

Journal of Inequalities in Pure and Applied Mathematics

http://jipam.vu.edu.au/

Volume 3, Issue 5, Article 70, 2002

ON SHORT SUMS OF CERTAIN MULTIPLICATIVE FUNCTIONS

OLIVIER BORDELLÈS

22 RUE JEAN BARTHÉLEMY 43000 LE PUY-EN-VELAY FRANCE borde43@wanadoo.fr

Received 30 August, 2002; accepted 16 October, 2002 Communicated by L. Toth

ABSTRACT. We use the recent theory of integer points close to a smooth curve developed by Huxley-Sargos and Filaseta-Trifonov to get an asymptotic formula for short sums of a class of multiplicative functions.

Key words and phrases: Multiplicative Functions, Short Sums, Integer points close to a curve.

2000 Mathematics Subject Classification. 11N37, 11P21.

1. INTRODUCTION AND NOTATION

Let $k \ge 2$ be an integer. A positive integer n is said to be k-free (resp. k-full) if, for any prime $p \mid n$, the p-adic valuation $v_p(n)$ of n satisfies $v_p(n) < k$ (resp. $v_p(n) \ge k$), and we use the terms squarefree or squarefull when k = 2. We denote by μ_k the multiplicative function defined by

 $\mu_{k}(n) := \begin{cases} 1, & \text{if } n \text{ is } k - \text{free} \\ \\ 0, & \text{otherwise.} \end{cases}$

Obtaining gap results for k-free (or k-full) numbers is a very famous problem in analytic number theory (see [1] and the references). The best estimation in this direction has been obtained by Filaseta and Trifonov ([1]) who showed that, for x sufficiently large, any interval of the type $]x; x + cx^{1/(2k+1)} \log x]$ (c := c(k) > 0) contains a k-free number.

A dual problem is to get an asymptotic formula for μ_k . This requires estimations for short sums of multiplicative functions, but such results are still relatively rare in the literature (see [2, 6]). In this paper, we are motivated by finding asymptotic results for short sums of the following class of arithmetical functions: define \mathcal{M} to be the set of multiplicative functions fverifying $0 \leq f(n) \leq 1$ for any positive integer n and f(p) = 1 for any prime number p. If

ISSN (electronic): 1443-5756

^{© 2002} Victoria University. All rights reserved.

⁰⁹²⁻⁰²

 $f \in \mathcal{M}$, we set

$$\mathcal{P}(f) := \prod_{p} \left(1 - \frac{1}{p} \right) \left(1 + \sum_{l=1}^{\infty} \frac{f(p^l)}{p^l} \right).$$

We prove:

Theorem 1.1. Let $\varepsilon > 0$ and $x, y \ge 2$ be real numbers such that $x^{6\varepsilon} \le y \le x$. If $f \in \mathcal{M}$, we have as $x \to +\infty$:

$$\sum_{x < n \leq x+y} f(n) = y \mathcal{P}(f) + O\left(x^{1/6+\varepsilon} + y^{1/2}\right).$$

Moreover, if $y \leq x^{1/3}$, then:

$$\sum_{x < n \leq x+y} f(n) = y \mathcal{P}(f) + O\left(x^{1/7+\varepsilon} + x^{1/21+\varepsilon}y^{2/3}\right).$$

For example, using this, we get:

$$\sum_{x < n \leq x+y} \mu_2(n) = \frac{6y}{\pi^2} + O\left(x^{1/6+\varepsilon} + y^{1/2}\right)$$

with $x^{6\varepsilon} \leq y \leq x$. The proof of this theorem uses a convolution argument, and the new theory of integer points close to a curve (see [1, 3, 4]) arises as the crucial point to estimate the difference of integer parts.

In what follows, a, b, d, k, l, m, n, q, B, N will always denote positive integers, p will be a prime number and [x] is the integral part of x. For any X, Y > 0, the notation $X \ll Y$ means there exists C > 0 such that $X \leq CY$. the notation $X \simeq Y$ means $X \ll Y$ and $Y \ll X$ simultaneously.

