Journal of Inequalities in Pure and Applied Mathematics

BOUNDED LINEAR OPERATORS IN PROBABILISTIC NORMED SPACE

IQBAL H. JEBRIL AND RADHI IBRAHIM M. ALI
University of Al al-BAYT, Department of Mathematics, P.O.Box 130040, Mafraq 25113, Jordan. igbal501@yahoo.com

Received 7 May, 2002; accepted 20 November, 2002
Communicated by B. Mond

Abstract

The notion of a probabilistic metric space was introduced by Menger in 1942. The notion of a probabilistic normed space was introduced in 1993. The aim of this paper is to give a necessary condition to get bounded linear operators in probabilistic normed space.

Key words and phrases: Probabilistic Normed Space, Bounded Linear Operators.
2000 Mathematics Subject Classification 54E70.

1. Introduction

The purpose of this paper is to present a definition of bounded linear operators which is based on the new definition of a probabilistic normed space. This definition is sufficiently general to encompass the most important contraction function in probabilistic normed space. The concepts used are those of [1], [2] and [9].

A distribution function (briefly, a d.f.) is a function F from the extended real line $\overline{\mathbb{R}}=$ $[-\infty,+\infty]$ into the unit interval $I=[0,1]$ that is nondecreasing and satisfies $F(-\infty)=$ $0, F(+\infty)=1$. We normalize all d.f.'s to be left-continuous on the unextended real line $\mathbb{R}=(-\infty,+\infty)$. For any $a \geq 0, \varepsilon_{a}$ is the d.f. defined by

$$
\varepsilon_{a}(x)= \begin{cases}0, & \text { if } x \leq a \tag{1.1}\\ 1, & \text { if } x>a\end{cases}
$$

The set of all the d.f.s will be denoted by Δ and the subset of those d.f.s called positive d.f.s. such that $F(0)=0$, by Δ^{+}.

[^0]By setting $F \leq G$ whenever $F(x) \leq G(x)$ for all x in \mathbb{R}, the maximal element for Δ^{+}in this order is the d.f. given by

$$
\varepsilon_{0}(x)= \begin{cases}0, & \text { if } x \leq 0 \\ 1, & \text { if } x>0\end{cases}
$$

A triangle function is a binary operation on Δ^{+}, namely a function $\tau: \Delta^{+} \times \Delta^{+} \rightarrow \Delta^{+}$that is associative, commutative, nondecreasing and which has ε_{0} as unit, that is, for all $F, G, H \in \Delta^{+}$, we have

$$
\begin{aligned}
\tau(\tau(F, G), H) & =\tau(F, \tau(G, H)) \\
\tau(F, G) & =\tau(G, F), \\
\tau(F, H) & \leq \tau(G, H), \quad \text { if } \quad F \leq G \\
\tau\left(F, \varepsilon_{0}\right) & =F
\end{aligned}
$$

Continuity of a triangle function means continuity with respect to the topology of weak convergence in Δ^{+}.

Typical continuous triangle functions are convolution and the operations τ_{T} and $\tau_{T^{*}}$, which are, respectively, given by

$$
\begin{equation*}
\tau_{T}(F, G)(x)=\sup _{s+t=x} T(F(s), G(t)) \tag{1.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\tau_{T^{*}}(F, G)(x)=\inf _{s+t=x} T^{*}(F(s), G(t)) \tag{1.3}
\end{equation*}
$$

for all F, G in Δ^{+}and all x in $\mathbb{R}[9$, Sections 7.2 and 7.3], here T is a continuous t-norm, i.e. a continuous binary operation on $[0,1]$ that is associative, commutative, nondecreasing and has 1 as identity; T^{*} is a continuous t-conorm, namely a continuous binary operation on $[0,1]$ that is related to continuous t-norm through

