# Journal of Inequalities in Pure and Applied Mathematics

## BOUNDED LINEAR OPERATORS IN PROBABILISTIC NORMED SPACE

#### IQBAL H. JEBRIL AND RADHI IBRAHIM M. ALI

University of AI al-BAYT, Department of Mathematics, P.O.Box 130040, Mafraq 25113, Jordan. *EMail*: igbal501@yahoo.com

©2000 School of Communications and Informatics, Victoria University of Technology ISSN (electronic): 1443-5756 049-02



volume 4, issue 1, article 8, 2003.

Received 7 May, 2002; accepted 20 November, 2002. Communicated by: *B. Mond* 



### Abstract

The notion of a probabilistic metric space was introduced by Menger in 1942. The notion of a probabilistic normed space was introduced in 1993. The aim of this paper is to give a necessary condition to get bounded linear operators in probabilistic normed space.

2000 Mathematics Subject Classification: 54E70. Key words: Probabilistic Normed Space, Bounded Linear Operators.

It is a pleasure to thank C. Alsina and C. Sempi for sending us the references [1, 3, 9].

## Contents

| 1          | Introduction                                             | 3 |
|------------|----------------------------------------------------------|---|
| 2          | Bounded Linear Operators in Probabilistic Normed Spaces. | 8 |
| References |                                                          |   |



Integral Means Inequalities for Fractional Derivatives of Some General Subclasses of Analytic Functions

Iqbal H. Jebril and Radhi Ibrahim M. Ali



## 1. Introduction

The purpose of this paper is to present a definition of bounded linear operators which is based on the new definition of a probabilistic normed space. This definition is sufficiently general to encompass the most important contraction function in probabilistic normed space. The concepts used are those of [1], [2] and [9].

A distribution function (briefly, a d.f.) is a function F from the extended real line  $\mathbb{\bar{R}} = [-\infty, +\infty]$  into the unit interval I = [0, 1] that is nondecreasing and satisfies  $F(-\infty) = 0$ ,  $F(+\infty) = 1$ . We normalize all d.f.'s to be leftcontinuous on the unextended real line  $\mathbb{R} = (-\infty, +\infty)$ . For any  $a \ge 0$ ,  $\varepsilon_a$  is the d.f. defined by

(1.1) 
$$\varepsilon_a(x) = \begin{cases} 0, & \text{if } x \le a \\ 1, & \text{if } x > a, \end{cases}$$

The set of all the d.f.s will be denoted by  $\Delta$  and the subset of those d.f.s called positive d.f.s. such that F(0) = 0, by  $\Delta^+$ .

By setting  $F \leq G$  whenever  $F(x) \leq G(x)$  for all x in  $\mathbb{R}$ , the maximal element for  $\Delta^+$  in this order is the d.f. given by

$$\varepsilon_0 (x) = \begin{cases} 0, & \text{if } x \le 0, \\ \\ 1, & \text{if } x > 0. \end{cases}$$

A triangle function is a binary operation on  $\Delta^+$ , namely a function  $\tau : \Delta^+ \times \Delta^+ \to \Delta^+$  that is associative, commutative, nondecreasing and which has  $\varepsilon_0$  as



Integral Means Inequalities for Fractional Derivatives of Some General Subclasses of Analytic Functions



J. Ineq. Pure and Appl. Math. 4(1) Art. 8, 2003 http://jipam.vu.edu.au

unit, that is, for all  $F, G, H \in \Delta^+$ , we have

$$\begin{aligned} \tau\left(\tau\left(F,G\right),H\right) &= \tau\left(F,\tau\left(G,H\right)\right),\\ \tau\left(F,G\right) &= \tau\left(G,F\right),\\ \tau\left(F,H\right) &\leq \tau\left(G,H\right), \quad \text{if} \quad F \leq G,\\ \tau\left(F,\varepsilon_{0}\right) &= F. \end{aligned}$$

Continuity of a triangle function means continuity with respect to the topology of weak convergence in  $\Delta^+$ .

