ON SHORT SUMS OF CERTAIN MULTIPLICATIVE FUNCTIONS

OLIVIER BORDELLÈS

22 rue Jean Barthélemy 43000 LE PUY-EN-VELAY FRANCE borde43@wanadoo.fr

Received 30 August, 2002; accepted 16 October, 2002
Communicated by L. Toth

Abstract. We use the recent theory of integer points close to a smooth curve developed by Huxley-Sargos and Filaseta-Trifonov to get an asymptotic formula for short sums of a class of multiplicative functions.

Key words and phrases: Multiplicative Functions, Short Sums, Integer points close to a curve.
2000 Mathematics Subject Classification 11N37, 11P21.

1. Introduction and Notation

Let $k \geqslant 2$ be an integer. A positive integer n is said to be $k-$ free (resp. $k-f u l l$) if, for any prime $p \mid n$, the p-adic valuation $v_{p}(n)$ of n satisfies $v_{p}(n)<k$ (resp. $v_{p}(n) \geqslant k$), and we use the terms squarefree or squarefull when $k=2$. We denote by μ_{k} the multiplicative function defined by

$$
\mu_{k}(n):= \begin{cases}1, & \text { if } n \text { is } k-\text { free } \\ 0, & \text { otherwise }\end{cases}
$$

Obtaining gap results for k-free (or k-full) numbers is a very famous problem in analytic number theory (see [1] and the references). The best estimation in this direction has been obtained by Filaseta and Trifonov ([1]) who showed that, for x sufficiently large, any interval of the type $\left.] x ; x+c x^{1 /(2 k+1)} \log x\right](c:=c(k)>0)$ contains a k-free number.

A dual problem is to get an asymptotic formula for μ_{k}. This requires estimations for short sums of multiplicative functions, but such results are still relatively rare in the literature (see [2, 6]). In this paper, we are motivated by finding asymptotic results for short sums of the following class of arithmetical functions: define \mathcal{M} to be the set of multiplicative functions f verifying $0 \leqslant f(n) \leqslant 1$ for any positive integer n and $f(p)=1$ for any prime number p. If

[^0]$f \in \mathcal{M}$, we set
$$
\mathcal{P}(f):=\prod_{p}\left(1-\frac{1}{p}\right)\left(1+\sum_{l=1}^{\infty} \frac{f\left(p^{l}\right)}{p^{l}}\right) .
$$

We prove:
Theorem 1.1. Let $\varepsilon>0$ and $x, y \geqslant 2$ be real numbers such that $x^{6 \varepsilon} \leqslant y \leqslant x$. If $f \in \mathcal{M}$, we have as $x \rightarrow+\infty$:

$$
\sum_{x<n \leqslant x+y} f(n)=y \mathcal{P}(f)+O\left(x^{1 / 6+\varepsilon}+y^{1 / 2}\right) .
$$

Moreover, if $y \leqslant x^{1 / 3}$, then:

$$
\sum_{x<n \leqslant x+y} f(n)=y \mathcal{P}(f)+O\left(x^{1 / 7+\varepsilon}+x^{1 / 21+\varepsilon} y^{2 / 3}\right) .
$$

For example, using this, we get:

$$
\sum_{x<n \leqslant x+y} \mu_{2}(n)=\frac{6 y}{\pi^{2}}+O\left(x^{1 / 6+\varepsilon}+y^{1 / 2}\right)
$$

with $x^{6 \varepsilon} \leqslant y \leqslant x$. The proof of this theorem uses a convolution argument, and the new theory of integer points close to a curve (see [1, 3, 4]) arises as the crucial point to estimate the difference of integer parts.

In what follows, $a, b, d, k, l, m, n, q, B, N$ will always denote positive integers, p will be a prime number and $[x]$ is the integral part of x. For any $X, Y>0$, the notation $X \ll Y$ means there exists $C>0$ such that $X \leqslant C Y$. the notation $X \asymp Y$ means $X \ll Y$ and $Y \ll X$ simultaneously.

If f, g are two arithmetical functions, the Dirichlet convolution product $f * g$ is defined by

$$
(f * g)(n):=\sum_{d \mid n} f(d) g(n / d) .
$$

$\mu(n)$ is the Möbius function, $\tau(n):=\sum_{d \mid n} 1$ the classical divisor function, and, more generally, $\tau_{(k)}(n)$ is the arithmetical function defined by

$$
\tau_{(k)}(n):=\sum_{d^{k} \mid n} 1 .
$$

If φ is any smooth function and if $\delta>0$ is any real number, we set

$$
\mathcal{R}(\varphi, N, \delta):=\mid\{n \in] N ; 2 N] \cap \mathbb{Z}, \exists m \in \mathbb{Z},|\varphi(n)-m| \leqslant \delta\} \mid
$$