$$
\begin{equation*}
T^{*}(x, y)=1-T(1-x, 1-y) . \tag{1.4}
\end{equation*}
$$

It follows without difficulty from (1.1)-(1.4) that

$$
\tau_{T}\left(\varepsilon_{a}, \varepsilon_{b}\right)=\varepsilon_{a+b}=\tau_{T^{*}}\left(\varepsilon_{a}, \tau_{b}\right),
$$

for any continuous t-norm T, any continuous t-conorm T^{*} and any $a, b \geq 0$.
The most important t-norms are the functions W, Prod, and M which are defined, respectively, by

$$
\begin{aligned}
W(a, b) & =\max (a+b-1,0), \\
\operatorname{prod}(a, b) & =a \cdot b, \\
M(a, b) & =\min (a, b) .
\end{aligned}
$$

Their corresponding t-norms are given, respectively, by

$$
\begin{aligned}
W^{*}(a, b) & =\min (a+b, 1), \\
\operatorname{prod}^{*}(a, b) & =a+b-a \cdot b, \\
M^{*}(a, b) & =\max (a, b) .
\end{aligned}
$$

Definition 1.1. A probabilistic metric (briefly PM) space is a triple (S, f, τ), where S is a nonempty set, τ is a triangle function, and f is a mapping from $S \times S$ into Δ^{+}such that, if $F_{p q}$ denoted the value of f at the pair (p, q), the following hold for all p, q, r in S :
(PM1) $F_{p q}=\varepsilon_{0}$ if and only if $p=q$.
(PM2) $F_{p q}=F_{q p}$.
(PM3) $F_{p r} \geq \tau\left(F_{p q}, F_{q r}\right)$.
Definition 1.2. A probabilistic normed space is a quadruple $\left(V, \nu, \tau, \tau^{*}\right)$, where V is a real vector space, τ and τ^{*} are continuous triangle functions, and ν is a mapping from V into Δ^{+} such that, for all p, q in V, the following conditions hold:
(PN1) $\nu_{p}=\varepsilon_{0}$ if and only if $p=\theta, \theta$ being the null vector in V;
(PN2) $\nu_{-p}=\nu_{p}$;
(PN3) $\nu_{p+q} \geq \tau\left(\nu_{p}, \nu_{q}\right)$
(PN4) $\nu_{p} \leq \tau^{*}\left(\nu_{\alpha p}, \nu_{(1-\alpha) p}\right)$ for all α in $[0,1]$.
If, instead of (PN1), we only have $\nu_{\theta}=\varepsilon_{\theta}$, then we shall speak of a Probabilistic Pseudo Normed Space, briefly a PPN space. If the inequality (PN4) is replaced by the equality $V_{p}=$ $\tau_{M}\left(\nu_{\alpha p}, \nu_{(1-\alpha) p}\right)$, then the PN space is called a Serstnev space. The pair is said to be a Probabilistic Seminormed Space (briefly PSN space) if $\nu: V \rightarrow \Delta^{+}$satisfies (PN1) and (PN2).
Definition 1.3. A PSN (V, ν) space is said to be equilateral if there is a d.f. $F \in \Delta^{+}$different from ε_{0} and from ε_{∞}, such that, for every $p \neq \theta, \nu_{p}=F$. Therefore, every equilateral PSN space (V, ν) is a PN space under $\tau=M$ and $\tau^{*}=M$ where is the triangle function defined for $G, H \in \Delta^{+}$by

$$
M(G, H)(x)=\min \{G(x), H(x)\} \quad(x \in[0, \infty])
$$

An equilateral PN space will be denoted by (V, F, M).
Definition 1.4. Let $(V,\|\cdot\|)$ be a normed space and let $G \in \Delta^{+}$be different from ε_{0} and ε_{∞}; define $\nu: V \rightarrow \Delta^{+}$by $\nu_{\theta}=\varepsilon_{0}$ and

$$
\nu_{p}(t)=G\left(\frac{t}{\|p\|^{\alpha}}\right) \quad(p \neq \theta, t>0),
$$

where $\alpha \geq 0$. Then the pair (V, ν) will be called the α-simple space generated by $(V,\|\cdot\|)$ and by G.