Typical continuous triangle functions are convolution and the operations  $\tau_T$  and  $\tau_{T^*}$ , which are, respectively, given by

(1.2) 
$$\tau_T(F,G)(x) = \sup_{s+t=x} T(F(s), G(t))$$

and

(1.3) 
$$\tau_{T^*}(F,G)(x) = \inf_{s+t=x} T^*(F(s),G(t)),$$

for all F, G in  $\Delta^+$  and all x in  $\mathbb{R}$  [9, Sections 7.2 and 7.3], here T is a continuous t-norm, i.e. a continuous binary operation on [0, 1] that is associative, commutative, nondecreasing and has 1 as identity;  $T^*$  is a continuous t-conorm, namely a continuous binary operation on [0, 1] that is related to continuous t-norm through

(1.4) 
$$T^*(x,y) = 1 - T(1 - x, 1 - y)$$

It follows without difficulty from (1.1)-(1.4) that

$$\tau_T(\varepsilon_a,\varepsilon_b) = \varepsilon_{a+b} = \tau_{T^*}(\varepsilon_a,\tau_b)$$



Integral Means Inequalities for Fractional Derivatives of Some General Subclasses of Analytic Functions



J. Ineq. Pure and Appl. Math. 4(1) Art. 8, 2003 http://jipam.vu.edu.au

for any continuous t-norm T, any continuous t-conorm  $T^*$  and any  $a, b \ge 0$ .

The most important t-norms are the functions W, Prod, and M which are defined, respectively, by

$$W(a, b) = \max (a + b - 1, 0),$$
  

$$prod(a, b) = a \cdot b,$$
  

$$M(a, b) = \min (a, b).$$

Their corresponding t-norms are given, respectively, by

$$W^*(a, b) = \min(a + b, 1),$$
  
 $prod^*(a, b) = a + b - a \cdot b,$   
 $M^*(a, b) = \max(a, b).$ 

**Definition 1.1.** A probabilistic metric (briefly PM) space is a triple  $(S, f, \tau)$ , where S is a nonempty set,  $\tau$  is a triangle function, and f is a mapping from  $S \times S$  into  $\Delta^+$  such that, if  $F_{pq}$  denoted the value of f at the pair (p,q), the following hold for all p, q, r in S:

(**PM1**)  $F_{pq} = \varepsilon_0$  if and only if p = q.

(**PM2**)  $F_{pq} = F_{qp}$ .

(**PM3**)  $F_{pr} \ge \tau (F_{pq}, F_{qr})$ .

**Definition 1.2.** A probabilistic normed space is a quadruple  $(V, \nu, \tau, \tau^*)$ , where V is a real vector space,  $\tau$  and  $\tau^*$  are continuous triangle functions, and  $\nu$  is a mapping from V into  $\Delta^+$  such that, for all p, q in V, the following conditions hold:



Integral Means Inequalities for Fractional Derivatives of Some General Subclasses of Analytic Functions



J. Ineq. Pure and Appl. Math. 4(1) Art. 8, 2003 http://jipam.vu.edu.au

(**PN1**)  $\nu_p = \varepsilon_0$  if and only if  $p = \theta$ ,  $\theta$  being the null vector in V;

(**PN2**)  $\nu_{-p} = \nu_p;$ 

(**PN3**)  $\nu_{p+q} \ge \tau (\nu_p, \nu_q)$ 

(**PN4**)  $\nu_p \leq \tau^* \left( \nu_{\alpha p}, \nu_{(1-\alpha)p} \right)$  for all  $\alpha$  in [0, 1].

If, instead of (**PN1**), we only have  $\nu_{\theta} = \varepsilon_{\theta}$ , then we shall speak of a *Probabilistic Pseudo Normed Space*, briefly a PPN space. If the inequality (**PN4**) is replaced by the equality  $V_p = \tau_M (\nu_{\alpha p}, \nu_{(1-\alpha)p})$ , then the PN space is called a *Serstnev space*. The pair is said to be a Probabilistic *Seminormed* Space (briefly PSN space) if  $\nu : V \to \Delta^+$  satisfies (**PN1**) and (**PN2**).

**Definition 1.3.** A PSN  $(V, \nu)$  space is said to be equilateral if there is a d.f.  $F \in \Delta^+$  different from  $\varepsilon_0$  and from  $\varepsilon_\infty$ , such that, for every  $p \neq \theta$ ,  $\nu_p = F$ . Therefore, every equilateral PSN space  $(V, \nu)$  is a PN space under  $\tau = M$  and  $\tau^* = M$  where is the triangle function defined for  $G, H \in \Delta^+$  by

$$M(G,H)(x) = \min \{G(x), H(x)\} \qquad (x \in [0,\infty])$$

An equilateral PN space will be denoted by (V, F, M).