Thus, if δ is sufficiently small, $\mathcal{R}(\varphi, N, \delta)$ counts the number of integer points close to the curve $y=\varphi(x)$ when $N<x \leqslant 2 N$, and then

$$
\mathcal{R}(\varphi, N, \delta)=\sum_{N<n \leqslant 2 N}([\varphi(n)+\delta]-[\varphi(n)-\delta]) .
$$

We will therefore use the following principle: let M be a large real number, $\varphi(n)$ and $\delta(n)$ two functions such that $\delta:=\max _{n \leqslant M} \delta(n)$ satisfies $0<\delta \leqslant 1 / 4$. Then we have

$$
\begin{equation*}
\sum_{n \leqslant M}([\varphi(n)+\delta(n)]-[\varphi(n)]) \ll \max _{N \leqslant M} \mathcal{R}(\varphi, N, \delta) \log M . \tag{1.1}
\end{equation*}
$$

2. Auxiliart Results

We collect here the lemmas we will use to show the theorem. The first was proved by Huxley and Sargos in [3, 4] using divided differences and the reduction principle, and the second is due to a remarkable work by Filaseta and Trifonov ([1, Theorem 7]) who used divided differences and a very useful polynomial identity:
Lemma 2.1. Let $\delta>0$ be a real number and $\left.\left.\varphi \in C^{k}(] N ; 2 N\right] \mapsto \mathbb{R}\right)$ such that there exists a real number $\lambda_{k}>0$ such that

$$
\left|\varphi^{(k)}(x)\right| \asymp \lambda_{k}
$$

for any real number $x \in] N ; 2 N]$. Then:
(i) If $k \geqslant 2$,

$$
\mathcal{R}(\varphi, N, \delta) \ll N \lambda_{k}^{\frac{2}{k(k+1)}}+N \delta^{\frac{2}{k(k-1)}}+\left(\delta \lambda_{k}^{-1}\right)^{1 / k}+1
$$

(ii) Moreover, if $k \geqslant 5$ and $\left|\varphi^{(k-1)}(x)\right| \asymp \lambda_{k-1}=N \lambda_{k}$ for any real number $\left.\left.x \in\right] N ; 2 N\right]$, then:

$$
\mathcal{R}(\varphi, N, \delta) \ll N \lambda_{k}^{\frac{2}{k(k+1)}}+N \delta^{\frac{2}{(k-1)(k-2)}}+\left(\delta \lambda_{k-1}^{-1}\right)^{\frac{1}{k-1}}+1 .
$$

Lemma 2.2. Let $k \geqslant 2$ be an integer and $x, c_{0}>0, \delta \geqslant 0$ be real numbers (c_{0} sufficiently small) satisfying $N^{k-1} \delta \leqslant c_{0}$ and $N \leqslant x^{1 / k}$. Then we have:

$$
\mathcal{R}\left(\frac{x}{n^{k}}, N, \delta\right) \ll x^{\frac{1}{2 k+1}}+x^{\frac{1}{6 k+3}} \delta N^{\frac{6 k^{2}+k-1}{6 k+3}} .
$$

Lemma 2.3. Let $f \in \mathcal{M}$ and $z \geqslant 1$ any real number. Then:
(i)

$$
\sum_{\substack{n \leqslant z \\ n \text { squarefull }}} 1<3 z^{1 / 2} \text { and } \sum_{\substack{n \geq z \\ n \text { squarefull }}} \frac{1}{n}<8 z^{-1 / 2} .
$$

(ii)

$$
\sum_{n \leqslant z}|(f * \mu)(n)|<4 z^{1 / 2} \quad \text { and } \quad \sum_{n>z} \frac{|(f * \mu)(n)|}{n}<8 z^{-1 / 2} .
$$

Proof. (i) Since every squarefull number n can be written in a unique way as $n=a^{2} b^{3}$ with b squarefree, we have:

$$
\sum_{\substack{n \leqslant z \\ n \text { squarefull }}} 1 \leqslant \sum_{b \leqslant z^{1 / 3}} \sum_{a \leqslant \sqrt{z b^{-3}}} 1<z^{1 / 2} \sum_{b=1}^{\infty} b^{-3 / 2}=\zeta\left(\frac{3}{2}\right) z^{1 / 2}
$$

and the well-known inequality $\zeta(\sigma) \leqslant \sigma /(\sigma-1)$ gives the first part of the result. In the same way, let $Z>z$ be any real number. We have:

