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ABSTRACT. In this paper, using Grüss’ and Chebyshev’s inequalities we prove several inequal-
ities involving Taylor’s remainder.
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1. I NTRODUCTION AND L EMMA

This paper is a continuation of our paper [4]. As in [4], our goal is to prove several integral
inequalities involving Taylor’s remainder. Our method is similar to that used in [4]. However,
while in [4] we deduced our inequalities from Steffensen’s inequality, in the present paper we
use Grüss’ and Chebyshev’s inequalities. We are thankful to Professor S.S. Dragomir who
pointed out that Grüss’ and Chebyshev’s inequalities were used earlier by G.A. Anastassiou
and S.S. Dragomir [2], [3] to obtain results on Taylor’s remainder different from but related to
the results of this paper. The main results of this paper are Theorems 2.1 and 3.1.

In what follows n denotes a non-negative integer. We will denote byRn,f (c, x) the nth
Taylor’s remainder of functionf(x) with centerc, i.e.

Rn,f (c, x) = f(x)−
n∑

k=0

f (k)(c)

k!
(x− c)k.

Lemma 1.1. Letf be a function defined on[a, b]. Assume thatf ∈ Cn+1 ([a, b]). Then one has
the representations

(1.1)
∫ b

a

(b− x)n+1

(n + 1)!
f (n+1)(x)dx =

∫ b

a

Rn,f (a, x)dx,
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and

(1.2)
∫ b

a

(x− a)n+1

(n + 1)!
f (n+1)(x)dx = (−1)n+1

∫ b

a

Rn,f (b, x)dx.

Proof. Observe that:∫ b

a

(b− x)n+1

(n + 1)!
f (n+1)(x)dx

=

∫ b

a

(b− x)n+1

(n + 1)!
df

(n)
(x)

= f (n)(x)
(b− x)n+1

(n + 1)!

∣∣∣∣x=b

x=a

+

∫ b

a

(b− x)n

n!
f (n)(x)dx

= −f (n)(a)
(b− a)n+1

(n + 1)!
+

∫ b

a

(b− x)n

n!
f (n)(x)dx

= −f (n)(a)
(b− a)n+1

(n + 1)!
− f (n−1)(a)

(b− a)n

n!
+

∫ b

a

(b− x)n−1

(n− 1)!
fn−1(x)dx

= · · ·

= −f (n)(a)
(b− a)n+1

(n + 1)!
− f (n−1)(a)

(b− a)n

n!
− · · · − f(a)

b− a

1!
+

∫ b

a

f(x)dx

=

∫ b

a

[
f(x)−

n∑
k=0

f (k)(a)

k!
(x− a)k

]
dx

=

∫ b

a

Rn,f (a, x)dx.

The proof of (1.2) is similar to the proof of (1.1) and we omit it. �

2. APPLICATIONS OF GRÜSS’ I NEQUALITY

The following inequality is called Grüss’ inequality [5]:
Let F (x) andG(x) be two functions defined and integrable on[a, b]. Further let

m ≤ F (x) ≤ M and ϕ ≤ G(x) ≤ Φ

for eachx ∈ [a, b], wherem, M , ϕ, Φ are constants. Then∣∣∣∣∫ b

a

F (x)G(x)dx− 1

b− a

∫ b

a

F (x)dx ·
∫ b

a

G(x)dx

∣∣∣∣ ≤ b− a

4
(M −m)(Φ− ϕ).

Theorem 2.1. Let f(x) be a function defined on[a, b] such thatf(x) ∈ Cn+1 ([a, b]) andm ≤
f (n+1)(x) ≤ M for eachx ∈ [a, b], wherem andM are constants. Then

(2.1)

∣∣∣∣∫ b

a

Rn,f (a, x)dx− f (n)(b)− f (n)(a)

(n + 2)!
(b− a)n+1

∣∣∣∣ ≤ (b− a)n+2

4(n + 1)!
(M −m)

and

(2.2)

∣∣∣∣(−1)n+1

∫ b

a

Rn,f (b, x)dx− f (n)(b)− f (n)(a)

