J Journal of Inequalities in Pure and
I > <M Applied Mathematics

0 http://jipam.vu.edu.au/

Volume 4, Issue 1, Article 9, 2003

FUNDAMENTAL INEQUALITIES ON FIRMLY STRATIFIED SETS AND SOME
APPLICATIONS

SERGE NICAISE AND OLEG M. PENKIN

UNIVERSITE DEVALENCIENNES ET DUHAINAUT CAMBRESIS
MACS
INSTITUT DES SCIENCES ETTECHNIQUES DEVALENCIENNES
59313 - \ALENCIENNES CEDEX 9, FRANCE.

serge.nicaise@univ-valenciennes.tr
VORONEZH STATE UNIVERSITY

UNIVERSITETSKAJA PL, 1
394000 \ORONEZH, RUSSIA.

Received 13 May, 2002; accepted 11 October, 2002
Communicated by M.Z. Nashed

ABSTRACT. We establish different fundamental inequalities on a class of multistructures, more
precisely Poincaré’s inequality for second and fourth order (scalar) operators as well as Korn’s
inequality for the elasticity systems. Some consequences to the corresponding variational prob-
lems are deduced.
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1. INTRODUCTION

Partial differential equations on multistructures is one of the most popular areas of the gen-
eral theory of differential equations with a wide range of applications in continuous mechanics,
aerodynamics, biology, and others (see for example [3]). In that field the important problems
are solvability, regularity of the solution, spectral theory, control problems and numerical ap-
proximations of the solutions. For different aspects of that kind of considerations we may refer
to [2,13,/4)/5] 7, 15, 17] and the references cited there.

As usual, the first step is to look at the solvability of the boundary value problems which
depends on the smoothness of the coefficients of the differential equations and on the regularity
of the boundaries of the domains where the differential equations are considered. For multi-
structures these aspects have to be combined with the geometry and the algebraic structure of
the domain. The main goal of that paper is to answer to this question for different operators on
a class of multistructures, called stratified sets. For both examples the main ingredient is the
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2 SERGENICAISE AND OLEG M. PENKIN

validity of a fundamental inequality of Poincaré’s type that we first establish. Analogous re-
sults were presented in [12] in pure geometrical form where we proved that the so-called firmly
connectedness of the stratified set guarantees the validity of Poincaré’s inequality and then the
solvability of the Dirichlet problems in Sobolev’s type spaces. For perforated domains a similar
answer was found by V.V. ZhikoV [23] in a pure analytical form.

This paper may be then considered as a second partlof [12] but is devoted to new develop-
ments and applications of our previous results. Indeed the results given here are more general
on several aspects: first we extend our notion of firmly connectedness, this new notion allows
us to combine the algebraic structure and the geometry of the domains with mechanical con-
siderations. We further give applications to second order elliptic (scalar) operators but also to
fourth order elliptic (scalar) operators (models of beams and plates) as well as for the elasticity
system.

Figure 1.1: An example of stratified set

Before going on let us illustrate our considerations by the following example: consider a
mechanical systeif, lying in the plainll and consisting of strings and membranes as shown in
Figure[1.]. Dotted lines on this figure are the places where the membranes adjoin to each other
directly. Full lines represent the strings, in that last case the membranes adjoin to each other
indirectly. In both cases we assume that there exist a one-dimensional element (strgatum)
between two-dimensional ones. In the case whers a string we call it elastic, in the opposite
case, i.e. wheny; is a place of direct adjoining of membranes we call it a soft stratum. On the
above figures;, is an elastic stratum ang; is a soft one. It is convenient to imagine that in
both cases we have strings but the soft ones are not stretched. We assume all membranes to be
stretched (i.e. all two-dimensional strata are elastic).

Let us denote by : 2 — R a function which describes the elasticity of the system. The
function p then vanishes in the interior of the soft strata and is a positive constaint the
elastic stratumy,;. Let f be a small force which acts orthogonally to the pldhe Small
displacements: : 2 — R caused by this force are solution of the following collection of
differential relations (the notatios,; > o, means that,; adjoins tooy;):

—pAu(x) = f(z)
on two-dimensional strata and

5= 3 () @=sw)

025>=01;

whenz lies in the one-dimensional stratum;. Whenz lies in o1; we denote byr(x) any
tangent direction te;. Besides we denote bythe unit vector directed to the interior of some
or+1j > Ok orthogonally tas,;. The notation
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means the extension of the restrictien, ;. by continuity to,;. Whenz belongs to some
null-dimensional stratum; (like oy, on the above figure), we have

- % (15) @-rsw)
015>00i v ‘E

One can show (see [22]) that the left-hand sides of the last three equations may be rewritten

in the divergence form

—V(pVu) = f,
where the divergence operator may be defined in a classical manner, as the density of the
flow of the vector field with respect to a special “stratified” measur€gmore details will be
given in the next section).