$$
\begin{aligned}
\sum_{\substack{z<n \leqslant Z \\
n \text { squarefull }}} \frac{1}{n} & \leqslant \sum_{b \leqslant z^{1 / 3}} \frac{1}{b^{3}} \sum_{\sqrt{z b^{-3}}<a \leqslant \sqrt{Z b^{-3}}} \frac{1}{a^{2}}+\sum_{z^{1 / 3}<b \leqslant Z^{1 / 3}} \frac{1}{b^{3}} \sum_{a \leqslant \sqrt{Z b^{-3}}} \frac{1}{a^{2}} \\
& <2 z^{-1 / 2} \sum_{b \leqslant z^{1 / 3}} \frac{1}{b^{3 / 2}}+\frac{\pi^{2}}{6} \sum_{b>z^{1 / 3}} \frac{1}{b^{3}} \\
& \leqslant 6 z^{-1 / 2}+\frac{\pi^{2}}{6} z^{-2 / 3}<8 z^{-1 / 2} .
\end{aligned}
$$

(ii) We set $g:=f * \mu$. The hypothesis $f(p)=1$ implies $|g(p)|=0$ and, using multiplicativity, $\left|g\left(n_{1}\right)\right|=0$ for any positive squarefree integer $n_{1}>1$. Since any positive integer n can be written in a unique way as $n=n_{1} n_{2}$ with n_{1} squarefree, n_{2} squarefull and $\left(n_{1}, n_{2}\right)=1$, we deduce that $|g(n)| \neq 0$ if either $n=1$ or $n>1$ is squarefull. The result follows by using (i) and the fact that $|g(n)| \leqslant 1$ for any positive integer n.

Lemma 2.4. Let $k \geqslant 1$ be an integer and $\varepsilon>0$ be a fixed real number. Then, for any positive integer d, we have:

$$
\tau_{(k)}(d) \leqslant\left(\frac{2}{e \varepsilon \log 2}\right)^{2^{1 / \varepsilon}} d^{\varepsilon / k}
$$

Proof. We set $c(\varepsilon):=2^{2^{1 / \varepsilon}}(e \varepsilon \log 2)^{-2^{1 / \varepsilon}}$. The bound $\tau(d) \leqslant c(\varepsilon) d^{\varepsilon}$ is well-known (see [5]). Since any positive integer n can be represented in a unique way as $n=q m^{k}$ with q a positive k-free integer, we have

$$
\tau_{(k)}(d)=\tau(m) \leqslant c(\varepsilon) m^{\varepsilon} \leqslant c(\varepsilon) d^{\varepsilon / k} .
$$

3. Proof of the Theorem

Let $\varepsilon>0$ be a fixed real number. We take $g:=f * \mu$ again, and we have:

$$
\begin{aligned}
\sum_{x<n \leqslant x+y} f(n) & =\sum_{x<n \leqslant x+y} \sum_{d \mid n} g(d) \\
& =\sum_{d \leqslant x+y} g(d)\left(\left[\frac{x+y}{d}\right]-\left[\frac{x}{d}\right]\right) \\
& =\sum_{d \leqslant y}+\sum_{y<d \leqslant x+y}:=\Sigma_{1}+\Sigma_{2} .
\end{aligned}
$$

(1) Using Lemma 2.3, we have:

$$
\begin{aligned}
\Sigma_{1} & =y \sum_{d \leqslant y} \frac{g(d)}{d}+O\left(\sum_{d \leqslant y}|g(d)|\right) \\
& =y \sum_{d=1}^{\infty} \frac{g(d)}{d}+O\left(y \sum_{d>y} \frac{|g(d)|}{d}\right)+O\left(y^{1 / 2}\right) \\
& =y \prod_{p}\left(1+\sum_{l=1}^{\infty} \frac{f\left(p^{l}\right)-f\left(p^{l-1}\right)}{p^{l}}\right)+O\left(y^{1 / 2}\right) \\
& =y \prod_{p}\left(1+\left(1-\frac{1}{p}\right) \sum_{l=1}^{\infty} \frac{f\left(p^{l}\right)}{p^{l}}-\frac{1}{p}\right)+O\left(y^{1 / 2}\right) \\
& =y \mathcal{P}(f)+O\left(y^{1 / 2}\right) .
\end{aligned}
$$

(2) Writing again $d=a^{2} b^{3}$ with $\mu_{2}(b)=1$, we have:

$$
\left|\Sigma_{2}\right| \leqslant \sum_{\substack{y<d \leqslant x+y \\ d \text { squareull }}}|g(d)|\left(\left[\frac{x+y}{d}\right]-\left[\frac{x}{d}\right]\right)
$$