The α-simple space generated by $(V,\|\cdot\|)$ and by G is immediately seen to be a PSN space; it will be denoted by $(V,\|\cdot\|, G ; \alpha)$.
Definition 1.5. There is a natural topology in PN space (V, ν, τ, τ^{*}), called the strong topology; it is defined by the neighborhoods,

$$
N_{p}(t)=\left\{q \in V: \nu_{q-p}(t)>1-t\right\}=\left\{q \in d_{L}\left(\nu_{q-p}, \varepsilon_{0}\right)<t\right\},
$$

where $t>0$. Here d_{L} is the modified Levy metric ([9]).

2. Bounded Linear Operators in Probabilistic Normed Spaces

In 1999, B. Guillen, J. Lallena and C. Sempi [3] gave the following definition of bounded set in PN space.
Definition 2.1. Let A be a nonempty set in PN space $\left(V, \nu, \tau, \tau^{*}\right)$. Then
(a) A is certainly bounded if, and only if, $\varphi_{A}\left(x_{0}\right)=1$ for some $x_{0} \in(0,+\infty)$;
(b) A is perhaps bounded if, and only if, $\varphi_{A}\left(x_{0}\right)<1$ for every $x_{0} \in(0,+\infty)$ and $l^{-} \varphi_{A}(+\infty)=1$;
(c) A is perhaps unbounded if, and only if, $l^{-} \varphi_{A}(+\infty) \in(0,1)$;
(d) A is certainly unbounded if, and only if, $l^{-} \varphi_{A}(+\infty)=0$; i.e., $\varphi_{A}(x)=0$;
where $\varphi_{A}(x)=\inf \left\{\nu_{p}(x): P \in A\right\}$ and $l^{-} \varphi_{A}(x)=\lim _{t \rightarrow x-} \varphi_{A}(t)$.
Moreover, A will be said to be D-bounded if either (a) or (b) holds.
Definition 2.2. Let $\left(V, \nu, \tau, \tau^{*}\right)$ and $\left(V^{\prime}, \mu, \sigma, \sigma^{*}\right)$ be PN spaces. A linear map $T: V \rightarrow V^{\prime}$ is said to be
(a) Certainly bounded if every certainly bounded set A of the space (V, ν, τ, τ^{*}) has, as image by T a certainly bounded set $T A$ of the space ($V^{\prime}, \mu, \sigma, \sigma^{*}$), i.e., if there exists $x_{0} \in(0,+\infty)$ such that $\nu_{p}\left(x_{0}\right)=1$ for all $p \in A$, then there exists $x_{1} \in(0,+\infty)$ such that $\mu_{T p}\left(x_{1}\right)=1$ for all $p \in A$.
(b) Bounded if it maps every D-bounded set of V into a D-bounded set of V^{\prime}, i.e., if, and only if, it satisfies the implication,

$$
\lim _{x \rightarrow+\infty} \varphi_{A}(x)=1 \Rightarrow \lim _{x \rightarrow+\infty} \varphi_{T A}(x)=1
$$

for every nonempty subset A of V.
(c) Strongly \boldsymbol{B}-bounded if there exists a constant $k>0$ such that, for every $p \in V$ and for every $x>0, \mu_{T p}(x) \geq \nu_{p}\left(\frac{x}{k}\right)$, or equivalently if there exists a constant $h>0$ such that, for every $p \in V$ and for every $x>0$,

$$
\mu_{T p}(h x) \geq \nu_{p}(x) .
$$

(d) Strongly \boldsymbol{C}-bounded if there exists a constant $h \in(0,1)$ such that, for every $p \in V$ and for every $x>0$,