Adding boundary conditions to the above system, the goal is to find sufficient conditions
guaranteeing the solvability of that problem. A positive answer of that problem is given in [12]
if all strata are elastic. In the next sections we will extend these results to the case explained
here, i.e., when some strata are soft.

The schedule of the paper is the following one: After recalling some basic notions in Section
[2, we prove in Sectiop|3 the “standard” Poincaré’s inequality on stratified sets under a firmly
connectedness property. In Sectjdn 4 we give applications to some variational inequalities.
Section b is devoted to Poincaré’s inequality for fourth order operators and an application to
the solvability of some boundary value problems with such operators. Finally in SEftion 6 we
prove Korn’s inequality on stratified sets and present applications to the elasticity system.

2. SOME PRELIMINARIES

Here we recall some basic definitions on stratified sets. For more details we refer to [12].
Since our considerations are rather sophisticated we also present some examples (see also the
simple example of the previous section).

A connected sef2 in R” is said to be stratified if there exists a finite sequence of closed
subsets oR"

(2.1) Qo c QM ..o cQfF =Q whenky < ky < - < ki,

with the following properties:

i) QFi\ QF-1is a smooth submanifold iR™ of dimensionk;. Its connected components
will be calledk;-dimensional strata and will be denoteddyy;. The second index serves
for the numeration of the strata. We shall assume that there is a finite number of strata
in © and that each of them has a compact closur@’in It is important to notice that
the boundary of the stratum is piecewise smooth, because it consists of strata. However,
it could have some singularities like cracks, cuspidal edges and so on. In order to avoid
some serious difficulties we then assume that the boundary of the strata is Lipschitz.
ii) The boundarydoy; = &y, \ ox; of each stratuna; with £ > 1 is a union of stratar,,,;
with m < k. We writeo,,,; < oy, if 0,,; C Oo.
i) If o,_1, < o andy € oy, tends tox € o_;,; along some continuous curve, then
the tangent spacg, oy, has a limit positionlim 7,04, which contains the tangent space
Yy—x
Taco-lc—l,j-
The sequencé (J.1) is called a stratificatiorfofEach set can be stratified in several ways.
More exactly a stratified set is a tripl€, S, ¢), where( is an initial set,S is a stratification
like (2.7) and¢ describes how to construtk using all the piecesy;. Nevertheless we shall
refer to() itself as a stratified set (with fixefl and¢).
Before going on, let us present some examples of stratified sets:
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e One-dimensional networks (see([2] 4] 15,16, 17, 21]), where 0-d strata are the vertices
and 1-d strata are the edges.

e Two-dimensional polygonal topological networks in the sensé of [17], in that case, 1-d
strata are the edges and 2-d strata are the faces of the network.

e Take the unit cube dR? with the following stratification: the vertices are the 0-d strata,
the edges are the 1-d strata, the faces are the 2-d strata and finally the interior of the
cube is the 3-d stratum.

e Take for 1-d strata two concentric circles of the plane and as 2-d stratum the area be-
tween them.

e In the plane, take as 0-d strata the poisgs = (0,0), 002 = (1,0),00; = (2,0) and
Op3 = (0, 1), as 1-d strata the interva{9047002), (0’02,0’01), (0’02,0’03) and (004,003)
and finally as 2-d stratum the triangle of vertiegs, oo, co4.

e Take asn-d stratum { > 1) a bounded open sét of R™ with a smooth boundary and
as(n — 1)-d stratum the boundary @¥.

The set) inherits the topology fronR™. In terms of this topology we fix if2 some connected
and open subsé&?, consisting of some strata 6f and such thaf), = Q. The complement
0\ Qy = 09 is the boundary of), in 2. The set), plays the role of a classical domain where
a partial differential equation is considered whike, corresponds to the classical boundary. In
this paper we always assume thag Q, i.e. 99, # 0.

The set of strata of), is divided in two groups. The first one consists of so-called elastic
strata. The second one is the set of so-called soft strata. That division is motivated by the
example of the previous section as well as problems considered lin [1/ 6/ 7,119,117, 18, 20].
We assume null-dimensional strata to be soft (since a point has ho mechanical properties like
elasticity). So, in contrast t0 [12] the st has an additional mechanical structure in form of
the above mentioned division in elastic and soft strata. In the sé¢(é&]) will denote the set
of elastic strata and((2,) the set of soft strata.

