

Journal of Inequalities in Pure and Applied Mathematics

http://jipam.vu.edu.au/

Volume 4, Issue 1, Article 8, 2003

BOUNDED LINEAR OPERATORS IN PROBABILISTIC NORMED SPACE

IQBAL H. JEBRIL AND RADHI IBRAHIM M. ALI

UNIVERSITY OF AL AL-BAYT, DEPARTMENT OF MATHEMATICS, P.O.BOX 130040, MAFRAQ 25113, JORDAN. igbal501@yahoo.com

Received 7 May, 2002; accepted 20 November, 2002 Communicated by B. Mond

ABSTRACT. The notion of a probabilistic metric space was introduced by Menger in 1942. The notion of a probabilistic normed space was introduced in 1993. The aim of this paper is to give a necessary condition to get bounded linear operators in probabilistic normed space.

Key words and phrases: Probabilistic Normed Space, Bounded Linear Operators.

2000 Mathematics Subject Classification. 54E70.

1. INTRODUCTION

The purpose of this paper is to present a definition of bounded linear operators which is based on the new definition of a probabilistic normed space. This definition is sufficiently general to encompass the most important contraction function in probabilistic normed space. The concepts used are those of [1], [2] and [9].

A distribution function (briefly, a d.f.) is a function F from the extended real line $\mathbb{R} = [-\infty, +\infty]$ into the unit interval I = [0, 1] that is nondecreasing and satisfies $F(-\infty) = 0$, $F(+\infty) = 1$. We normalize all d.f.'s to be left-continuous on the unextended real line $\mathbb{R} = (-\infty, +\infty)$. For any $a \ge 0$, ε_a is the d.f. defined by

(1.1)
$$\varepsilon_a(x) = \begin{cases} 0, & \text{if } x \le a \\ 1, & \text{if } x > a, \end{cases}$$

The set of all the d.f.s will be denoted by Δ and the subset of those d.f.s called positive d.f.s. such that F(0) = 0, by Δ^+ .

ISSN (electronic): 1443-5756

^{© 2003} Victoria University. All rights reserved.

It is a pleasure to thank C. Alsina and C. Sempi for sending us the references [1, 3, 9].

⁰⁴⁹⁻⁰²

By setting $F \leq G$ whenever $F(x) \leq G(x)$ for all x in \mathbb{R} , the maximal element for Δ^+ in this order is the d.f. given by

$$\varepsilon_0 (x) = \begin{cases} 0, & \text{if } x \le 0, \\ 1, & \text{if } x > 0. \end{cases}$$

A *triangle function* is a binary operation on Δ^+ , namely a function $\tau : \Delta^+ \times \Delta^+ \to \Delta^+$ that is associative, commutative, nondecreasing and which has ε_0 as unit, that is, for all $F, G, H \in \Delta^+$, we have

$$\tau \left(\tau \left(F,G\right),H\right) = \tau \left(F,\tau \left(G,H\right)\right),$$

$$\tau \left(F,G\right) = \tau \left(G,F\right),$$

$$\tau \left(F,H\right) \le \tau \left(G,H\right), \quad \text{if} \quad F \le G,$$

$$\tau \left(F,\varepsilon_{0}\right) = F.$$

Continuity of a triangle function means continuity with respect to the topology of weak convergence in Δ^+ .

Typical continuous triangle functions are convolution and the operations τ_T and τ_{T^*} , which are, respectively, given by

(1.2)
$$\tau_T(F,G)(x) = \sup_{s+t=x} T(F(s), G(t)),$$

and

(1.3)
$$\tau_{T^*}(F,G)(x) = \inf_{s+t=x} T^*(F(s),G(t))$$

for all F, G in Δ^+ and all x in \mathbb{R} [9, Sections 7.2 and 7.3], here T is a continuous t-norm, i.e. a continuous binary operation on [0, 1] that is associative, commutative, nondecreasing and has 1 as identity; T^* is a continuous t-conorm, namely a continuous binary operation on [0, 1] that is related to continuous t-norm through

(1.4)
$$T^*(x,y) = 1 - T(1 - x, 1 - y).$$

It follows without difficulty from (1.1)–(1.4) that

$$au_T\left(\varepsilon_a,\varepsilon_b\right)=\varepsilon_{a+b}= au_{T^*}\left(\varepsilon_a, au_b\right),$$

for any continuous t-norm T, any continuous t-conorm T^* and any $a, b \ge 0$.