If f, g are two arithmetical functions, the Dirichlet convolution product f * g is defined by

$$(f * g)(n) := \sum_{d|n} f(d) g(n/d).$$

 $\mu(n)$ is the Möbius function, $\tau(n) := \sum_{d|n} 1$ the classical divisor function, and, more generally, $\tau_{(k)}(n)$ is the arithmetical function defined by

$$\tau_{(k)}\left(n\right) := \sum_{d^k|n} 1.$$

If φ is any smooth function and if $\delta > 0$ is any real number, we set

$$\mathcal{R}\left(\varphi, N, \delta\right) := \left| \left\{ n \in \left] N; 2N \right] \cap \mathbb{Z}, \ \exists \, m \in \mathbb{Z}, \ \left| \varphi\left(n\right) - m \right| \leqslant \delta \right\} \right|.$$

Thus, if δ is sufficiently small, $\mathcal{R}(\varphi, N, \delta)$ counts the number of integer points close to the curve $y = \varphi(x)$ when $N < x \leq 2N$, and then

$$\mathcal{R}(\varphi, N, \delta) = \sum_{N < n \leq 2N} \left(\left[\varphi(n) + \delta \right] - \left[\varphi(n) - \delta \right] \right).$$

We will therefore use the following principle: *let* M *be a large real number,* $\varphi(n)$ *and* $\delta(n)$ *two functions such that* $\delta := \max_{n \le M} \delta(n)$ *satisfies* $0 < \delta \le 1/4$. *Then we have*

(1.1)
$$\sum_{n \leq M} \left(\left[\varphi\left(n\right) + \delta\left(n\right) \right] - \left[\varphi\left(n\right) \right] \right) \ll \max_{N \leq M} \mathcal{R}\left(\varphi, N, \delta\right) \log M.$$

2. AUXILIARY RESULTS

We collect here the lemmas we will use to show the theorem. The first was proved by Huxley and Sargos in [3, 4] using divided differences and the reduction principle, and the second is due to a remarkable work by Filaseta and Trifonov ([1, Theorem 7]) who used divided differences and a very useful polynomial identity:

Lemma 2.1. Let $\delta > 0$ be a real number and $\varphi \in C^k([N; 2N] \mapsto \mathbb{R})$ such that there exists a real number $\lambda_k > 0$ such that

$$\left|\varphi^{(k)}\left(x\right)\right| \asymp \lambda_{k}$$

for any real number $x \in [N; 2N]$. Then:

(i) If $k \ge 2$,

$$\mathcal{R}\left(\varphi, N, \delta\right) \ll N\lambda_{k}^{\frac{2}{k(k+1)}} + N\delta^{\frac{2}{k(k-1)}} + \left(\delta\lambda_{k}^{-1}\right)^{1/k} + 1.$$

(*ii*) Moreover, if $k \ge 5$ and $|\varphi^{(k-1)}(x)| \asymp \lambda_{k-1} = N\lambda_k$ for any real number $x \in [N; 2N]$, then:

$$\mathcal{R}\left(\varphi, N, \delta\right) \ll N\lambda_{k}^{\frac{2}{k(k+1)}} + N\delta^{\frac{2}{(k-1)(k-2)}} + \left(\delta\lambda_{k-1}^{-1}\right)^{\frac{1}{k-1}} + 1.$$

Lemma 2.2. Let $k \ge 2$ be an integer and $x, c_0 > 0, \delta \ge 0$ be real numbers (c_0 sufficiently small) satisfying $N^{k-1}\delta \le c_0$ and $N \le x^{1/k}$. Then we have:

$$\mathcal{R}\left(\frac{x}{n^k}, N, \delta\right) \ll x^{\frac{1}{2k+1}} + x^{\frac{1}{6k+3}} \delta N^{\frac{6k^2+k-1}{6k+3}}.$$

Lemma 2.3. Let $f \in \mathcal{M}$ and $z \ge 1$ any real number. Then:

n

(i)

$$\sum_{\substack{n \leqslant z \\ \text{squarefull}}} 1 < 3z^{1/2} \quad and \quad \sum_{\substack{n > z \\ n \text{ squarefull}}} \frac{1}{n} < 8z^{-1/2}.$$

(ii)

$$\sum_{n \leq z} |(f * \mu)(n)| < 4z^{1/2} \quad and \quad \sum_{n > z} \frac{|(f * \mu)(n)|}{n} < 8z^{-1/2}$$

