Journal of Inequalities in Pure and Applied Mathematics

BOUNDED LINEAR OPERATORS IN PROBABILISTIC NORMED SPACE

IQBAL H. JEBRIL AND RADHI IBRAHIM M. ALI

University of Al al-BAYT,
Department of Mathematics,
P.O.Box 130040,

Mafraq 25113, Jordan.
EMail: igbal501@yahoo.com
volume 4, issue 1, article 8, 2003.

Received 7 May, 2002; accepted 20 November, 2002

Communicated by: B. Mond

Abstract
Contents
Home Page
Go Back
Quit

Abstract

The notion of a probabilistic metric space was introduced by Menger in 1942. The notion of a probabilistic normed space was introduced in 1993. The aim of this paper is to give a necessary condition to get bounded linear operators in probabilistic normed space.

2000 Mathematics Subject Classification: 54E70.
Key words: Probabilistic Normed Space, Bounded Linear Operators.
It is a pleasure to thank C. Alsina and C. Sempi for sending us the references $[1,3,9]$.

Contents

1 Introduction.. 3
2 Bounded Linear Operators in Probabilistic Normed Spaces . . 8
References

Integral Means Inequalities for Fractional Derivatives of Some General Subclasses of Analytic Functions

Iqbal H. Jebril and Radhi Ibrahim
M. Ali

Title Page
Contents
Go Back
Close
Page 2 of 18

J. Ineq. Pure and Appl. Math. 4(1) Art. 8, 2003 http://jipam.vu.edu.au

1. Introduction

The purpose of this paper is to present a definition of bounded linear operators which is based on the new definition of a probabilistic normed space. This definition is sufficiently general to encompass the most important contraction function in probabilistic normed space. The concepts used are those of [1], [2] and [9].

A distribution function (briefly, a d.f.) is a function F from the extended real line $\overline{\mathbb{R}}=[-\infty,+\infty]$ into the unit interval $I=[0,1]$ that is nondecreasing and satisfies $F(-\infty)=0, F(+\infty)=1$. We normalize all d.f.'s to be leftcontinuous on the unextended real line $\mathbb{R}=(-\infty,+\infty)$. For any $a \geq 0, \varepsilon_{a}$ is the d.f. defined by

$$
\varepsilon_{a}(x)= \begin{cases}0, & \text { if } x \leq a \tag{1.1}\\ 1, & \text { if } x>a\end{cases}
$$

The set of all the d.f.s will be denoted by Δ and the subset of those d.f.s called positive d.f.s. such that $F(0)=0$, by Δ^{+}.

By setting $F \leq G$ whenever $F(x) \leq G(x)$ for all x in \mathbb{R}, the maximal element for Δ^{+}in this order is the d.f. given by

$$
\varepsilon_{0}(x)= \begin{cases}0, & \text { if } x \leq 0 \\ 1, & \text { if } x>0\end{cases}
$$

A triangle function is a binary operation on Δ^{+}, namely a function $\tau: \Delta^{+} \times$ $\Delta^{+} \rightarrow \Delta^{+}$that is associative, commutative, nondecreasing and which has ε_{0} as

Iqbal H. Jebril and Radhi Ibrahim M. Ali

Title Page
Contents

44	-
4	\checkmark
Go Back	
Close	
Quit	

Page 3 of 18
unit, that is, for all $F, G, H \in \Delta^{+}$, we have

$$
\begin{aligned}
\tau(\tau(F, G), H) & =\tau(F, \tau(G, H)) \\
\tau(F, G) & =\tau(G, F), \\
\tau(F, H) & \leq \tau(G, H), \quad \text { if } \quad F \leq G, \\
\tau\left(F, \varepsilon_{0}\right) & =F
\end{aligned}
$$

Continuity of a triangle function means continuity with respect to the topology of weak convergence in Δ^{+}.