**Definition 1.4.** Let  $(V, \|\cdot\|)$  be a normed space and let  $G \in \Delta^+$  be different from  $\varepsilon_0$  and  $\varepsilon_\infty$ ; define  $\nu : V \to \Delta^+$  by  $\nu_\theta = \varepsilon_0$  and

$$\nu_p(t) = G\left(\frac{t}{\|p\|^{\alpha}}\right) \quad (p \neq \theta, \ t > 0),$$

where  $\alpha \geq 0$ . Then the pair  $(V, \nu)$  will be called the  $\alpha$ -simple space generated by  $(V, \|\cdot\|)$  and by G.



Integral Means Inequalities for Fractional Derivatives of Some General Subclasses of Analytic Functions



J. Ineq. Pure and Appl. Math. 4(1) Art. 8, 2003 http://jipam.vu.edu.au

The  $\alpha$ -simple space generated by  $(V, \|\cdot\|)$  and by G is immediately seen to be a PSN space; it will be denoted by  $(V, \|\cdot\|, G; \alpha)$ .

**Definition 1.5.** There is a natural topology in PN space  $(V, \nu, \tau, \tau^*)$ , called the strong topology; it is defined by the neighborhoods,

 $N_{p}(t) = \{q \in V : \nu_{q-p}(t) > 1 - t\} = \{q \in d_{L}(\nu_{q-p}, \varepsilon_{0}) < t\},\$ 

where t > 0. Here  $d_L$  is the modified Levy metric ([9]).



Integral Means Inequalities for Fractional Derivatives of Some General Subclasses of Analytic Functions

Iqbal H. Jebril and Radhi Ibrahim M. Ali



# 2. Bounded Linear Operators in Probabilistic Normed Spaces

In 1999, B. Guillen, J. Lallena and C. Sempi [3] gave the following definition of bounded set in PN space.

**Definition 2.1.** Let A be a nonempty set in PN space  $(V, \nu, \tau, \tau^*)$ . Then

- (a) A is certainly bounded if, and only if,  $\varphi_A(x_0) = 1$  for some  $x_0 \in (0, +\infty)$ ;
- (b) A is perhaps bounded if, and only if,  $\varphi_A(x_0) < 1$  for every  $x_0 \in (0, +\infty)$ and  $l^-\varphi_A(+\infty) = 1$ ;
- (c) A is perhaps unbounded if, and only if,  $l^-\varphi_A(+\infty) \in (0,1)$ ;
- (d) A is certainly unbounded if, and only if,  $l^{-}\varphi_{A}(+\infty) = 0$ ; i.e.,  $\varphi_{A}(x) = 0$ ;

where  $\varphi_A(x) = \inf \{ \nu_p(x) : P \in A \}$  and  $l^- \varphi_A(x) = \lim_{t \to x^-} \varphi_A(t)$ . Moreover, A will be said to be D-bounded if either (a) or (b) holds.

**Definition 2.2.** Let  $(V, \nu, \tau, \tau^*)$  and  $(V', \mu, \sigma, \sigma^*)$  be PN spaces. A linear map  $T: V \to V'$  is said to be

(a) Certainly bounded if every certainly bounded set A of the space  $(V, \nu, \tau, \tau^*)$ has, as image by T a certainly bounded set TA of the space  $(V', \mu, \sigma, \sigma^*)$ , i.e., if there exists  $x_0 \in (0, +\infty)$  such that  $\nu_p(x_0) = 1$  for all  $p \in A$ , then there exists  $x_1 \in (0, +\infty)$  such that  $\mu_{Tp}(x_1) = 1$  for all  $p \in A$ .



Integral Means Inequalities for Fractional Derivatives of Some General Subclasses of Analytic Functions



J. Ineq. Pure and Appl. Math. 4(1) Art. 8, 2003 http://jipam.vu.edu.au

(b) Bounded if it maps every D-bounded set of V into a D-bounded set of V', *i.e., if, and only if, it satisfies the implication,* 

$$\lim_{x \to +\infty} \varphi_A(x) = 1 \Rightarrow \lim_{x \to +\infty} \varphi_{TA}(x) = 1,$$

for every nonempty subset A of V.