The most important t-norms are the functions W, Prod, and M which are defined, respectively, by

$$W(a, b) = \max (a + b - 1, 0),$$

$$prod(a, b) = a \cdot b,$$

$$M(a, b) = \min (a, b).$$

Their corresponding *t*-norms are given, respectively, by

$$W^*(a, b) = \min(a + b, 1),$$

 $prod^*(a, b) = a + b - a \cdot b,$
 $M^*(a, b) = \max(a, b).$

Definition 1.1. A probabilistic metric (briefly PM) space is a triple (S, f, τ) , where S is a nonempty set, τ is a triangle function, and f is a mapping from $S \times S$ into Δ^+ such that, if F_{pq} denoted the value of f at the pair (p,q), the following hold for all p, q, r in S:

(PM1) $F_{pq} = \varepsilon_0$ if and only if p = q.

(PM2)
$$F_{pq} = F_{qp}$$
.
(PM3) $F_{pr} \ge \tau (F_{pq}, F_{qr})$.

Definition 1.2. A probabilistic normed space is a quadruple (V, ν, τ, τ^*) , where V is a real vector space, τ and τ^* are continuous triangle functions, and ν is a mapping from V into Δ^+ such that, for all p, q in V, the following conditions hold:

(**PN1**) $\nu_p = \varepsilon_0$ if and only if $p = \theta$, θ being the null vector in V;

(PN2)
$$\nu_{-p} = \nu_p;$$

(PN3)
$$\nu_{p+q} \geq \tau \left(\nu_p, \nu\right)$$

(PN3) $\nu_{p+q} \ge \tau (\nu_p, \nu_q)$ (PN4) $\nu_p \le \tau^* (\nu_{\alpha p}, \nu_{(1-\alpha)p})$ for all α in [0, 1].

If, instead of (**PN1**), we only have $\nu_{\theta} = \varepsilon_{\theta}$, then we shall speak of a *Probabilistic Pseudo* Normed Space, briefly a PPN space. If the inequality (**PN4**) is replaced by the equality $V_p =$ $\tau_M(\nu_{\alpha p}, \nu_{(1-\alpha)p})$, then the PN space is called a *Serstnev space*. The pair is said to be a Probabilistic Seminormed Space (briefly PSN space) if $\nu : V \to \Delta^+$ satisfies (PN1) and (PN2).

Definition 1.3. A PSN (V, ν) space is said to be *equilateral* if there is a d.f. $F \in \Delta^+$ different from ε_0 and from ε_∞ , such that, for every $p \neq \theta$, $\nu_p = F$. Therefore, every equilateral PSN space (V, ν) is a PN space under $\tau = M$ and $\tau^* = M$ where is the triangle function defined for $G, H \in \Delta^+$ by

$$M(G,H)(x) = \min \{G(x), H(x)\} \quad (x \in [0,\infty]).$$

An equilateral PN space will be denoted by (V, F, M).

Definition 1.4. Let $(V, \|\cdot\|)$ be a normed space and let $G \in \Delta^+$ be different from ε_0 and ε_∞ ; define $\nu: V \to \Delta^+$ by $\nu_{\theta} = \varepsilon_0$ and

$$\nu_p(t) = G\left(\frac{t}{\|p\|^{\alpha}}\right) \quad (p \neq \theta, \ t > 0),$$

where $\alpha > 0$. Then the pair (V, ν) will be called the α -simple space generated by $(V, \|\cdot\|)$ and by G.

The α -simple space generated by $(V, \|\cdot\|)$ and by G is immediately seen to be a PSN space; it will be denoted by $(V, \|\cdot\|, G; \alpha)$.

Definition 1.5. There is a natural topology in PN space (V, ν, τ, τ^*) , called the *strong topology*; it is defined by the neighborhoods,

 $N_{p}(t) = \{q \in V : \nu_{q-p}(t) > 1 - t\} = \{q \in d_{L}(\nu_{q-p}, \varepsilon_{0}) < t\},\$

where t > 0. Here d_L is the modified Levy metric ([9]).