Typical continuous triangle functions are convolution and the operations τ_{T} and $\tau_{T^{*}}$, which are, respectively, given by

$$
\begin{equation*}
\tau_{T}(F, G)(x)=\sup _{s+t=x} T(F(s), G(t)), \tag{1.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\tau_{T^{*}}(F, G)(x)=\inf _{s+t=x} T^{*}(F(s), G(t)) \tag{1.3}
\end{equation*}
$$

for all F, G in Δ^{+}and all x in $\mathbb{R}[9$, Sections 7.2 and 7.3], here T is a continuous t-norm, i.e. a continuous binary operation on $[0,1]$ that is associative, commutative, nondecreasing and has 1 as identity; T^{*} is a continuous t-conorm, namely a continuous binary operation on $[0,1]$ that is related to continuous t norm through

$$
\begin{equation*}
T^{*}(x, y)=1-T(1-x, 1-y) \tag{1.4}
\end{equation*}
$$

It follows without difficulty from (1.1)-(1.4) that

$$
\tau_{T}\left(\varepsilon_{a}, \varepsilon_{b}\right)=\varepsilon_{a+b}=\tau_{T^{*}}\left(\varepsilon_{a}, \tau_{b}\right)
$$

Integral Means Inequalities for Fractional Derivatives of Some General Subclasses of Analytic Functions

Iqbal H. Jebril and Radhi Ibrahim M. Ali

Title Page

Contents

44	-
4	\checkmark
Go Back	
Close	
Quit	

Page 4 of 18
for any continuous t-norm T, any continuous t-conorm T^{*} and any $a, b \geq 0$.
The most important t-norms are the functions W, Prod, and M which are defined, respectively, by

$$
\begin{aligned}
W(a, b) & =\max (a+b-1,0) \\
\operatorname{prod}(a, b) & =a \cdot b \\
M(a, b) & =\min (a, b)
\end{aligned}
$$

Their corresponding t-norms are given, respectively, by

$$
\begin{aligned}
W^{*}(a, b) & =\min (a+b, 1) \\
\operatorname{prod}^{*}(a, b) & =a+b-a \cdot b \\
M^{*}(a, b) & =\max (a, b)
\end{aligned}
$$

Definition 1.1. A probabilistic metric (briefly PM) space is a triple (S, f, τ), where S is a nonempty set, τ is a triangle function, and f is a mapping from $S \times S$ into Δ^{+}such that, if $F_{p q}$ denoted the value of f at the pair (p, q), the following hold for all p, q, r in S :
(PM1) $F_{p q}=\varepsilon_{0}$ if and only if $p=q$.
(PM2) $F_{p q}=F_{q p}$.
(PM3) $F_{p r} \geq \tau\left(F_{p q}, F_{q r}\right)$.
Definition 1.2. A probabilistic normed space is a quadruple (V, ν, τ, τ^{*}), where V is a real vector space, τ and τ^{*} are continuous triangle functions, and ν is a mapping from V into Δ^{+}such that, for all p, q in V, the following conditions hold:

Iqbal H. Jebril and Radhi Ibrahim M. Ali

Title Page

Contents

Go Back
Close
Quit
Page 5 of 18
(PN1) $\nu_{p}=\varepsilon_{0}$ if and only if $p=\theta, \theta$ being the null vector in V;
(PN2) $\nu_{-p}=\nu_{p}$;
(PN3) $\nu_{p+q} \geq \tau\left(\nu_{p}, \nu_{q}\right)$
(PN4) $\nu_{p} \leq \tau^{*}\left(\nu_{\alpha p}, \nu_{(1-\alpha) p}\right)$ for all α in $[0,1]$.
If, instead of (PN1), we only have $\nu_{\theta}=\varepsilon_{\theta}$, then we shall speak of a Probabilistic Pseudo Normed Space, briefly a PPN space. If the inequality (PN4) is replaced by the equality $V_{p}=\tau_{M}\left(\nu_{\alpha p}, \nu_{(1-\alpha) p}\right)$, then the PN space is called a Serstnev space. The pair is said to be a Probabilistic Seminormed Space (briefly PSN space) if $\nu: V \rightarrow \Delta^{+}$satisfies (PN1) and (PN2).

Definition 1.3. A PSN (V, ν) space is said to be equilateral if there is a d.f. $F \in \Delta^{+}$different from ε_{0} and from ε_{∞}, such that, for every $p \neq \theta, \nu_{p}=F$. Therefore, every equilateral PSN space (V, ν) is a PN space under $\tau=M$ and $\tau^{*}=M$ where is the triangle function defined for $G, H \in \Delta^{+}$by

$$
M(G, H)(x)=\min \{G(x), H(x)\} \quad(x \in[0, \infty]) .
$$

An equilateral PN space will be denoted by (V, F, M).
Definition 1.4. Let $(V,\|\cdot\|)$ be a normed space and let $G \in \Delta^{+}$be different from ε_{0} and ε_{∞}; define $\nu: V \rightarrow \Delta^{+}$by $\nu_{\theta}=\varepsilon_{0}$ and

$$
\nu_{p}(t)=G\left(\frac{t}{\|p\|^{\alpha}}\right) \quad(p \neq \theta, t>0),
$$

where $\alpha \geq 0$. Then the pair (V, ν) will be called the $\alpha-$ simple space generated by $(V,\|\cdot\|)$ and by G.