(n + 2)!
(b− a)n+1

∣∣∣∣ ≤ (b− a)n+2

4(n + 1)!
(M −m).
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Proof. SetF (x) = f (n+1)(x), G(x) = (b−x)n+1

(n+1)!
. Thenm ≤ F (x) ≤ M and0 ≤ G(x) ≤

(b−a)n+1

(n+1)!
. By Grüss’ inequality,∣∣∣∣∫ b

a

(b− x)n+1

(n + 1)!
f (n+1)(x)dx− 1

b− a

∫ b

a

f (n+1)(x)dx ·
∫ b

a

(b− x)n+1

(n + 1)!
dx

∣∣∣∣
≤ b− a

4
· (b− a)n+1

(n + 1)!
(M −m).

Using Lemma 1.1, we obtain∣∣∣∣∫ b

a

Rn,f (a, x)− 1

b− a

[
f (n)(b)− f (n)(a)

]
· (b− a)n+2

(n + 2)!

∣∣∣∣ ≤ (b− a)n+2

4(n + 1)!
(M −m).

That proves (2.1).
To prove (2.2), we setF (x) = f (n+1)(x), G(x) = (a−x)n+1

(n+1)!
, and continue as in the proof of

(2.1). �

Now we consider the simplest cases of Theorem 2.1, namely the cases whenn = 0 or 1.

Corollary 2.2. Let f(x) be a function defined on[a, b] such thatf(x) ∈ C2 ([a, b]) andm ≤
f ′′(x) ≤ M for eachx ∈ [a, b], wherem andM are constants. Then

(2.3)

∣∣∣∣∫ b

a

f(x)dx− f(a)(b− a)− 2f ′(a) + f ′(b)

6
(b− a)2

∣∣∣∣ ≤ (b− a)3

8
(M −m),

(2.4)

∣∣∣∣∫ b

a

f(x)dx− f(b)(b− a) +
2f ′(b) + f ′(a)

6
(b− a)2

∣∣∣∣ ≤ (b− a)3

8
(M −m),

(2.5)

∣∣∣∣∫ b

a

f(x)dx− f(a) + f(b)

2
(b− a) +

f ′(b)− f ′(a)

12
(b− a)2

∣∣∣∣ ≤ (b− a)3

8
(M −m).

Proof. To obtain (2.3) and (2.4) we taken = 1 in (2.1) and (2.2) of Theorem 2.1. Taking half
the sum of (2.3) and (2.4), we obtain (2.5). �

Remark 2.3. Takingn = 0 in (2.1) and (2.2), we obtain that ifm ≤ f ′(x) ≤ M on [a, b], then∣∣∣∣∫ b

a

f(x)dx− f(a) + f(b)

2
(b− a)

∣∣∣∣ ≤ (b− a)2

4
(M −m).

This inequality is weaker than a modification of Iyengar’s inequality due to Agarwal and Dragomir
[1].

3. APPLICATIONS OF CHEBYSHEV ’ S I NEQUALITY

The following is Chebyshev’s inequality [5]:
Let F , G : [a, b] → R be integrable functions, both increasing or both decreasing. Then∫ b

a

F (x)G(x)dx ≥ 1

b− a

∫ b

a

F (x)dx ·
∫ b

a

G(x)dx.

If one of the functions is increasing and the other decreasing, then the above inequality is
reversed.
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Theorem 3.1.Letf(x) be a function defined on[a, b] such thatf(x) ∈ C(n+1) ([a, b]).
If f (n+1)(x) is increasing on[a, b], then,

−f (n+1)(b)− f (n+1)(a)

4(n + 1)!
(b− a)n+2(3.1)

≤
∫ b

a

Rn,f (a, x)dx− f (n)(b)− f (n)(a)

(n + 2)!
(b− a)n+1

≤ 0,

and

0 ≤ (−1)(n+1)

∫ b

a

Rn,f (b, x)dx− f (n)(b)− f (n)(a)

(n + 2)!
(b− a)n+1(3.2)

≤ f (n+1)(b)− f (n+1)(a)

4(n + 1)!
(b− a)n+2.