Now we introduce i a “stratified” measur@ by means of the following expression

pw) = > mplwn o),

ok CQ

where 1, is the usuak-dimensional Lebesgue measure @f. A subsetw of 2 for which
this formula makes sense will be callgemeasurable. Obviously the measurability otv is
equivalent to the measurability in the Lebesgue sense of all “tracess;.

We can then define Lebesgue’s integral with respect to this measure. One can show that for
an integrable functiorf : Q — R its integral is equal to the sum of the Lebesgue integrals over
the setsr;;. In other words we have

Q/ =3 / fdp.

In the right-hand side we writéu instead ofiu,, becauseé(wNoy;) = dug(wNoy;) according
to our definition.
We now introduce some functional spaces on a stratified set that will be useful later on.

e C,(Qp) is the set of functions with continuous restrictians (such restrictions might
also be denoted by,,, Or ux;).

e ('(Q) is the set of continuous functions 6.

e C1(Qp) is the set of functions : @ — R such that for eachy; the restrictionu,; has
continuous first order partial derivatives with respect to the local coordinates amd
these derivatives may be extended by continuity to those; < o; which are not
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in 9. Note that a function irC () may be discontinuous (jumps are possible by
passage from one stratum to another one).

o C(Qy) = CL{O) NC(Q).

o C}(9y) is the set of functions frord' (€2) vanishing on the boundagt.

e L2(9) is the completion of’(€) with respect to the norm i6'(Q) generated by the
inner product

(u,v) = / wod.

Qo

. I?[;(Qo) is the completion o€} () with respect to the norrf||__ in Cj(€) induced
by the inner product

(u,v) = /uvdu+ / Vu - Vudp.

Qo E(Qo)

Here above and below, fgr € C''(€)), the gradien¥ f is the collection of gradients on each
stratum, i.e. on the stratum,; it is the usual gradient of the restrictigiy, , of f to oy;.

Let F be a tangent vector field ofi, in the sense that for each € o},_y; C Qo, F(z)
belongs to the tangent spatgoy_1;). Letz € o,_1; andw be a small portion of2, containing
x. We should imaginey as the intersection d, with some smooth domai& of R". If we
calculate the flow of?' through the surface af and divide it byu(w) then we shall obtain an
approximated value of the divergenﬁeﬁ(x). Exact calculations give the following expression
for the divergence

VE(x)=ViaF(z)+ Y 7 Fgla),
Okj>Ok—1i
whereV,_; is the usualk — 1)-dimensional divergence operator @p ;;. Note that we use
the tradition of Physicians to denote the divergence and the gradient by the same Symbol
For some functiop € C,(92,) we can now define the elliptic operator

Ayu = V(pVu)

on . In the full paper we will assume that= 0 on the soft strata and thats positive on the
elastic ones.
In [12] we have considered the Dirichlet problem

Apu(r) = f(x) x € Qo,
u=>0 on o9y,
when the set of soft strata is empty. The solvability of that problem is based on the so-called

Poincaré inequality ii2,. Therefore our first goal is to extend this inequality to the case when
the set of soft strata is not empty.

3. POINCARE’'SINEQUALITY

We start with the following definition:

Definition 3.1. The triplet( £ (), S(£20), 9€) is said to bdirmly connected if for any stratum
ok of Qp, there exists a stratum,,; of 9€2, and afirm chain joiningoy; to o,,,; in the following
sense: there exists a connected seqUEeRGE 0., - - - , 0k,i, With the following properties:

® Opyiy = Okis Okyi, = Oy @Ndoy, ;. C Qg wheng # p,

o |kgy1 — ky| = 1foreachg < pand eithewy i, < ok, i, 1 OF Okyi, ™ Okyiyigin
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e Forl < ¢ <p—1,if o4, is a soft stratum then both.,_,;,_, andoy,, ., are elastic
and have a dimension equalip+ 1 (except if¢ = 1 when onlyoy,,, is elastic and is
of dimension equal té; + 1).

We remark that in the above definitien, ;, , is always elastic (sincey.,;, is not elastic).
This implies that each stratum, such thato,; N 9Q, # ( is elastic. We further remark that
from this definition strata of higher dimension are elastic as well.