Proof. (i) Since every squarefull number n can be written in a unique way as $n = a^2b^3$ with b squarefree, we have:

$$\sum_{\substack{n \leqslant z \\ n \text{ squarefull}}} 1 \leqslant \sum_{b \leqslant z^{1/3}} \sum_{a \leqslant \sqrt{zb^{-3}}} 1 < z^{1/2} \sum_{b=1}^{\infty} b^{-3/2} = \zeta\left(\frac{3}{2}\right) z^{1/2}$$

and the well-known inequality $\zeta(\sigma) \leq \sigma/(\sigma-1)$ gives the first part of the result. In the same way, let Z > z be any real number. We have:

$$\sum_{\substack{z < n \leqslant Z \\ n \text{ squarefull}}} \frac{1}{n} \leqslant \sum_{b \leqslant z^{1/3}} \frac{1}{b^3} \sum_{\sqrt{zb^{-3}} < a \leqslant \sqrt{Zb^{-3}}} \frac{1}{a^2} + \sum_{z^{1/3} < b \leqslant Z^{1/3}} \frac{1}{b^3} \sum_{a \leqslant \sqrt{Zb^{-3}}} \frac{1}{a^2} \\ < 2z^{-1/2} \sum_{b \leqslant z^{1/3}} \frac{1}{b^{3/2}} + \frac{\pi^2}{6} \sum_{b > z^{1/3}} \frac{1}{b^3} \\ \leqslant 6z^{-1/2} + \frac{\pi^2}{6} z^{-2/3} < 8z^{-1/2}.$$

(*ii*) We set $g := f * \mu$. The hypothesis f(p) = 1 implies |g(p)| = 0 and, using multiplicativity, $|g(n_1)| = 0$ for any positive squarefree integer $n_1 > 1$. Since any positive integer n can be written in a unique way as $n = n_1 n_2$ with n_1 squarefree, n_2 squarefull and $(n_1, n_2) = 1$, we deduce that $|g(n)| \neq 0$ if either n = 1 or n > 1 is squarefull. The result follows by using (*i*) and the fact that $|g(n)| \leq 1$ for any positive integer n.

Lemma 2.4. Let $k \ge 1$ be an integer and $\varepsilon > 0$ be a fixed real number. Then, for any positive integer d, we have:

$$\tau_{(k)}(d) \leqslant \left(\frac{2}{e\varepsilon \log 2}\right)^{2^{1/\varepsilon}} d^{\varepsilon/k}.$$

Proof. We set $c(\varepsilon) := 2^{2^{1/\varepsilon}} (e\varepsilon \log 2)^{-2^{1/\varepsilon}}$. The bound $\tau(d) \leq c(\varepsilon) d^{\varepsilon}$ is well-known (see [5]). Since any positive integer n can be represented in a unique way as $n = qm^k$ with q a positive k-free integer, we have

$$\tau_{(k)}(d) = \tau(m) \leqslant c(\varepsilon) m^{\varepsilon} \leqslant c(\varepsilon) d^{\varepsilon/k}.$$

3. PROOF OF THE THEOREM

Let $\varepsilon > 0$ be a fixed real number. We take $g := f * \mu$ again, and we have:

$$\sum_{x < n \leq x+y} f(n) = \sum_{x < n \leq x+y} \sum_{d|n} g(d)$$
$$= \sum_{d \leq x+y} g(d) \left(\left[\frac{x+y}{d} \right] - \left[\frac{x}{d} \right] \right)$$
$$= \sum_{d \leq y} + \sum_{y < d \leq x+y} := \Sigma_1 + \Sigma_2.$$

(1) Using Lemma 2.3, we have:

$$\begin{split} \Sigma_1 &= y \sum_{d \leqslant y} \frac{g\left(d\right)}{d} + O\left(\sum_{d \leqslant y} |g\left(d\right)|\right) \\ &= y \sum_{d=1}^{\infty} \frac{g\left(d\right)}{d} + O\left(y \sum_{d > y} \frac{|g\left(d\right)|}{d}\right) + O\left(y^{1/2}\right) \\ &= y \prod_p \left(1 + \sum_{l=1}^{\infty} \frac{f\left(p^l\right) - f\left(p^{l-1}\right)}{p^l}\right) + O\left(y^{1/2}\right) \\ &= y \prod_p \left(1 + \left(1 - \frac{1}{p}\right) \sum_{l=1}^{\infty} \frac{f\left(p^l\right)}{p^l} - \frac{1}{p}\right) + O\left(y^{1/2}\right) \\ &= y \mathcal{P}\left(f\right) + O\left(y^{1/2}\right). \end{split}$$