(c) Strongly **B**-bounded if there exists a constant k > 0 such that, for every  $p \in V$  and for every x > 0,  $\mu_{Tp}(x) \ge \nu_p\left(\frac{x}{k}\right)$ , or equivalently if there exists a constant h > 0 such that, for every  $p \in V$  and for every x > 0,

$$\mu_{Tp}\left(hx\right) \geq \nu_{p}\left(x\right).$$

(d) Strongly C-bounded if there exists a constant  $h \in (0,1)$  such that, for every  $p \in V$  and for every x > 0,

$$\nu_p(x) > 1 - x \Rightarrow \mu_{Tp}(hx) > 1 - hx.$$

**Remark 2.1.** The identity map I between PN space  $(V, \nu, \tau, \tau^*)$  into itself is strongly **C**-bounded. Also, all linear contraction mappings, according to the definition of [7, Section 1], are strongly **C**-bounded, i.e for every  $p \in V$  and for every x > 0 if the condition  $\nu_p(x) > 1 - x$  is satisfied then

$$\nu_{Ip}\left(hx\right) = \nu_p\left(hx\right) > 1 - hx.$$

But we note that when k = 1 then the identity map *I* between PN space  $(V, \nu, \tau, \tau^*)$  into itself is a strongly **B**-bounded operator. Also, all linear contraction mappings, according to the definition of [9, Section 12.6], are strongly **B**-bounded.



Integral Means Inequalities for Fractional Derivatives of Some General Subclasses of Analytic Functions



J. Ineq. Pure and Appl. Math. 4(1) Art. 8, 2003 http://jipam.vu.edu.au

In [3] B. Guillen, J. Lallena and C. Sempi present the following, every strongly **B**-bounded operator is also certainly bounded and every strongly **B**-bounded operator is also bounded. But the converses need not to be true.

Now we are going to prove that in the Definition 2.2, the notions of strongly C-bounded operator, certainly bounded, bounded and strongly **B**-bounded do not imply each other.

In the following example we will introduce a strongly **C**-bounded operator, which is not strongly **B**-bounded, not bounded nor certainly bounded.

**Example 2.1.** Let V be a vector space and let  $\nu_{\theta} = \mu_{\theta} = \varepsilon_0$ , while, if  $p, q \neq \theta$  then, for every  $p, q \in V$  and  $x \in \mathbb{R}$ , if

$$\nu_p(x) = \begin{cases} 0, & x \le 1 \\ 1, & x > 1 \end{cases} \qquad \mu_p(x) = \begin{cases} \frac{1}{3}, & x \le 1 \\ \frac{9}{10}, & 1 < x < \infty \\ 1, & x = \infty \end{cases}$$

and if

$$\tau (\nu_p (x), \nu_q (y)) = \tau^* (\nu_p (x), \nu_q (y)) = \min (\nu_p (x), \nu_q (x)), \sigma (\mu_p (x), \mu_q (y)) = \sigma^* (\mu_p (x), \mu_q (y)) = \min (\mu_p (x), \mu_q (x)),$$

then  $(V, \nu, \tau, \tau^*)$  and  $(V', \mu, \sigma, \sigma^*)$  are equilateral PN spaces by Definition 1.3. Now let  $I : (V, \nu, \tau, \tau^*) \rightarrow (V, \mu, \tau, \tau^*)$  be the identity operator, then I is strongly **C**-bounded but I is not strongly **B**-bounded, bounded and certainly bounded, it is clear that I is not certainly bounded and is not bounded. I is not



Integral Means Inequalities for Fractional Derivatives of Some General Subclasses of Analytic Functions



J. Ineq. Pure and Appl. Math. 4(1) Art. 8, 2003 http://jipam.vu.edu.au

strongly **B**-bounded, because for every k > 0 and for  $x = \max\left\{2, \frac{1}{k}\right\}$ ,

$$\mu_{Ip}(kx) = \frac{9}{10} < 1 = \nu_p(x) \,.$$

But I is strongly C-bounded, because for every p > 0 and for every x > 0, this condition  $v_p(x) > 1 - x$  is satisfied only if x > 1 now if  $h = \frac{7}{10}x$  then

$$\mu_{Ip}(hx) = \mu_{Ip}\left(\frac{7}{10x}x\right) = \mu_p\left(\frac{7}{10}\right) = \frac{1}{3} > \frac{3}{10} = 1 - \frac{7}{10} = 1 - \left(\frac{7}{10x}\right)x.$$

**Remark 2.2.** We have noted in the above example that there is an operator, which is strongly *C*-bounded, but it is not strongly *B*-bounded. Moreover we are going to give an operator, which is strongly *B*-bounded, but it is not strongly *C*-bounded.