Remark 3.1. In [12] we take a subdomain; of Q2 with the same properties th&ly and assume
thato2; = I'p UT'y (I'p andI'y being also union of strata &), we finally introduce the
notion of a firmly connected paif2,, ). This definition is a particular case of our definition
since we can verify that ifQ2;, I'p) is firmly connected (in the sense 0f [12]), then the triplet
(E(0), S(20),090) is firmly connected with the choiceE(£) = 4,5(€) = 'y and

00y = I'p. The applications given in [12] are also particular cases of applications given below.

e

>
o ‘
02
\ o

Figure 3.1: Firm and not firm triplets

Figure[3.1 shows examples of firm and not firm triplets. The right example presents a non
firm trlplet (E(Qo)js(Qg),aQo), when E(Qo) = 091 U 099 U 011, S(Qo> = 012 U 0p9 and
00y = og1 U 0g3, Since there exists no firm chain joiniag; to oy;. On the left we can see a
firm triplet (E(QQ), S(Qo), 890), with E(QO) = 091 U 099 U011 U019, S(Qo) = 002 and@Qo
as before (the desired chain joinibg, t0 og; IS hereosy, 012, 002, 011, 0o1).

If Qg is a 1-d network (with the stratification described above) with elastic strata equal to 1-d
strata, with a nonempty bounda®, equal to a subset of 0-d strata, the other 0-d strata being
soft, then the triple{ E(€), S(€2), 0€2) is firmly connected. Lef), be a two-dimensional
polygonal topological network, (with the stratification described above), and take as elastic
strata the two-dimensional strata, as well as a part of the one-dimensional strata, the other ones
being either soft or on the external boundary, then we get a firmly connected triplet.

Now we can formulate the main result of this section.

Theorem 3.2. Let (E(£), S(£20),090) be a firmly connected stratified triplet. Then there
exists a positive constant such that

(3.2) /qu,u <C / |Vul|?du

Qo E(Q0)

forall u € H},(Q).

Our proof is based on the following two lemmas proved.in [12].
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Lemma 3.3. Leto,_1; < oy;. Then there exists a positive consté@nsuch that for allu €
H'(oy;) the following inequality holds

(3.2) / widp < C /quu+/|Vu|2du

Ok—14 T kj Okj

Lemma 3.4. Under the assumption of the previous lemma the following inequality also holds

(3.3) /qupJSC / u2du+/|vu|%m

Okj Jk—1i Okj
Now we are ready to prove (3.1).

Proof of Theorem 3|2Let o,; be an arbitrary stratum d,. We can connect it with some
stratum ind<), by means of a firm chain of stratg, ;,, ... 0y,;, like in Definition @ For

1 < g < p we consider the stratum, ;. If oy, C S() thenoy,, ;... C E() and

k.1 = k, + 1 according to the definition of firmly connectedness and we can apply (3.2) to the
pairoy, ; , ok As a result we have

qlq) q+1%q+1"

(3.4) /u2du§0q / u?dp + / |Vul?dy | |

Tkaiq UFat17g+1 Thq+1ig+1

for someC, > 0. In the caser,;, C E(£) andoy, C S() (or 09) we havek,,; =
k, — 1 and we can apply (3.3) to obtain

q+1%g+1

(3.5) /u2d,u§C'q / w?dp + / |Vul?du

Olgiq Tkgi1ig+1 Okgiq
Finally let us consider the case when beth,, andoy, , ,;, ., are included in&(€)). In this case
both possibilities:,+; = k, + 1 andk,; = k, — 1 are possible. Using (3.2) dr (3.3) we obtain
B4 or [3.5).
Itis important to note that in the right-hand sideg[of(3.4) (3.5) we have integials 3f
only over elastic strata, in other wordls (3.4)[or [3.5) implies that

(3.6) / wdp < C, / u?dp + Z / |Vul?du

'=q,q+1:0 ,; ,CE(Q
Ohgiq Ok rigin 9'=q.q+1:0k i, (O)qu/iq/

By induction we get

(3.7) /u2d,u§0kj / udp + Z / |Vul?du |,

1=q'sp=Liog i, CE(Q0)

Okj Olkpip Thyrigr

with C; = 2 | Inax 1{01 -+ (C;}. Taking into account that vanishes o<}, we obtain
SISp—

/quu < Cyj Z / [Vul?du < Cy; / |Vul*dpu.

/ —1- .
Okj 1<¢’<p 1'qu’lq’CE(QO)O'kq/iq/ E(Qo)
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Taking the sum on all strata we obtajin (3.1) with= ) _ Cj;. O

4. APPLICATION TO SOME VARIATIONAL INEQUALITIES

Here we discuss a standard obstacle problem. This is a generalization of the mechanical
problem illustrated by Figuie 4.1 consisting of a finite number of membranes (two-dimensional
strata) and strings (one dimensional strata) initially stretched in the plane. For a general stratified
set(), subdivided into the elastic strai&(€2,) and the soft oneS(£2), let us fixp, ¢ € C, ()
such tha; > 0 on €y, p > 0 on E() andp = 0 on S(€). Consider furtherf € L?2(Q) as

a small force acting on our system anddedte the obstacle which is assumed to béﬁﬁ@o).
Then the displacementof the points of), is described by means of the following variational
problem

(4.1) J@IVaP + a0~ 2pu)d = i [ G907 +00? ~ 200)d

Qo Qo

whereK is the convex and closed subsetféifb(Qo) defined by

(4.2) K = {uc H\(Q) : u(z) > ¢(x) (z € )}

Obstacle

Figure 4.1: A mechanical system with an obstacle.