Title Page

Contents

44	-
4	\checkmark
Go Back	
Close	
Quit	

Page 6 of 18

The α-simple space generated by $(V,\|\cdot\|)$ and by G is immediately seen to be a PSN space; it will be denoted by $(V,\|\cdot\|, G ; \alpha)$.

Definition 1.5. There is a natural topology in PN space (V, ν, τ, τ^{*}), called the strong topology; it is defined by the neighborhoods,

$$
N_{p}(t)=\left\{q \in V: \nu_{q-p}(t)>1-t\right\}=\left\{q \in d_{L}\left(\nu_{q-p}, \varepsilon_{0}\right)<t\right\}
$$

where $t>0$. Here d_{L} is the modified Levy metric ([9]).

Integral Means Inequalities for Fractional Derivatives of Some General Subclasses of Analytic Functions

Iqbal H. Jebril and Radhi Ibrahim M. Ali

Title Page
Contents
Go Back
Quit

2. Bounded Linear Operators in Probabilistic Normed Spaces

In 1999, B. Guillen, J. Lallena and C. Sempi [3] gave the following definition of bounded set in PN space.

Definition 2.1. Let A be a nonempty set in $P N$ space (V, ν, τ, τ^{*}). Then
(a) A is certainly bounded if, and only if, $\varphi_{A}\left(x_{0}\right)=1$ for some $x_{0} \in(0,+\infty)$;
(b) A is perhaps bounded if, and only if, $\varphi_{A}\left(x_{0}\right)<1$ for every $x_{0} \in(0,+\infty)$ and $l^{-} \varphi_{A}(+\infty)=1$;
(c) A is perhaps unbounded if, and only if, $l^{-} \varphi_{A}(+\infty) \in(0,1)$;
(d) A is certainly unbounded if, and only if, $l^{-} \varphi_{A}(+\infty)=0$; i.e., $\varphi_{A}(x)=0$; where $\varphi_{A}(x)=\inf \left\{\nu_{p}(x): P \in A\right\}$ and $l^{-} \varphi_{A}(x)=\lim _{t \rightarrow x-} \varphi_{A}(t)$.
Moreover, A will be said to be D-bounded if either (a) or (b) holds.
Definition 2.2. Let $\left(V, \nu, \tau, \tau^{*}\right)$ and $\left(V^{\prime}, \mu, \sigma, \sigma^{*}\right)$ be PN spaces. A linear map $T: V \rightarrow V^{\prime}$ is said to be
(a) Certainly bounded if every certainly bounded set A of the space (V, ν, τ, τ^{*}) has, as image by T a certainly bounded set $T A$ of the space $\left(V^{\prime}, \mu, \sigma, \sigma^{*}\right)$, i.e., if there exists $x_{0} \in(0,+\infty)$ such that $\nu_{p}\left(x_{0}\right)=1$ for all $p \in A$, then there exists $x_{1} \in(0,+\infty)$ such that $\mu_{T p}\left(x_{1}\right)=1$ for all $p \in A$.

Title Page

Contents

$\mathbf{4 s}$	
$\mathbf{~ G o ~ B a c k}$	
Close	
Quit	

Page 8 of 18
(b) Bounded if it maps every D-bounded set of V into a D-bounded set of V^{\prime}, i.e., if, and only if, it satisfies the implication,

$$
\lim _{x \rightarrow+\infty} \varphi_{A}(x)=1 \Rightarrow \lim _{x \rightarrow+\infty} \varphi_{T A}(x)=1
$$

for every nonempty subset A of V.
(c) Strongly \boldsymbol{B}-bounded if there exists a constant $k>0$ such that, for every $p \in V$ and for every $x>0, \mu_{T p}(x) \geq \nu_{p}\left(\frac{x}{k}\right)$, or equivalently if there exists a constant $h>0$ such that, for every $p \in V$ and for every $x>0$,

$$
\mu_{T p}(h x) \geq \nu_{p}(x)
$$

(d) Strongly \boldsymbol{C}-bounded if there exists a constant $h \in(0,1)$ such that, for every $p \in V$ and for every $x>0$,