**Definition 2.3.** Let  $(V, \nu, \tau, \tau^*)$  be PN space then we defined

$$B(p) = \inf \left\{ h \in \mathbb{R} : \nu_p(h^+) > 1 - h \right\}.$$

**Lemma 2.1.** Let  $T : (V, \nu, \tau, \tau^*) \rightarrow (V', \mu, \sigma, \sigma^*)$  be a strongly **B**-bounded linear operator, for every p in V and let  $\mu_{Tp}$  be strictly increasing on [0, 1], then  $B(T_p) < B(p), \forall p \in V.$ 

*Proof.* Let  $\eta \in \left(0, \frac{1-\gamma}{\gamma}B(p)\right)$ , where  $\gamma \in (0, 1)$ . Then  $B(p) > \gamma \left[B(p) + \eta\right]$  and so

 $\mu_{Tp}\left(B\left(p\right)\right) > \mu_{Tp}\left(\gamma\left[B\left(p\right) + \eta\right]\right),$ 



Integral Means Inequalities for Fractional Derivatives of Some General Subclasses of Analytic Functions



J. Ineq. Pure and Appl. Math. 4(1) Art. 8, 2003 http://jipam.vu.edu.au

and where  $\mu_{Tp}$  is strictly increasing on [0, 1], then

$$\mu_{T_p}(\gamma [B(p) + \eta]) \ge \nu_p(B(p) + \eta) \ge \nu_p(B(p)^+) > 1 - B(p),$$

we conclude that

$$B(T_p) = \inf \{ B(p) : \mu_{T_p} (B(p)^+) > 1 - B(p) \},\$$

so  $B(T_p) < B(p), \ \forall p \in V$ .

**Theorem 2.2.** Let  $T : (V, \nu, \tau, \tau^*) \rightarrow (V', \mu, \sigma, \sigma^*)$  be a strongly **B**-bounded linear operator, and let  $\mu_{Tp}$  be strictly increasing on [0, 1], then T is a strongly **C**-bounded linear operator.

*Proof.* Let T be a strictly **B**-bounded operator. Since, by Lemma 2.1,  $B(T_p) < B(p)$ ,  $\forall p \in V$  there exist  $\gamma_p \in (0, 1)$  such that  $B(T_p) < \gamma_p B(p)$ . It means that

$$\inf \left\{ h \in \mathbb{R} : \mu_{Tp} \left( h^{+} \right) > 1 - h \right\} \leq \gamma \inf \left\{ h \in \mathbb{R} : \nu_{p} \left( h^{+} \right) > 1 - h \right\}$$
$$= \inf \left\{ \gamma h \in \mathbb{R} : \nu_{p} \left( h^{+} \right) > 1 - h \right\}$$
$$= \inf \left\{ h \in \mathbb{R} : \nu_{p} \left( \frac{h^{+}}{\gamma} \right) > 1 - \frac{h}{\gamma} \right\}.$$

We conclude that  $\nu_p\left(\frac{h}{\gamma}\right) > 1 - \left(\frac{h}{\gamma}\right) \Longrightarrow \mu_{Tp}(h) > 1 - h$ . Now if  $x = \frac{h}{\gamma}$  then  $\nu_p(x) > 1 - x \Longrightarrow \mu_{Tp}(xh) > 1 - xh$ , so *T* is a strongly **C**-bounded operator.



Integral Means Inequalities for Fractional Derivatives of Some General Subclasses of Analytic Functions

Iqbal H. Jebril and Radhi Ibrahim M. Ali



**Remark 2.3.** From Theorem 2.2 we have noted that under some additional condition every a strongly **B**-bounded operator is a strongly **C**-bounded operator. But in general, it is not true.