2. BOUNDED LINEAR OPERATORS IN PROBABILISTIC NORMED SPACES

In 1999, B. Guillen, J. Lallena and C. Sempi [3] gave the following definition of bounded set in PN space.

Definition 2.1. Let A be a nonempty set in PN space (V, ν, τ, τ^*) . Then

- (a) A is certainly bounded if, and only if, $\varphi_A(x_0) = 1$ for some $x_0 \in (0, +\infty)$;
- (b) A is perhaps bounded if, and only if, $\varphi_A(x_0) < 1$ for every $x_0 \in (0, +\infty)$ and $l^{-}\varphi_{A}(+\infty) = 1;$
- (c) A is perhaps unbounded if, and only if, $l^-\varphi_A(+\infty) \in (0,1)$;
- (d) A is certainly unbounded if, and only if, $l^{-}\varphi_{A}(+\infty) = 0$; i.e., $\varphi_{A}(x) = 0$;

where $\varphi_A(x) = \inf \{ \nu_p(x) : P \in A \}$ and $l^- \varphi_A(x) = \lim_{t \to x^-} \varphi_A(t)$.

Moreover, A will be said to be D-bounded if either (a) or (b) holds.

Definition 2.2. Let (V, ν, τ, τ^*) and $(V', \mu, \sigma, \sigma^*)$ be PN spaces. A linear map $T: V \to V'$ is said to be

- (a) Certainly bounded if every certainly bounded set A of the space (V, ν, τ, τ*) has, as image by T a certainly bounded set TA of the space (V', μ, σ, σ*), i.e., if there exists x₀ ∈ (0, +∞) such that ν_p(x₀) = 1 for all p ∈ A, then there exists x₁ ∈ (0, +∞) such that μ_{Tp}(x₁) = 1 for all p ∈ A.
- (b) *Bounded* if it maps every *D*-bounded set of *V* into a *D*-bounded set of V', i.e., if, and only if, it satisfies the implication,

$$\lim_{x \to +\infty} \varphi_A(x) = 1 \Rightarrow \lim_{x \to +\infty} \varphi_{TA}(x) = 1,$$

for every nonempty subset A of V.

(c) *Strongly* **B**-bounded if there exists a constant k > 0 such that, for every $p \in V$ and for every x > 0, $\mu_{Tp}(x) \ge \nu_p(\frac{x}{k})$, or equivalently if there exists a constant h > 0 such that, for every $p \in V$ and for every x > 0,

$$\mu_{Tp}\left(hx\right) \geq \nu_{p}\left(x\right)$$
.

(d) *Strongly C-bounded* if there exists a constant $h \in (0, 1)$ such that, for every $p \in V$ and for every x > 0,

$$\nu_p(x) > 1 - x \Rightarrow \mu_{T_p}(hx) > 1 - hx.$$

Remark 2.1. The identity map I between PN space (V, ν, τ, τ^*) into itself is strongly Cbounded. Also, all linear contraction mappings, according to the definition of [7, Section 1], are strongly C-bounded, i.e for every $p \in V$ and for every x > 0 if the condition $\nu_p(x) > 1 - x$ is satisfied then

$$\nu_{Ip}\left(hx\right) = \nu_{p}\left(hx\right) > 1 - hx.$$

But we note that when k = 1 then the identity map I between PN space (V, ν, τ, τ^*) into itself is a strongly **B**-bounded operator. Also, all linear contraction mappings, according to the definition of [9, Section 12.6], are strongly **B**-bounded.

In [3] B. Guillen, J. Lallena and C. Sempi present the following, every strongly **B**-bounded operator is also certainly bounded and every strongly **B**-bounded operator is also bounded. But the converses need not to be true.

Now we are going to prove that in the Definition 2.2, the notions of strongly C-bounded operator, certainly bounded, bounded and strongly **B**-bounded do not imply each other.

In the following example we will introduce a strongly C-bounded operator, which is not strongly **B**-bounded, not bounded nor certainly bounded.