$$
\nu_{p}(x)>1-x \Rightarrow \mu_{T p}(h x)>1-h x .
$$

Remark 2.1. The identity map I between PN space (V, ν, τ, τ^{*}) into itself is strongly \boldsymbol{C}-bounded. Also, all linear contraction mappings, according to the definition of [7, Section 1], are strongly \boldsymbol{C}-bounded, i.e for every $p \in V$ and for every $x>0$ if the condition $\nu_{p}(x)>1-x$ is satisfied then

$$
\nu_{I p}(h x)=\nu_{p}(h x)>1-h x .
$$

But we note that when $k=1$ then the identity map I between PN space $\left(V, \nu, \tau, \tau^{*}\right)$ into itself is a strongly \mathbf{B}-bounded operator. Also, all linear contraction mappings, according to the definition of [9, Section 12.6], are strongly B-bounded.

Iqbal H. Jebril and Radhi Ibrahim M. Ali

Title Page

Contents

$\boldsymbol{4}$	
Go Back	
Close	
Quit	

Page 9 of 18

In [3] B. Guillen, J. Lallena and C. Sempi present the following, every strongly B-bounded operator is also certainly bounded and every strongly Bbounded operator is also bounded. But the converses need not to be true.

Now we are going to prove that in the Definition 2.2, the notions of strongly C-bounded operator, certainly bounded, bounded and strongly B-bounded do not imply each other.

In the following example we will introduce a strongly \mathbf{C}-bounded operator, which is not strongly \mathbf{B}-bounded, not bounded nor certainly bounded.

Example 2.1. Let V be a vector space and let $\nu_{\theta}=\mu_{\theta}=\varepsilon_{0}$, while, if $p, q \neq \theta$ then, for every $p, q \in V$ and $x \in \mathbb{R}$, if

$$
\nu_{p}(x)=\left\{\begin{array}{ll}
0, & x \leq 1 \\
1, & x>1
\end{array} \quad \mu_{p}(x)= \begin{cases}\frac{1}{3}, & x \leq 1 \\
\frac{9}{10}, & 1<x<\infty \\
1, & x=\infty\end{cases}\right.
$$

and if

$$
\begin{aligned}
\tau\left(\nu_{p}(x), \nu_{q}(y)\right) & =\tau^{*}\left(\nu_{p}(x), \nu_{q}(y)\right)=\min \left(\nu_{p}(x), \nu_{q}(x)\right) \\
\sigma\left(\mu_{p}(x), \mu_{q}(y)\right) & =\sigma^{*}\left(\mu_{p}(x), \mu_{q}(y)\right)=\min \left(\mu_{p}(x), \mu_{q}(x)\right)
\end{aligned}
$$

then $\left(V, \nu, \tau, \tau^{*}\right)$ and $\left(V^{\prime}, \mu, \sigma, \sigma^{*}\right)$ are equilateral PN spaces by Definition 1.3. Now let $I:\left(V, \nu, \tau, \tau^{*}\right) \rightarrow\left(V, \mu, \tau, \tau^{*}\right)$ be the identity operator, then I is strongly \boldsymbol{C}-bounded but I is not strongly \boldsymbol{B}-bounded, bounded and certainly bounded, it is clear that I is not certainly bounded and is not bounded. I is not

Iqbal H. Jebril and Radhi Ibrahim M. Ali

Title Page
Contents

Go Back

Close
Quit
Page 10 of 18
strongly \boldsymbol{B}-bounded, because for every $k>0$ and for $x=\max \left\{2, \frac{1}{k}\right\}$,

$$
\mu_{I p}(k x)=\frac{9}{10}<1=\nu_{p}(x) .
$$

But I is strongly \boldsymbol{C}-bounded, because for every $p>0$ and for every $x>0$, this condition $v_{p}(x)>1-x$ is satisfied only if $x>1$ now if $h=\frac{7}{10} x$ then

$$
\mu_{I p}(h x)=\mu_{I p}\left(\frac{7}{10 x} x\right)=\mu_{p}\left(\frac{7}{10}\right)=\frac{1}{3}>\frac{3}{10}=1-\frac{7}{10}=1-\left(\frac{7}{10 x}\right) x
$$

Remark 2.2. We have noted in the above example that there is an operator, which is strongly \boldsymbol{C}-bounded, but it is not strongly \boldsymbol{B}-bounded. Moreover we are going to give an operator, which is strongly \boldsymbol{B}-bounded, but it is not strongly \boldsymbol{C}-bounded.