**Example 2.2.** Let  $V = V' = \mathbb{R}$  and  $v_0 = \mu_0 = \varepsilon_0$ , while, if  $p \neq 0$ , then, for x > 0, let  $v_p(x) = G\left(\frac{x}{|p|}\right)$ ,  $\mu_p(x) = U\left(\frac{x}{|p|}\right)$ , where

$$G(x) = \begin{cases} \frac{1}{2}, & 0 < x \le 2, \\ & & \\ 1, & 2 < x \le +\infty, \end{cases} \qquad U(x) = \begin{cases} \frac{1}{2}, & 0 < x \le \frac{3}{2}, \\ & & \\ 1, & \frac{3}{2} < x \le +\infty \end{cases}$$

Consider now the identity map  $I : (\mathbb{R}, |\cdot|, G, \mu) \to (\mathbb{R}, |\cdot|, G, \mu)$ . Now

(a) I is a strongly **B**-bounded operator, such that for every  $p \in \mathbb{R}$  and every x > 0 then

$$\begin{aligned} u_{Ip}\left(\frac{3}{4}x\right) &= \mu_p\left(\frac{3}{4}x\right) \\ &= U\left(\frac{3x}{4|p|}\right) \\ &= \begin{cases} \frac{1}{2}, & 0 < x \le 2|p|, \\ 1, & 2|p| < x \le +\infty, \end{cases} = G\left(\frac{x}{|p|}\right) = v_p(x). \end{aligned}$$

(b) I is not a strongly C-bounded operator, such that for every 
$$h \in (0, 1)$$
, let  $x = \frac{3}{8h}, p = \frac{1}{4}$ . If  $x > 2|p|$  then the condition  $v_p(x) > 1 - x$  will be



Integral Means Inequalities for Fractional Derivatives of Some General Subclasses of Analytic Functions



J. Ineq. Pure and Appl. Math. 4(1) Art. 8, 2003 http://jipam.vu.edu.au

satisfied, but we note that

$$\mu_{Ip}(hx) = \mu_p(hx)$$

$$= U\left(\frac{hx}{|p|}\right)$$

$$= U\left(\frac{3}{2}\right) = \frac{1}{2} < \frac{5}{8} = 1 - h\left(\frac{3}{8h}\right) = 1 - hx.$$

Now we introduce the relation between the strongly **B**-bounded and strongly **C**-bounded operators with boundedness in normed space.

**Theorem 2.3.** Let G be strictly increasing on [0, 1], then  $T : (V, \|\cdot\|, G, \alpha) \rightarrow (V', \|\cdot\|, G, \alpha)$  is a strongly **B**-bounded operator if, and only if, T is a bounded linear operator in normed space.

*Proof.* Let k > 0 and x > 0. Then for every  $p \in V$ 

$$G\left(\frac{kx}{\left\|T_{p}\right\|^{\alpha}}\right) = \mu_{Tp}\left(kx\right) \ge v_{p}\left(x\right) = G\left(\frac{x}{\left\|p\right\|^{\alpha}}\right),$$

if and only if

$$\|T_p\| \le k^{\frac{1}{\alpha}} \|p\|$$

**Theorem 2.4.** Let  $T : (V, \|\cdot\|, G, \alpha) \to (V', \|\cdot\|, G, \alpha)$  be strongly *C*-bounded, and let *G* be strictly increasing on [0, 1] then *T* is a bounded linear operator in normed space.



Integral Means Inequalities for Fractional Derivatives of Some General Subclasses of Analytic Functions



J. Ineq. Pure and Appl. Math. 4(1) Art. 8, 2003 http://jipam.vu.edu.au

*Proof.* If  $v_p$  is strictly increasing for every  $p \in V$ , then the quasi-inverse  $v_p^{\Lambda}$  is continuous and B(p) is the unique solution of the equation  $x = v_p^{\Lambda}(1-x)$  i.e.

(2.1) 
$$B(p) = v_p^{\Lambda}(x) (1 - B(p))$$

If 
$$v_p(x) = G\left(\frac{x}{\|p\|^{\alpha}}\right)$$
, then  $v_p^{\Lambda}(x) = \|p\|^{\alpha} G^{\Lambda}(x)$  and from (2.1) it follows that

(2.2) 
$$B(p) = ||p||^{\alpha} G^{\Lambda} (1 - B(p))$$

Suppose that T is strongly C-bounded, i.e. that

$$(2.3) B(T_p) \le kB(p), \ \forall p \in V,$$

where  $k \in (0, 1)$ .

Then (2.2) and (2.3) imply

$$\|T_p\|^{\alpha} \le \frac{B(T_p)}{G^{\Lambda}(1 - B(T_p))} \le \frac{kB(p)}{G^{\Lambda}(1 - kB(p))} \le \frac{kB(p)}{G^{\Lambda}(1 - B(p))} = k \|p\|^{\alpha}$$

Which means that T is a bounded in normed space.