Example 2.1. Let V be a vector space and let $\nu_{\theta} = \mu_{\theta} = \varepsilon_0$, while, if $p, q \neq \theta$ then, for every $p, q \in V$ and $x \in \mathbb{R}$, if

$$\nu_p(x) = \begin{cases} 0, & x \le 1 \\ 1, & x > 1 \end{cases} \qquad \mu_p(x) = \begin{cases} \frac{1}{3}, & x \le 1 \\ \frac{9}{10}, & 1 < x < \infty \\ 1, & x = \infty \end{cases}$$

and if

$$\tau \left(\nu_{p}\left(x\right), \nu_{q}\left(y\right)\right) = \tau^{*}\left(\nu_{p}\left(x\right), \nu_{q}\left(y\right)\right) = \min\left(\nu_{p}\left(x\right), \nu_{q}\left(x\right)\right), \sigma \left(\mu_{p}\left(x\right), \mu_{q}\left(y\right)\right) = \sigma^{*}\left(\mu_{p}\left(x\right), \mu_{q}\left(y\right)\right) = \min\left(\mu_{p}\left(x\right), \mu_{q}\left(x\right)\right),$$

then (V, ν, τ, τ^*) and $(V', \mu, \sigma, \sigma^*)$ are equilateral PN spaces by Definition 1.3. Now let I: $(V, \nu, \tau, \tau^*) \rightarrow (V, \mu, \tau, \tau^*)$ be the identity operator, then I is strongly **C**-bounded but I is not strongly **B**-bounded, bounded and certainly bounded, it is clear that I is not certainly bounded and is not bounded. *I* is not strongly **B**-bounded, because for every k > 0 and for $x = \max\left\{2, \frac{1}{k}\right\}$,

$$\mu_{Ip}(kx) = \frac{9}{10} < 1 = \nu_p(x).$$

But I is strongly C-bounded, because for every p > 0 and for every x > 0, this condition $v_p(x) > 1 - x$ is satisfied only if x > 1 now if $h = \frac{7}{10}x$ then

$$\mu_{Ip}(hx) = \mu_{Ip}\left(\frac{7}{10x}x\right) = \mu_p\left(\frac{7}{10}\right) = \frac{1}{3} > \frac{3}{10} = 1 - \frac{7}{10} = 1 - \left(\frac{7}{10x}\right)x.$$

Remark 2.2. We have noted in the above example that there is an operator, which is strongly C-bounded, but it is not strongly **B**-bounded. Moreover we are going to give an operator, which is strongly **B**-bounded, but it is not strongly C-bounded.

Definition 2.3. Let (V, ν, τ, τ^*) be PN space then we defined

$$B(p) = \inf \left\{ h \in \mathbb{R} : \nu_p(h^+) > 1 - h \right\}.$$

Lemma 2.3. Let $T : (V, \nu, \tau, \tau^*) \to (V', \mu, \sigma, \sigma^*)$ be a strongly **B**-bounded linear operator, for every p in V and let μ_{Tp} be strictly increasing on [0, 1], then $B(T_p) < B(p)$, $\forall p \in V$.

Proof. Let
$$\eta \in \left(0, \frac{1-\gamma}{\gamma}B(p)\right)$$
, where $\gamma \in (0, 1)$. Then $B(p) > \gamma \left[B(p) + \eta\right]$ and so $\mu_{Tp}\left(B(p)\right) > \mu_{Tp}\left(\gamma \left[B(p) + \eta\right]\right)$,

and where μ_{Tp} is strictly increasing on [0, 1], then

$$\mu_{Tp}(\gamma [B(p) + \eta]) \ge \nu_p(B(p) + \eta) \ge \nu_p(B(p)^+) > 1 - B(p),$$

we conclude that

$$B(T_p) = \inf \{ B(p) : \mu_{Tp} (B(p)^+) > 1 - B(p) \},\$$

so $B(T_p) < B(p), \forall p \in V$.

Theorem 2.4. Let $T : (V, \nu, \tau, \tau^*) \to (V', \mu, \sigma, \sigma^*)$ be a strongly **B**-bounded linear operator, and let μ_{Tp} be strictly increasing on [0, 1], then T is a strongly **C**-bounded linear operator.

Proof. Let T be a strictly **B**-bounded operator. Since, by Lemma 2.3, $B(T_p) < B(p)$, $\forall p \in V$ there exist $\gamma_p \in (0, 1)$ such that $B(T_p) < \gamma_p B(p)$.

