 0 for
1 <r<n-1and|),| <e ThenXi(d) = d,/n andW;(0) = ké,/n for
2<k<n,s0a; =1anday = 0for N > 2. This is confirmed directly by
checking thatA Py 5(z,1) = (z + 1)" — 2™ + . (z + 1)" L and Sy, 5(z, y) =
(z" —y")/(x — y) + 5,y " are equal precisely when= z + 1.
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To conclude, let us briefly sample some of the inequalities between the polyno-
mialsAP,(z, 1) andS,(z, y) which are consequences of the preceding asymp-
totic analysis.

Case5.l.a=1¢€ (RT)" withn > 2.

In this case the equipoise curvejis= = + 1, and simple but elegant inequalities
are already implied by Theorerds2and?2.3. For instanceAP; (1,1) =27 —1
andSi(1,3) = (3" — 1)/2. The point(1, 3) lies above the equipoise curve, so
is in the S-region, and Theorera.2implies
3" —1

2
Indeed, the lineg = z + 2 andy = = + 3 lie, respectively, in th&-region and
the A P-region, so forr > 0 we have

n"  , (z+1)"—z" (z+2)"—2z"
(a; + 2> T < 5 < 1 .

These inequalities would usually be deduced from the convexigy-of:™, and
actually hold for allx € R whenn is even.

Sincea; = 1 andayy; = 0for N > 1 whena = 1, less familiar inequali-
ties can be derived by noting that the curyes z+1+z~" andy = z+1—2=%
lie, respectively, in the5-region and theA P-region whenN > 1. Thus for
x > 0 we have

(41- ) -

2" —1 <

(414 )" =

- < T
1+x_N

< (z4+1)"
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Once again these inequalities could be deduced from convexity=of:™, but
now their form is more naturally suggested by the asymptotic expansion of the
equipoise curve.

Case 5.2.a=1+0 € (R*)" withn > 3, and there is some small strictly
positivee € R such thats,| < efor1 <r <n.

Let us consider the special case in whith= —¢,9, = ¢ andd, = 0 for
2<r<n-—1.Then

_ n__,n__ 2 n—2 Asymptotic Expansion of the
APl-i—é(xa 1) - (:E + 1) T € (w + 1) and Equipoise Curve of a
n __ pn Polynomial Inequali
x y quality
-1 -1
S14s(z,y) = +e(y" —a").

Roger B. Eggleton and
William P. Galvin

In this caseX;(d) = 0,%5(5) = —2¢/n(n —1),35(d) =0for3 < k <n, and
Wi (0) = ke/n for 2 < k < n. From Examplet.4we have

Title Page
2 -2 1 -2
ap = 1—56—}—0(62)7 = n3n e+0(€%), a3z = _(n+ 1)8(: )6+O(62). Contents
Thena, > 0 andas < 0, so the curveg = = + a; andy = x + a; + axz ™! 4« dd
lie, respectively, below and above the equipoise curve for sufficiently large < >
Hence
( N )n . Go Back
T « — X
; +el[(z+a)" " —a"] Close
1
<(z+1)"—2"— 62(95 +1)"2 Quit
(x +aq + a2) g\ "1 ) Page 28 of 30
< T [(I—i-ozl—l——) —x”_],
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wherea; anda, take the exact values

() —¢ (5) = (=2) —af [(5) + (", )]

(5) + (n—1)e () + (n—1)e

Case 5.3.a := (a,b,c) € (RT)? with Qy(a) = (b,¢) # (0,0).

ap = and Qp =

As shown in Examplé.2, for N > 1 eachay is a function ofp, p; andr in
this case. Ikt = 0, we easily verify thaty; = a anday = 0 for N > 2. Now
suppose > 0. Thenp,, p; andr; have stand-alone values, ang= 0 precisely
whenp, = p?. But thenay = 0 for N > 2, by the previously noted alternating
sum identity for the generalised Catalan numbersgy If- p? thena, > 0 and
the summation identity fory in Example4.2 implies (—1)Yay > 0, soay
alternates in sign foN > 2. Similarly if p, < p? thena, < 0 anday alternates

in signfor N > 2. As in Caseb.2above we can deduce relevant inequalities. In
particular, ifp, > p? then for sufficiently large: we have

az® + br(x + ay) + c(x + ay)?
<(z+a)(z+0b)(z+c)—a*

2 (67) (6%) 2
< aw +bx<x+a1—|——>+c<x+a1+—> )
x x

wherea; andas, have their exact values, given explicitly in Examplée.
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