If f (n+1)(x) is decreasing on[a, b], then

0 ≤
∫ b

a

Rn,f (a, x)dx− f (n)(b)− f (n)(a)

(n + 2)!
(b− a)n+1(3.3)

≤ f (n+1)(a)− f (n+1)(b)

4(n + 1)!
(b− a)n+2,

and

−f (n+1)(a)− f (n+1)(b)

4(n + 1)!
(b− a)n+2(3.4)

≤ (−1)(n+1)

∫ b

a

Rn,f (b, x)dx− f (n)(b)− f (n)(a)

(n + 2)!
(b− a)n+1

≤ 0.

Proof. SetF (x) = f (n+1)(x) andG(x) = (b−x)(n+1)

(n+1)!
. ThenF (x) is increasing andG(x) de-

creasing on[a, b]. Using Chebyshev’s inequality forF (x) andG(x) and (1.1), we obtain right
inequality in (3.1). Left inequality in (3.1) follows readily from (2.1), if we take into account
that sincef (n+1)(x) is increasing on[a, b], f (n+1)(a) ≤ f (n+1)(x) ≤ f (n+1)(b) for all x ∈ [a, b].

To prove (3.2), setF (x) = f (n+1)(x) andG(x) = (x−a)(n+1)

(n+1)!
. The rest of the proof is the

same as in the proof of (3.1).
The proofs of (3.3) and (3.4) are similar to those of (3.1) and (3.2) respectively, and we omit

them. �

We now consider the simplest cases of Theorem 3.1, namely the cases whenn = 0 or 1.

Corollary 3.2. Let f(x) be a function defined on[a, b] such thatf(x) ∈ C2 ([a, b]). If f ′′(x) is
increasing on[a, b], then

−f ′′(b)− f ′′(a)

8
(b− a)2(3.5)

≤ 1

b− a

∫ b

a

f(x)dx− f(a)− 2f ′(a) + f ′(b)

6
(b− a)

≤ 0
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0 ≤ 1

b− a

∫ b

a

f(x)dx− f(b) +
f ′(a) + 2f ′(b)

6
(b− a)(3.6)

≤ f ′′(b)− f ′′(a)

8
(b− a)2,

(3.7)

∣∣∣∣ 1

b− a

∫ b

a

f(x)dx− f(a) + f(b)

2
+

f ′(b)− f ′(a)

12
(b− a)

∣∣∣∣ ≤ f ′′(b)− f ′′(a)

16
(b−a)2.

Proof. To obtain (3.5) and (3.6) we taken = 1 in (3.1) and (3.2) of Theorem 3.1. We obtain
(3.7) taking half the sum of (3.5) and (3.6). �

Remark 3.3. The inequalities similar to (3.5) – (3.7) for the case of decreasingf ′′(x) can be
obtained substituting−f(x) instead off(x) into inequalities (3.5) – (3.7).
Remark 3.4. Takingn = 0 in Theorem 3.1, we obtain that iff ′(x) is increasing on[a, b], then

(3.8)
f(a) + f(b)

2
− f ′(b)− f ′(a)

4
(b− a) ≤ 1

b− a

∫ b

a

f(x)dx ≤ f(a) + f(b)

2
.

Let us compare (3.8) with the following Hermite-Hadamard’s inequality [6]:
If f(x) is convex on[a, b] (in particular if f ′(x) exists and increasing on[a, b]), then

f

(
a + b

2

)
≤ 1

b− a

∫ b

a

f(x)dx ≤ f(a) + f(b)

2
.

We see that the right inequality in (3.8) is the same as the right Hermite-Hadamard’s inequality.
However, it can be easily proved that the left inequality in (3.8) is weaker than the left Hermite-
Hadamard’s inequality.
Remark 3.5. Taking the difference of (3.5) and (3.6), we obtain that iff ′′(x) is increasing on
[a, b], then

0 ≤ f ′(a) + f ′(b)

2
− f(b)− f(a)

b− a
≤ f ′′(b)− f ′′(a)

4
(b− a).

This inequality follows readily if we takef ′(x) instead off(x) in (3.8).
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