It means that

$$\inf \left\{ h \in \mathbb{R} : \mu_{Tp} \left(h^+ \right) > 1 - h \right\} \leq \gamma \inf \left\{ h \in \mathbb{R} : \nu_p \left(h^+ \right) > 1 - h \right\}$$
$$= \inf \left\{ \gamma h \in \mathbb{R} : \nu_p \left(h^+ \right) > 1 - h \right\}$$
$$= \inf \left\{ h \in \mathbb{R} : \nu_p \left(\frac{h^+}{\gamma} \right) > 1 - \frac{h}{\gamma} \right\}.$$

We conclude that $\nu_p\left(\frac{h}{\gamma}\right) > 1 - \left(\frac{h}{\gamma}\right) \Longrightarrow \mu_{Tp}(h) > 1 - h$. Now if $x = \frac{h}{\gamma}$ then $\nu_p(x) > 1 - x \Longrightarrow \mu_{Tp}(xh) > 1 - xh$, so T is a strongly C-bounded operator.

Remark 2.5. From Theorem 2.4 we have noted that under some additional condition every a strongly **B**-bounded operator is a strongly **C**-bounded operator. But in general, it is not true.

Example 2.2. Let $V = V' = \mathbb{R}$ and $v_0 = \mu_0 = \varepsilon_0$, while, if $p \neq 0$, then, for x > 0, let $v_p(x) = G\left(\frac{x}{|p|}\right), \mu_p(x) = U\left(\frac{x}{|p|}\right)$, where

$$G(x) = \begin{cases} \frac{1}{2}, & 0 < x \le 2, \\ 1, & 2 < x \le +\infty, \end{cases} \qquad U(x) = \begin{cases} \frac{1}{2}, & 0 < x \le \frac{3}{2}, \\ 1, & \frac{3}{2} < x \le +\infty \end{cases}$$

Consider now the identity map $I : (\mathbb{R}, |\cdot|, G, \mu) \to (\mathbb{R}, |\cdot|, G, \mu)$. Now

(a) I is a strongly **B**-bounded operator, such that for every $p \in \mathbb{R}$ and every x > 0 then

$$\mu_{Ip}\left(\frac{3}{4}x\right) = \mu_p\left(\frac{3}{4}x\right) = U\left(\frac{3x}{4|p|}\right) = \begin{cases} \frac{1}{2}, & 0 < x \le 2|p|, \\ 1, & 2|p| < x \le +\infty, \end{cases} = G\left(\frac{x}{|p|}\right) = v_p(x).$$

(b) *I* is not a strongly **C**-bounded operator, such that for every $h \in (0, 1)$, let $x = \frac{3}{8h}$, $p = \frac{1}{4}$. If x > 2 |p| then the condition $v_p(x) > 1 - x$ will be satisfied, but we note that

$$\mu_{Ip}(hx) = \mu_p(hx) = U\left(\frac{hx}{|p|}\right) = U\left(\frac{3}{2}\right) = \frac{1}{2} < \frac{5}{8} = 1 - h\left(\frac{3}{8h}\right) = 1 - hx.$$

Now we introduce the relation between the strongly **B**-bounded and strongly **C**-bounded operators with boundedness in normed space.

Theorem 2.6. Let G be strictly increasing on [0, 1], then $T : (V, \|\cdot\|, G, \alpha) \to (V', \|\cdot\|, G, \alpha)$ is a strongly **B**-bounded operator if, and only if, T is a bounded linear operator in normed space.

Proof. Let k > 0 and x > 0. Then for every $p \in V$

$$G\left(\frac{kx}{\|T_p\|^{\alpha}}\right) = \mu_{Tp}\left(kx\right) \ge v_p\left(x\right) = G\left(\frac{x}{\|p\|^{\alpha}}\right),$$

if and only if

$$\|T_p\| \le k^{\frac{1}{\alpha}} \|p\|.$$

Theorem 2.7. Let $T : (V, \|\cdot\|, G, \alpha) \to (V', \|\cdot\|, G, \alpha)$ be strongly *C*-bounded, and let *G* be strictly increasing on [0, 1] then *T* is a bounded linear operator in normed space.

Proof. If v_p is strictly increasing for every $p \in V$, then the quasi-inverse v_p^{Λ} is continuous and B(p) is the unique solution of the equation $x = v_p^{\Lambda} (1-x)$ i.e.