$$
\nu_{p}(x)>1-x \Rightarrow \mu_{T p}(h x)>1-h x .
$$

Remark 2.1. The identity map I between PN space $\left(~ V, \nu, \tau, \tau^{*}\right)$ into itself is strongly \mathbf{C} bounded. Also, all linear contraction mappings, according to the definition of [7] Section 1], are strongly \mathbf{C}-bounded, i.e for every $p \in V$ and for every $x>0$ if the condition $\nu_{p}(x)>1-x$ is satisfied then

$$
\nu_{I p}(h x)=\nu_{p}(h x)>1-h x .
$$

But we note that when $k=1$ then the identity map I between PN space (V, ν, τ, τ^{*}) into itself is a strongly \mathbf{B}-bounded operator. Also, all linear contraction mappings, according to the definition of [9, Section 12.6], are strongly \mathbf{B}-bounded.

In [3] B. Guillen, J. Lallena and C. Sempi present the following, every strongly B-bounded operator is also certainly bounded and every strongly \mathbf{B}-bounded operator is also bounded. But the converses need not to be true.

Now we are going to prove that in the Definition 2.2, the notions of strongly \mathbf{C}-bounded operator, certainly bounded, bounded and strongly B-bounded do not imply each other.

In the following example we will introduce a strongly \mathbf{C}-bounded operator, which is not strongly B-bounded, not bounded nor certainly bounded.
Example 2.1. Let V be a vector space and let $\nu_{\theta}=\mu_{\theta}=\varepsilon_{0}$, while, if $p, q \neq \theta$ then, for every $p, q \in V$ and $x \in \mathbb{R}$, if

$$
\nu_{p}(x)=\left\{\begin{array}{ll}
0, & x \leq 1 \\
1, & x>1
\end{array} \quad \mu_{p}(x)= \begin{cases}\frac{1}{3}, & x \leq 1 \\
\frac{9}{10}, & 1<x<\infty \\
1, & x=\infty\end{cases}\right.
$$

and if

$$
\begin{aligned}
\tau\left(\nu_{p}(x), \nu_{q}(y)\right) & =\tau^{*}\left(\nu_{p}(x), \nu_{q}(y)\right)=\min \left(\nu_{p}(x), \nu_{q}(x)\right) \\
\sigma\left(\mu_{p}(x), \mu_{q}(y)\right) & =\sigma^{*}\left(\mu_{p}(x), \mu_{q}(y)\right)=\min \left(\mu_{p}(x), \mu_{q}(x)\right),
\end{aligned}
$$

then $\left(V, \nu, \tau, \tau^{*}\right)$ and $\left(V^{\prime}, \mu, \sigma, \sigma^{*}\right)$ are equilateral PN spaces by Definition 1.3 Now let I : $\left(V, \nu, \tau, \tau^{*}\right) \rightarrow\left(V, \mu, \tau, \tau^{*}\right)$ be the identity operator, then I is strongly \mathbf{C}-bounded but I is not strongly B-bounded, bounded and certainly bounded, it is clear that I is not certainly
bounded and is not bounded. I is not strongly \mathbf{B}-bounded, because for every $k>0$ and for $x=\max \left\{2, \frac{1}{k}\right\}$,

$$
\mu_{I p}(k x)=\frac{9}{10}<1=\nu_{p}(x) .
$$

But I is strongly \mathbf{C}-bounded, because for every $p>0$ and for every $x>0$, this condition $v_{p}(x)>1-x$ is satisfied only if $x>1$ now if $h=\frac{7}{10} x$ then

$$
\mu_{I p}(h x)=\mu_{I p}\left(\frac{7}{10 x} x\right)=\mu_{p}\left(\frac{7}{10}\right)=\frac{1}{3}>\frac{3}{10}=1-\frac{7}{10}=1-\left(\frac{7}{10 x}\right) x .
$$

Remark 2.2. We have noted in the above example that there is an operator, which is strongly C-bounded, but it is not strongly B-bounded. Moreover we are going to give an operator, which is strongly \mathbf{B}-bounded, but it is not strongly \mathbf{C}-bounded.
Definition 2.3. Let $\left(V, \nu, \tau, \tau^{*}\right)$ be PN space then we defined

$$
B(p)=\inf \left\{h \in \mathbb{R}: \nu_{p}\left(h^{+}\right)>1-h\right\} .
$$

Lemma 2.3. Let $T:\left(V, \nu, \tau, \tau^{*}\right) \rightarrow\left(V^{\prime}, \mu, \sigma, \sigma^{*}\right)$ be a strongly \boldsymbol{B}-bounded linear operator, for every p in V and let $\mu_{T p}$ be strictly increasing on $[0,1]$, then $B\left(T_{p}\right)<B(p), \forall p \in V$.