Definition 2.3. Let $\left(V, \nu, \tau, \tau^{*}\right)$ be PN space then we defined

$$
B(p)=\inf \left\{h \in \mathbb{R}: \nu_{p}\left(h^{+}\right)>1-h\right\} .
$$

Lemma 2.1. Let $T:\left(V, \nu, \tau, \tau^{*}\right) \rightarrow\left(V^{\prime}, \mu, \sigma, \sigma^{*}\right)$ be a strongly \boldsymbol{B}-bounded linear operator, for every p in V and let $\mu_{T p}$ be strictly increasing on $[0,1]$, then $B\left(T_{p}\right)<B(p), \forall p \in V$.

Proof. Let $\eta \in\left(0, \frac{1-\gamma}{\gamma} B(p)\right)$, where $\gamma \in(0,1)$. Then $B(p)>\gamma[B(p)+\eta]$ and so

$$
\mu_{T p}(B(p))>\mu_{T p}(\gamma[B(p)+\eta])
$$

Iqbal H. Jebril and Radhi Ibrahim M. Ali

Title Page

Contents

Go Back
Close
Quit
Page 11 of 18
and where $\mu_{T p}$ is strictly increasing on $[0,1]$, then

$$
\mu_{T p}(\gamma[B(p)+\eta]) \geq \nu_{p}(B(p)+\eta) \geq \nu_{p}\left(B(p)^{+}\right)>1-B(p),
$$

we conclude that

$$
B\left(T_{p}\right)=\inf \left\{B(p): \mu_{T_{p}}\left(B(p)^{+}\right)>1-B(p)\right\},
$$

so $B\left(T_{p}\right)<B(p), \forall p \in V$.
Theorem 2.2. Let $T:\left(V, \nu, \tau, \tau^{*}\right) \rightarrow\left(V^{\prime}, \mu, \sigma, \sigma^{*}\right)$ be a strongly \boldsymbol{B}-bounded linear operator, and let $\mu_{T_{p}}$ be strictly increasing on $[0,1]$, then T is a strongly \boldsymbol{C}-bounded linear operator.

Proof. Let T be a strictly \mathbf{B}-bounded operator. Since, by Lemma 2.1, $B\left(T_{p}\right)<$ $B(p), \forall p \in V$ there exist $\gamma_{p} \in(0,1)$ such that $B\left(T_{p}\right)<\gamma_{p} B(p)$.

It means that

$$
\begin{aligned}
\inf \left\{h \in \mathbb{R}: \mu_{T p}\left(h^{+}\right)>1-h\right\} & \leq \gamma \inf \left\{h \in \mathbb{R}: \nu_{p}\left(h^{+}\right)>1-h\right\} \\
& =\inf \left\{\gamma h \in \mathbb{R}: \nu_{p}\left(h^{+}\right)>1-h\right\} \\
& =\inf \left\{h \in \mathbb{R}: \nu_{p}\left(\frac{h^{+}}{\gamma}\right)>1-\frac{h}{\gamma}\right\} .
\end{aligned}
$$

We conclude that $\nu_{p}\left(\frac{h}{\gamma}\right)>1-\left(\frac{h}{\gamma}\right) \Longrightarrow \mu_{T p}(h)>1-h$. Now if $x=\frac{h}{\gamma}$ then $\nu_{p}(x)>1-x \Longrightarrow \mu_{T p}(x h)>1-x h$, so T is a strongly \mathbf{C}-bounded operator.

Iqbal H. Jebril and Radhi Ibrahim M. Ali

Title Page
Contents

Go Back
Close
Quit
Page 12 of 18

Remark 2.3. From Theorem 2.2 we have noted that under some additional condition every a strongly B-bounded operator is a strongly \boldsymbol{C}-bounded operator. But in general, it is not true.
Example 2.2. Let $V=V^{\prime}=\mathbb{R}$ and $v_{0}=\mu_{0}=\varepsilon_{0}$, while, if $p \neq 0$, then, for $x>0$, let $v_{p}(x)=G\left(\frac{x}{|p|}\right), \mu_{p}(x)=U\left(\frac{x}{|p|}\right)$, where

$$
G(x)=\left\{\begin{array}{ll}
\frac{1}{2}, & 0<x \leq 2, \\
1, & 2<x \leq+\infty,
\end{array} \quad U(x)= \begin{cases}\frac{1}{2}, & 0<x \leq \frac{3}{2} \\
1, & \frac{3}{2}<x \leq+\infty\end{cases}\right.
$$