(2.1)
$$B(p) = v_p^{\Lambda}(x) (1 - B(p)).$$

If
$$v_p(x) = G\left(\frac{x}{\|p\|^{\alpha}}\right)$$
, then $v_p^{\Lambda}(x) = \|p\|^{\alpha} G^{\Lambda}(x)$ and from (2.1) it follows that

(2.2)
$$B(p) = ||p||^{\alpha} G^{\Lambda} (1 - B(p))$$

Suppose that T is strongly C-bounded, i.e. that

$$(2.3) B(T_p) \le kB(p), \ \forall p \in V$$

where $k \in (0, 1)$.

Then (2.2) and (2.3) imply

$$\|T_p\|^{\alpha} \le \frac{B(T_p)}{G^{\Lambda}(1 - B(T_p))} \le \frac{kB(p)}{G^{\Lambda}(1 - kB(p))} \le \frac{kB(p)}{G^{\Lambda}(1 - B(p))} = k \|p\|^{\alpha}.$$

Which means that T is a bounded in normed space.

 \square

The converse of the above theorem is not true, see Example 2.2.

We recall the following theorems from [3].

Theorem 2.8. Let (V, ν, τ, τ^*) and $(V', \mu, \sigma, \sigma^*)$ be PN spaces. A linear map $T : V \to V'$ is either continuous at every point of V or at no point of V.

Corollary 2.9. If $T : (V, \nu, \tau, \tau^*) \to (V', \mu, \sigma, \sigma^*)$ is linear, then T is continuous if, and only if, *it is continuous at* θ .

Theorem 2.10. Every strongly **B**-bounded linear operator T is continuous with respect to the strong topologies in (V, ν, τ, τ^*) and $(V', \mu, \sigma, \sigma^*)$, respectively.

In the following theorem we show that every strongly C-bounded linear operator T is continuous.

Theorem 2.11. Every strongly C-bounded linear operator T is continuous.

Proof. Due to Corollary 3.1 [3], it suffices to verify that T is continuous at θ . Let $N_{\theta'}(t)$, with t > 0, be an arbitrary neighbourhood of θ' . If T is strongly **C**-bounded linear operator then there exist $h \in (0, 1)$ such that for every t > 0 and $p \in N_{\theta}(s)$ we note that

$$\mu_{Tp}(t) \ge \nu_p(ht) \ge 1 - ht > 1 - t,$$

so $T_p \in N_{\theta'}(t)$; in other words, T is continuous.

REFERENCES

- [1] C. ALSINA, B. SCHWEIZER AND A. SKLAR, On the definition of probabilistic normed space, *Aequationes Math.*, **46** (1993), 91–98.
- [2] C. ALSINA, B. SCHWEIZER, C. SEMPI AND A. SKLAR, On the definition of a probabilistic inner product space, *Rendiconti di Mathematica*, **17** (1997), 115–127.
- [3] B. GUILLEN, J. LALLENA AND C. SEMPI, A study of boundedness in probabilistic normed spaces, J. Math. Anal. Appl., 232 (1999), 183–196.
- [4] B. GUILLEN, J. LALLENA AND C. SEMPI, Probabilistic norms for linear operators, J. Math. Anal. Appl., 220 (1998), 462–476.
- [5] B. GUILLEN, J. LALLENA AND C. SEMPI, Some classes of probabilistic normed spaces, *Rendiconti di Mathematica*, **17**(7) (1997), 237–252.
- [6] E. KREYSZIG, *Introductory Functional Analysis with Applications*, John Wiley and Sons Inc.New York, 1978.
- [7] E. PAP AND O. HADZIC, A fixed point theorem in probabilistic metric spaces and application, *J. Math. Anal. Appl.*, **202** (1996), 433–449.
- [8] B. SCHWEIZER AND A. SKIAR, Statistical metric space, Pacific J. Math., 10 (1960), 313–334.
- [9] B. SCHWEIZER AND A. SKIAR, *Probabilistic Metric Space*, Elsevier North Holland New York, 1983.
- [10] R. TARDIFF, Topologies for probabilistic metric spaces, Pacific J. Math., 65 (1976), 233–251.
- [11] A. TAYLOR, Introduction to Functional Analysis, John Wiley and Sons Inc., New York, 1958.