Proof. Let $\eta \in\left(0, \frac{1-\gamma}{\gamma} B(p)\right)$, where $\gamma \in(0,1)$. Then $B(p)>\gamma[B(p)+\eta]$ and so

$$
\mu_{T p}(B(p))>\mu_{T p}(\gamma[B(p)+\eta])
$$

and where $\mu_{T p}$ is strictly increasing on $[0,1]$, then

$$
\mu_{T p}(\gamma[B(p)+\eta]) \geq \nu_{p}(B(p)+\eta) \geq \nu_{p}\left(B(p)^{+}\right)>1-B(p),
$$

we conclude that

$$
B\left(T_{p}\right)=\inf \left\{B(p): \mu_{T p}\left(B(p)^{+}\right)>1-B(p)\right\},
$$

so $B\left(T_{p}\right)<B(p), \forall p \in V$.
Theorem 2.4. Let $T:\left(V, \nu, \tau, \tau^{*}\right) \rightarrow\left(V^{\prime}, \mu, \sigma, \sigma^{*}\right)$ be a strongly \boldsymbol{B}-bounded linear operator, and let $\mu_{T p}$ be strictly increasing on $[0,1]$, then T is a strongly \boldsymbol{C}-bounded linear operator.

Proof. Let T be a strictly B-bounded operator. Since, by Lemma 2.3, $B\left(T_{p}\right)<B(p), \forall p \in V$ there exist $\gamma_{p} \in(0,1)$ such that $B\left(T_{p}\right)<\gamma_{p} B(p)$.

It means that

$$
\begin{aligned}
\inf \left\{h \in \mathbb{R}: \mu_{T p}\left(h^{+}\right)>1-h\right\} & \leq \gamma \inf \left\{h \in \mathbb{R}: \nu_{p}\left(h^{+}\right)>1-h\right\} \\
& =\inf \left\{\gamma h \in \mathbb{R}: \nu_{p}\left(h^{+}\right)>1-h\right\} \\
& =\inf \left\{h \in \mathbb{R}: \nu_{p}\left(\frac{h^{+}}{\gamma}\right)>1-\frac{h}{\gamma}\right\} .
\end{aligned}
$$

We conclude that $\nu_{p}\left(\frac{h}{\gamma}\right)>1-\left(\frac{h}{\gamma}\right) \Longrightarrow \mu_{T p}(h)>1-h$. Now if $x=\frac{h}{\gamma}$ then $\nu_{p}(x)>$ $1-x \Longrightarrow \mu_{T p}(x h)>1-x h$, so T is a strongly \mathbf{C}-bounded operator.

Remark 2.5. From Theorem 2.4 we have noted that under some additional condition every a strongly \mathbf{B}-bounded operator is a strongly \mathbf{C}-bounded operator. But in general, it is not true.