Consider now the identity map $I:(\mathbb{R},|\cdot|, G, \mu) \rightarrow(\mathbb{R},|\cdot|, G, \mu)$. Now
(a) I is a strongly \boldsymbol{B}-bounded operator, such that for every $p \in \mathbb{R}$ and every $x>0$ then

$$
\begin{aligned}
\mu_{I p}\left(\frac{3}{4} x\right) & =\mu_{p}\left(\frac{3}{4} x\right) \\
& =U\left(\frac{3 x}{4|p|}\right) \\
& = \begin{cases}\frac{1}{2}, & 0<x \leq 2|p|, \\
1, & 2|p|<x \leq+\infty\end{cases}
\end{aligned}
$$

(b) I is not a strongly \boldsymbol{C}-bounded operator, such that for every $h \in(0,1)$, let $x=\frac{3}{8 h}, p=\frac{1}{4}$. If $x>2|p|$ then the condition $v_{p}(x)>1-x$ will be

Iqbal H. Jebril and Radhi Ibrahim M. Ali

Title Page
Contents

Go Back

Close

Quit

Page 13 of 18

$$
\begin{aligned}
\mu_{I p}(h x) & =\mu_{p}(h x) \\
& =U\left(\frac{h x}{|p|}\right) \\
& =U\left(\frac{3}{2}\right)=\frac{1}{2}<\frac{5}{8}=1-h\left(\frac{3}{8 h}\right)=1-h x .
\end{aligned}
$$

Now we introduce the relation between the strongly B-bounded and strongly \mathbf{C}-bounded operators with boundedness in normed space.
Theorem 2.3. Let G be strictly increasing on $[0,1]$, then $T:(V,\|\cdot\|, G, \alpha) \rightarrow$ $\left(V^{\prime},\|\cdot\|, G, \alpha\right)$ is a strongly \boldsymbol{B}-bounded operator if, and only if, T is a bounded linear operator in normed space.

Proof. Let $k>0$ and $x>0$. Then for every $p \in V$

$$
G\left(\frac{k x}{\left\|T_{p}\right\|^{\alpha}}\right)=\mu_{T p}(k x) \geq v_{p}(x)=G\left(\frac{x}{\|p\|^{\alpha}}\right)
$$

if and only if

$$
\left\|T_{p}\right\| \leq k^{\frac{1}{\alpha}}\|p\|
$$

Theorem 2.4. Let $T:(V,\|\cdot\|, G, \alpha) \rightarrow\left(V^{\prime},\|\cdot\|, G, \alpha\right)$ be strongly \boldsymbol{C}-bounded, and let G be strictly increasing on $[0,1]$ then T is a bounded linear operator in normed space.

Integral Means Inequalities for Fractional Derivatives of Some General Subclasses of Analytic Functions

Iqbal H. Jebril and Radhi Ibrahim M. Ali

Title Page
Contents

Go Back

Close
Quit
Page 14 of 18

Proof. If v_{p} is strictly increasing for every $p \in V$, then the quasi-inverse v_{p}^{Λ} is continuous and $B(p)$ is the unique solution of the equation $x=v_{p}^{\Lambda}(1-x)$ i.e.

$$
\begin{equation*}
B(p)=v_{p}^{\Lambda}(x)(1-B(p)) \tag{2.1}
\end{equation*}
$$

If $v_{p}(x)=G\left(\frac{x}{\|p\|^{\alpha}}\right)$, then $v_{p}^{\Lambda}(x)=\|p\|^{\alpha} G^{\Lambda}(x)$ and from (2.1) it follows that

$$
\begin{equation*}
B(p)=\|p\|^{\alpha} G^{\Lambda}(1-B(p)) \tag{2.2}
\end{equation*}
$$

Suppose that T is strongly \mathbf{C}-bounded, i.e. that

$$
\begin{equation*}
B\left(T_{p}\right) \leq k B(p), \quad \forall p \in V \tag{2.3}
\end{equation*}
$$

where $k \in(0,1)$.
Then (2.2) and (2.3) imply

$$
\left\|T_{p}\right\|^{\alpha} \leq \frac{B\left(T_{p}\right)}{G^{\Lambda}\left(1-B\left(T_{p}\right)\right)} \leq \frac{k B(p)}{G^{\Lambda}(1-k B(p))} \leq \frac{k B(p)}{G^{\Lambda}(1-B(p))}=k\|p\|^{\alpha}
$$

Which means that T is a bounded in normed space.
The converse of the above theorem is not true, see Example 2.2.
We recall the following theorems from [3].
Theorem 2.5. Let $\left(V, \nu, \tau, \tau^{*}\right)$ and $\left(V^{\prime}, \mu, \sigma, \sigma^{*}\right)$ be PN spaces. A linear map $T: V \rightarrow V^{\prime}$ is either continuous at every point of V or at no point of V.