The converse of the above theorem is not true, see Example 2.2. We recall the following theorems from [3].

**Theorem 2.5.** Let  $(V, \nu, \tau, \tau^*)$  and  $(V', \mu, \sigma, \sigma^*)$  be PN spaces. A linear map  $T: V \to V'$  is either continuous at every point of V or at no point of V.

**Corollary 2.6.** If  $T : (V, \nu, \tau, \tau^*) \to (V', \mu, \sigma, \sigma^*)$  is linear, then T is continuous if, and only if, it is continuous at  $\theta$ .



Integral Means Inequalities for Fractional Derivatives of Some General Subclasses of Analytic Functions



J. Ineq. Pure and Appl. Math. 4(1) Art. 8, 2003 http://jipam.vu.edu.au

**Theorem 2.7.** Every strongly **B**-bounded linear operator T is continuous with respect to the strong topologies in  $(V, \nu, \tau, \tau^*)$  and  $(V', \mu, \sigma, \sigma^*)$ , respectively.

In the following theorem we show that every strongly C-bounded linear operator T is continuous.

#### **Theorem 2.8.** Every strongly C-bounded linear operator T is continuous.

*Proof.* Due to Corollary 3.1 [3], it suffices to verify that T is continuous at  $\theta$ . Let  $N_{\theta'}(t)$ , with t > 0, be an arbitrary neighbourhood of  $\theta'$ . If T is strongly C-bounded linear operator then there exist  $h \in (0, 1)$  such that for every t > 0 and  $p \in N_{\theta}(s)$  we note that

$$\mu_{Tp}\left(t\right) \ge \nu_{p}\left(ht\right) \ge 1 - ht > 1 - t,$$

so  $T_{p} \in N_{\theta'}(t)$ ; in other words, T is continuous.



Integral Means Inequalities for Fractional Derivatives of Some General Subclasses of Analytic Functions



J. Ineq. Pure and Appl. Math. 4(1) Art. 8, 2003 http://jipam.vu.edu.au

## References

- [1] C. ALSINA, B. SCHWEIZER AND A. SKLAR, On the definition of probabilistic normed space, *Aequationes Math.*, **46** (1993), 91–98.
- [2] C. ALSINA, B. SCHWEIZER, C. SEMPI AND A. SKLAR, On the definition of a probabilistic inner product space, *Rendiconti di Mathematica*, 17 (1997), 115–127.
- [3] B. GUILLEN, J. LALLENA AND C. SEMPI, A study of boundedness in probabilistic normed spaces, *J. Math. Anal. Appl.*, **232** (1999), 183–196.
- [4] B. GUILLEN, J. LALLENA AND C. SEMPI, Probabilistic norms for linear operators, *J. Math. Anal. Appl.*, **220** (1998), 462–476.
- [5] B. GUILLEN, J. LALLENA AND C. SEMPI, Some classes of probabilistic normed spaces, *Rendiconti di Mathematica*, **17**(7) (1997), 237–252.
- [6] E. KREYSZIG, *Introductory Functional Analysis with Applications*, John Wiley and Sons Inc.New York, 1978.
- [7] E. PAP AND O. HADZIC, A fixed point theorem in probabilistic metric spaces and application, *J. Math. Anal. Appl.*, **202** (1996), 433–449.
- [8] B. SCHWEIZER AND A. SKIAR, Statistical metric space, *Pacific J. Math.*, **10** (1960), 313–334.
- [9] B. SCHWEIZER AND A. SKIAR, *Probabilistic Metric Space*, Elsevier North Holland New York, 1983.



Integral Means Inequalities for Fractional Derivatives of Some General Subclasses of Analytic Functions



J. Ineq. Pure and Appl. Math. 4(1) Art. 8, 2003 http://jipam.vu.edu.au

- [10] R. TARDIFF, Topologies for probabilistic metric spaces, *Pacific J. Math.*, 65 (1976), 233–251.
- [11] A. TAYLOR, *Introduction to Functional Analysis*, John Wiley and Sons Inc., New York, 1958.



Integral Means Inequalities for Fractional Derivatives of Some General Subclasses of Analytic Functions

Iqbal H. Jebril and Radhi Ibrahim M. Ali