Example 2.2. Let $V=V^{\prime}=\mathbb{R}$ and $v_{0}=\mu_{0}=\varepsilon_{0}$, while, if $p \neq 0$, then, for $x>0$, let $v_{p}(x)=G\left(\frac{x}{|p|}\right), \mu_{p}(x)=U\left(\frac{x}{|p|}\right)$, where

$$
G(x)=\left\{\begin{array}{ll}
\frac{1}{2}, & 0<x \leq 2, \\
1, & 2<x \leq+\infty,
\end{array} \quad U(x)=\left\{\begin{array}{ll}
\frac{1}{2}, & 0<x \leq \frac{3}{2}, \\
1, & \frac{3}{2}<x \leq+\infty
\end{array} .\right.\right.
$$

Consider now the identity map $I:(\mathbb{R},|\cdot|, G, \mu) \rightarrow(\mathbb{R},|\cdot|, G, \mu)$. Now
(a) I is a strongly \mathbf{B}-bounded operator, such that for every $p \in \mathbb{R}$ and every $x>0$ then

$$
\mu_{I p}\left(\frac{3}{4} x\right)=\mu_{p}\left(\frac{3}{4} x\right)=U\left(\frac{3 x}{4|p|}\right)=\left\{\begin{array}{ll}
\frac{1}{2}, & 0<x \leq 2|p|, \\
1, & 2|p|<x \leq+\infty,
\end{array} \quad=G\left(\frac{x}{|p|}\right)=v_{p}(x) .\right.
$$

(b) I is not a strongly \mathbf{C}-bounded operator, such that for every $h \in(0,1)$, let $x=\frac{3}{8 h}, p=\frac{1}{4}$. If $x>2|p|$ then the condition $v_{p}(x)>1-x$ will be satisfied, but we note that

$$
\mu_{I p}(h x)=\mu_{p}(h x)=U\left(\frac{h x}{|p|}\right)=U\left(\frac{3}{2}\right)=\frac{1}{2}<\frac{5}{8}=1-h\left(\frac{3}{8 h}\right)=1-h x .
$$

Now we introduce the relation between the strongly B-bounded and strongly C-bounded operators with boundedness in normed space.
Theorem 2.6. Let G be strictly increasing on $[0,1]$, then $T:(V,\|\cdot\|, G, \alpha) \rightarrow\left(V^{\prime},\|\cdot\|, G, \alpha\right)$ is a strongly \boldsymbol{B}-bounded operator if, and only if, T is a bounded linear operator in normed space.

Proof. Let $k>0$ and $x>0$. Then for every $p \in V$

$$
G\left(\frac{k x}{\left\|T_{p}\right\|^{\alpha}}\right)=\mu_{T p}(k x) \geq v_{p}(x)=G\left(\frac{x}{\|p\|^{\alpha}}\right)
$$

if and only if

$$
\left\|T_{p}\right\| \leq k^{\frac{1}{\alpha}}\|p\|
$$

Theorem 2.7. Let $T:(V,\|\cdot\|, G, \alpha) \rightarrow\left(V^{\prime},\|\cdot\|, G, \alpha\right)$ be strongly \boldsymbol{C}-bounded, and let G be strictly increasing on $[0,1]$ then T is a bounded linear operator in normed space.
Proof. If v_{p} is strictly increasing for every $p \in V$, then the quasi-inverse v_{p}^{Λ} is continuous and $B(p)$ is the unique solution of the equation $x=v_{p}^{\Lambda}(1-x)$ i.e.

$$
\begin{equation*}
B(p)=v_{p}^{\Lambda}(x)(1-B(p)) \tag{2.1}
\end{equation*}
$$

If $v_{p}(x)=G\left(\frac{x}{\|p\|^{\alpha}}\right)$, then $v_{p}^{\Lambda}(x)=\|p\|^{\alpha} G^{\Lambda}(x)$ and from 2.1p it follows that

$$
\begin{equation*}
B(p)=\|p\|^{\alpha} G^{\Lambda}(1-B(p)) \tag{2.2}
\end{equation*}
$$

Suppose that T is strongly \mathbf{C}-bounded, i.e. that

$$
\begin{equation*}
B\left(T_{p}\right) \leq k B(p), \quad \forall p \in V \tag{2.3}
\end{equation*}
$$

where $k \in(0,1)$.
Then (2.2) and (2.3) imply

$$
\left\|T_{p}\right\|^{\alpha} \leq \frac{B\left(T_{p}\right)}{G^{\Lambda}\left(1-B\left(T_{p}\right)\right)} \leq \frac{k B(p)}{G^{\Lambda}(1-k B(p))} \leq \frac{k B(p)}{G^{\Lambda}(1-B(p))}=k\|p\|^{\alpha}
$$

Which means that T is a bounded in normed space.