$$
\begin{aligned}
& \leqslant \sum_{b \leqslant(x+y)^{1 / 3}} \sum_{\sqrt{\frac{y}{b^{3}}}<a \leqslant \sqrt{\frac{x+y}{b^{3}}}}\left(\left[\frac{(x+y) b^{-3}}{a^{2}}\right]-\left[\frac{x b^{-3}}{a^{2}}\right]\right) \\
& =\sum_{b \leqslant(x+y)^{1 / 3}} \sum_{x b^{-3}<d \leqslant(x+y) b^{-3}} \sum_{a^{2} \mid d} 1 \\
& \leqslant \sum_{b \leqslant(x+y)^{1 / 3}} \sum_{x b^{-3}<d \leqslant(x+y) b^{-3}} \tau_{(2)}(d) \\
& \leqslant c(\varepsilon)(2 x)^{\varepsilon / 2} \sum_{b \leqslant(x+y)^{\frac{x+y}{b^{3}}}}\left(\left[\frac{x+y}{b^{3}}\right]-\left[\frac{x}{b^{3}}\right]\right) \\
& \leqslant x^{\varepsilon} \max _{1 \leqslant B \leqslant(x+y)^{1 / 3}} \mathcal{R}\left(\frac{x}{b^{3}}, B, \frac{y}{B^{3}}\right),
\end{aligned}
$$

where we used (1.1), Lemma 2.4 (with $k=2$) and the inequality $\log x \leqslant 2(e \varepsilon)^{-1} x^{\varepsilon / 2}$. Now Lemma 2.1(i) with $k=3$ and $\lambda_{3}=x B^{-6}$ gives

$$
\left|\Sigma_{2}\right| \ll x^{\varepsilon}\left(x^{1 / 6}+y^{1 / 3}\right) \ll x^{1 / 6+\varepsilon}+y^{1 / 2}
$$

since $y \geqslant x^{6 \varepsilon}$.
(3) We suppose now that $y \leqslant x^{1 / 3}$. One can improve the former estimation by using Lemma 2.2 instead of Lemma 2.1. The hypothesis $N^{k-1} \delta \leqslant c_{0}$ compels us to be more careful:

$$
\begin{aligned}
& \quad \sum_{b \leqslant(x+y)^{1 / 3}}\left(\left[\frac{x+y}{b^{3}}\right]-\left[\frac{x}{b^{3}}\right]\right) \\
& \quad=\sum_{b \leqslant c_{0}^{-1} y}\left(\left[\frac{x+y}{b^{3}}\right]-\left[\frac{x}{b^{3}}\right]\right)+\sum_{c_{0}^{-1} y<b \leqslant(x+y)^{1 / 3}}\left(\left[\frac{x+y}{b^{3}}\right]-\left[\frac{x}{b^{3}}\right]\right) \\
& \quad \ll\left\{\max _{B \leqslant c_{0}^{-1} y} \mathcal{R}\left(\frac{x}{b^{3}}, B, \frac{y}{B^{3}}\right)+\max _{c_{0}^{-1} y<B \leqslant(x+y)^{1 / 3}} \mathcal{R}\left(\frac{x}{b^{3}}, B, \frac{y}{B^{3}}\right)\right\} \log x .
\end{aligned}
$$

Lemma 2.1 ($i i$) with $k=6$ for the first sum and Lemma 2.2 with $k=3$ for the second yield:

$$
\sum_{b \leqslant(x+y)^{1 / 3}}\left(\left[\frac{x+y}{b^{3}}\right]-\left[\frac{x}{b^{3}}\right]\right) \ll\left\{x^{-1 / 5} y^{6 / 5}+y^{4 / 5}+x^{1 / 7}+x^{1 / 21} y^{2 / 3}\right\} \log x
$$

and one easily checks that

$$
x^{-1 / 5} y^{6 / 5}+y^{4 / 5} \ll x^{1 / 21} y^{2 / 3}
$$

if $y \leqslant x^{1 / 3}$. The proof of the theorem is complete.

REFERENCES

[1] M. FILASETA and O. TRIFONOV, The distribution of fractional parts with applications to gap results in Number Theory, Proc. London Math. Soc., 73 (1996), 241-278.
[2] A. HILDEBRAND, Multiplicative functions in short intervals, Can. J. Math., 3 (1987), 646-672.
[3] M.N. HUXLEY AND P. SARGOS, Points entiers au voisinage d'une courbe plane de classe C^{n}, Acta Arith., 69 (1995), 359-366.
[4] M.N. HUXLEY AND P. SARGOS, Points entiers au voisinage d'une courbe plane de classe C^{n} II, les prépublications de l'Institut Elie Cartan de Nancy (1997).
[5] D.S. MITRINOVIĆ AND J. SÁNDOR (in cooperation with B. Crstici), Handbook of Number Theory, Kluwer Academic Publisher (1996).
[6] P. SHIU, A Brun-Titchmarsh theorem for multiplicative functions, J. Reine Angew. Math., 313 (1980), 161-170.

[^0]: ISSN (electronic): 1443-5756
 (c) 2002 Victoria University. All rights reserved.

 092-02