(2) Writing again $d = a^2b^3$ with $\mu_2(b) = 1$, we have:

$$|\Sigma_2| \leqslant \sum_{\substack{y < d \leqslant x+y \\ d \text{ squarefull}}} |g(d)| \left(\left[\frac{x+y}{d} \right] - \left[\frac{x}{d} \right] \right)$$

$$\begin{split} &\leqslant \sum_{b\leqslant (x+y)^{1/3}} \sum_{\sqrt{\frac{y}{b^3}} < a \leqslant \sqrt{\frac{x+y}{b^3}}} \left(\left[\frac{(x+y) b^{-3}}{a^2} \right] - \left[\frac{x b^{-3}}{a^2} \right] \right) \\ &= \sum_{b\leqslant (x+y)^{1/3}} \sum_{x b^{-3} < d \leqslant (x+y) b^{-3}} \sum_{\substack{a^2 \mid d \\ \sqrt{\frac{y}{b^3}} < a \leqslant \sqrt{\frac{x+y}{b^3}}}} 1 \\ &\leqslant \sum_{b\leqslant (x+y)^{1/3}} \sum_{x b^{-3} < d \leqslant (x+y) b^{-3}} \tau_{(2)} \left(d \right) \\ &\leqslant c \left(\varepsilon \right) \left(2x \right)^{\varepsilon/2} \sum_{b\leqslant (x+y)^{1/3}} \left(\left[\frac{x+y}{b^3} \right] - \left[\frac{x}{b^3} \right] \right) \\ &\ll x^{\varepsilon} \max_{1\leqslant B \leqslant (x+y)^{1/3}} \mathcal{R} \left(\frac{x}{b^3}, B, \frac{y}{B^3} \right), \end{split}$$

where we used (1.1), Lemma 2.4 (with k = 2) and the inequality $\log x \leq 2 (e\varepsilon)^{-1} x^{\varepsilon/2}$. Now Lemma 2.1(*i*) with k = 3 and $\lambda_3 = xB^{-6}$ gives

$$|\Sigma_2| \ll x^{\varepsilon} \left(x^{1/6} + y^{1/3} \right) \ll x^{1/6+\varepsilon} + y^{1/2}$$

since $y \ge x^{6\varepsilon}$.

(3) We suppose now that $y \leq x^{1/3}$. One can improve the former estimation by using Lemma 2.2 instead of Lemma 2.1. The hypothesis $N^{k-1}\delta \leq c_0$ compels us to be more careful:

$$\sum_{b \leqslant (x+y)^{1/3}} \left(\left[\frac{x+y}{b^3} \right] - \left[\frac{x}{b^3} \right] \right)$$
$$= \sum_{b \leqslant c_0^{-1}y} \left(\left[\frac{x+y}{b^3} \right] - \left[\frac{x}{b^3} \right] \right) + \sum_{c_0^{-1}y < b \leqslant (x+y)^{1/3}} \left(\left[\frac{x+y}{b^3} \right] - \left[\frac{x}{b^3} \right] \right)$$
$$\ll \left\{ \max_{B \leqslant c_0^{-1}y} \mathcal{R}\left(\frac{x}{b^3}, B, \frac{y}{B^3} \right) + \max_{c_0^{-1}y < B \leqslant (x+y)^{1/3}} \mathcal{R}\left(\frac{x}{b^3}, B, \frac{y}{B^3} \right) \right\} \log x.$$

Lemma 2.1(*ii*) with k = 6 for the first sum and Lemma 2.2 with k = 3 for the second yield:

$$\sum_{b \leqslant (x+y)^{1/3}} \left(\left[\frac{x+y}{b^3} \right] - \left[\frac{x}{b^3} \right] \right) \ll \left\{ x^{-1/5} y^{6/5} + y^{4/5} + x^{1/7} + x^{1/21} y^{2/3} \right\} \log x$$

and one easily checks that

$$x^{-1/5}y^{6/5} + y^{4/5} \ll x^{1/21}y^{2/3}$$

if $y \leq x^{1/3}$. The proof of the theorem is complete.

REFERENCES

- [1] M. FILASETA AND O. TRIFONOV, The distribution of fractional parts with applications to gap results in Number Theory, *Proc. London Math. Soc.*, **73** (1996), 241–278.
- [2] A. HILDEBRAND, Multiplicative functions in short intervals, Can. J. Math., 3 (1987), 646–672.
- [3] M.N. HUXLEY AND P. SARGOS, Points entiers au voisinage d'une courbe plane de classe C^n , *Acta Arith.*, **69** (1995), 359–366.

- [4] M.N. HUXLEY AND P. SARGOS, Points entiers au voisinage d'une courbe plane de classe C^n II, les prépublications de l'Institut Elie Cartan de Nancy (1997).
- [5] D.S. MITRINOVIĆ AND J. SÁNDOR (in cooperation with B. Crstici), *Handbook of Number Theory*, Kluwer Academic Publisher (1996).
- [6] P. SHIU, A Brun-Titchmarsh theorem for multiplicative functions, J. Reine Angew. Math., 313 (1980), 161–170.