The converse of the above theorem is not true, see Example 2.2
We recall the following theorems from [3].
Theorem 2.8. Let $\left(V, \nu, \tau, \tau^{*}\right)$ and $\left(V^{\prime}, \mu, \sigma, \sigma^{*}\right)$ be PN spaces. A linear map $T: V \rightarrow V^{\prime}$ is either continuous at every point of V or at no point of V.
Corollary 2.9. If $T:\left(V, \nu, \tau, \tau^{*}\right) \rightarrow\left(V^{\prime}, \mu, \sigma, \sigma^{*}\right)$ is linear, then T is continuous if, and only if, it is continuous at θ.
Theorem 2.10. Every strongly \boldsymbol{B}-bounded linear operator T is continuous with respect to the strong topologies in $\left(V, \nu, \tau, \tau^{*}\right)$ and $\left(V^{\prime}, \mu, \sigma, \sigma^{*}\right)$, respectively.

In the following theorem we show that every strongly \mathbf{C}-bounded linear operator T is continuous.
Theorem 2.11. Every strongly C-bounded linear operator T is continuous.
Proof. Due to Corollary 3.1 [3], it suffices to verify that T is continuous at θ. Let $N_{\theta^{\prime}}(t)$, with $t>0$, be an arbitrary neighbourhood of θ^{\prime}. If T is strongly \mathbf{C}-bounded linear operator then there exist $h \in(0,1)$ such that for every $t>0$ and $p \in N_{\theta}(s)$ we note that

$$
\mu_{T_{p}}(t) \geq \nu_{p}(h t) \geq 1-h t>1-t,
$$

so $T_{p} \in N_{\theta^{\prime}}(t)$; in other words, T is continuous.

References

[1] C. ALSINA, B. SCHWEIZER AND A. SKLAR, On the definition of probabilistic normed space, Aequationes Math., 46 (1993), 91-98.
[2] C. ALSINA, B. SCHWEIZER, C. SEMPI AND A. SKLAR, On the definition of a probabilistic inner product space, Rendiconti di Mathematica, 17 (1997), 115-127.
[3] B. GUILLEN, J. LALLENA AND C. SEMPI, A study of boundedness in probabilistic normed spaces, J. Math. Anal. Appl., 232 (1999), 183-196.
[4] B. GUILLEN, J. LALLENA and C. SEMPI, Probabilistic norms for linear operators, J. Math. Anal. Appl., 220 (1998), 462-476.
[5] B. GUILLEN, J. LALLENA AND C. SEMPI, Some classes of probabilistic normed spaces, Rendiconti di Mathematica, 17(7) (1997), 237-252.
[6] E. KREYSZIG, Introductory Functional Analysis with Applications, John Wiley and Sons Inc.New York, 1978.
[7] E. PAP and O. HADZIC, A fixed point theorem in probabilistic metric spaces and application, J. Math. Anal. Appl., 202 (1996), 433-449.
[8] B. SCHWEIZER And A. SKIAR, Statistical metric space, Pacific J. Math., 10 (1960), 313-334.
[9] B. SCHWEIZER and A. SKIAR, Probabilistic Metric Space, Elsevier North Holland New York, 1983.
[10] R. TARDIFF, Topologies for probabilistic metric spaces, Pacific J. Math., 65 (1976), 233-251.
[11] A. TAYLOR, Introduction to Functional Analysis, John Wiley and Sons Inc., New York, 1958.

[^0]: ISSN (electronic): 1443-5756
 (c) 2003 Victoria University. All rights reserved.

 It is a pleasure to thank C. Alsina and C. Sempi for sending us the references [1, 3, 9].
 049-02