Corollary 2.6. If $T:\left(V, \nu, \tau, \tau^{*}\right) \rightarrow\left(V^{\prime}, \mu, \sigma, \sigma^{*}\right)$ is linear, then T is continuous if, and only if, it is continuous at θ.

Iqbal H. Jebril and Radhi Ibrahim M. Ali

Title Page
Contents

Go Back
Close
Quit
Page 15 of 18

Theorem 2.7. Every strongly B-bounded linear operator T is continuous with respect to the strong topologies in $\left(V, \nu, \tau, \tau^{*}\right)$ and $\left(V^{\prime}, \mu, \sigma, \sigma^{*}\right)$, respectively.

In the following theorem we show that every strongly \mathbf{C}-bounded linear operator T is continuous.

Theorem 2.8. Every strongly C-bounded linear operator T is continuous.
Proof. Due to Corollary 3.1 [3], it suffices to verify that T is continuous at θ. Let $N_{\theta^{\prime}}(t)$, with $t>0$, be an arbitrary neighbourhood of θ^{\prime}. If T is strongly C-bounded linear operator then there exist $h \in(0,1)$ such that for every $t>0$ and $p \in N_{\theta}(s)$ we note that

$$
\mu_{T p}(t) \geq \nu_{p}(h t) \geq 1-h t>1-t
$$

so $T_{p} \in N_{\theta^{\prime}}(t)$; in other words, T is continuous.

Integral Means Inequalities for Fractional Derivatives of Some General Subclasses of Analytic Functions

Iqbal H. Jebril and Radhi Ibrahim M. Ali

Title Page
Contents
Go Back
Close
Quit
Page 16 of 18

References

[1] C. ALSINA, B. SCHWEIZER AND A. SKLAR, On the definition of probabilistic normed space, Aequationes Math., 46 (1993), 91-98.
[2] C. ALSINA, B. SCHWEIZER, C. SEMPI AND A. SKLAR, On the definition of a probabilistic inner product space, Rendiconti di Mathematica, 17 (1997), 115-127.
[3] B. GUILLEN, J. LALLENA AND C. SEMPI, A study of boundedness in probabilistic normed spaces, J. Math. Anal. Appl., 232 (1999), 183-196.
[4] B. GUILLEN, J. LALLENA AND C. SEMPI, Probabilistic norms for linear operators, J. Math. Anal. Appl., 220 (1998), 462-476.
[5] B. GUILLEN, J. LALLENA AND C. SEMPI, Some classes of probabilistic normed spaces, Rendiconti di Mathematica, 17(7) (1997), 237-252.
[6] E. KREYSZIG, Introductory Functional Analysis with Applications, John Wiley and Sons Inc.New York, 1978.
[7] E. PAP AND O. HADZIC, A fixed point theorem in probabilistic metric spaces and application, J. Math. Anal. Appl., 202 (1996), 433-449.
[8] B. SCHWEIZER AND A. SKIAR, Statistical metric space, Pacific J. Math., 10 (1960), 313-334.
[9] B. SCHWEIZER AND A. SKIAR, Probabilistic Metric Space, Elsevier North Holland New York, 1983. Functions

Iqbal H. Jebril and Radhi Ibrahim M. Ali

Title Page
Contents

$\mathbf{4}$	
Go Back	
Close	
Quit	

Page 17 of 18
[10] R. TARDIFF, Topologies for probabilistic metric spaces, Pacific J. Math., 65 (1976), 233-251.
[11] A. TAYLOR, Introduction to Functional Analysis, John Wiley and Sons Inc., New York, 1958.

Integral Means Inequalities for Fractional Derivatives of Some General Subclasses of Analytic Functions

Iqbal H. Jebril and Radhi Ibrahim M. Ali
$\frac{\text { Title Page }}{\text { Contents }}$