Remark 4.1. We give the weak formulation (iti,(€)) of the problem, because it has no
classical solution even in the case when our mechanical system has no contact with the obstacle.
The classical solvability requires stronger conditions than firmly connectedness.

By the standard approach problem {4.1) may be reduced to the variational inequality: Find
u € K solution of

(4.3) a(u,v —u) = (f,v—u), >0, Vv € K,
where the formu(u, v) is defined by
(4.4) a(u,v) = /(qu - Vv + quv)dp.

Qo

Theorem 4.2. Under the above assumptions if the trip{f(£2), S(£2), 99) is firmly con-
nected, then the problern (4.3) has a unique solutiol'in
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Proof. The bounded and bilinear form(u, v) is clearly coercive as an easy consequence of
Poincaré’s inequality. So, the assertion is a consequence of the well-known theorem about
variational inequalities in a Hilbert space (see, for example [10, 11]). O

Remark 4.3. The set\V' = {z € Q : u(z) > ¢(z)} is called the noncoincidence set of the
solutionu. This set is clearly open and one can show that the above mentioned salofitime
variational inequality{(4]3) is a weak solution of

/(quVso + qup)dp = /fwdmvso € DN).
N N

If we take K = H}L(QO), then the variational inequalit.3) becomes the variational identity:

a(u,v) = (f,v),, Yo € H,, ().
In this case using Green’s formula on each stratum,a weak solution of

0 .
—Apu; + qui; — Z Pk+1,5 (%Uk—i-l,j) = fri IN O,
|oki

Oki=Ok+1,j
u =0 0onofy.

In the setting of Remaik 3.1 this problem is exactly the one studied in Section 5 of [12]. Letus

further remark that this problem extends particular problems considered in |2, 4/ 7] 15} 17, 19].

5. POINCARE’S INEQUALITY FOR FOURTH ORDER OPERATORS

In this section and the next one, we assume that the strata are flat in the sense that each
is included into a hyperplane @&" of dimensionk. Consequently we may fix a global system
of Cartesian coordinates on each stratum. Under this assumption we shall prove the following
Poincaré inequality, useful for boundary value problems involving fourth order operators (see
below for some applications).

As before we introduce the spag (€2,) as the closure af**(€) for the norm|-||, induced
by the inner product

(o= [+ [VaPydar [ |H@]dn
Qo E(Qo)

whereH (u) is the Hessian matrix af defined on each stratum,; with Cartesian coordinates

(Y1, - -, yk) Y -
Uk
H(u i) — .
(u) <aylaym)l,m:1 k

,,,,,

The spaceC?(Qy) is defined exactly ag' () replacing first order derivatives by first and
second order derivatives.

Theorem 5.1. Let the triplet(£(€), S(£20), 0€2) be firmly connected such that each stratum
is flat in the above sense. Then there exists a positive coriGtamth that

(5.1) / (u? + [Vul)du < C / 1 )2

Qo E(Q0)

forall u € H(Q0) N H,,(Q).
The proof of this estimate relies on Lemmag 3.3[anf 3.4 as well as the so-called interpolation
inequalities (see for instance Theorem 1.4.3.3 of [14]):
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Lemma 5.2. There exists a constant such that for alle > 0 and allu € H?(ay;) it holds

52) [vutans e [oaps S [ moan

ki Oki ki

Lemma 5.3. Letoy_1,; < ox;. Then there exists a constafitsuch that for allu € H?(oy;) we
have

(5.3) / (w2 + |Vul2)dp < © / Py + / 1 H () 2dp

Ok—1,i Okj Okj

Proof. Applying Lemm tog“ with [ = 1,..., k and summing o, we may write

k 2
ou
/ VuPdp < / '@\ dp<C / VulPdy + / 1 H ()| Pdy
=1 .

Ok—1,i T Ok—1, Okj Okj

Thanks to the estimatg (5.2) we obtain

(5.4) [ it e | [aans [P

Ok—1,i Okj Okj

The estimates (3.2) and (b.2) directly yields

55) [ wean<c| [ans [a@IPa
We conclude by taking the sum ¢f (5.4) apd {5.5). O

Lemma 5.4. Under the assumptions of the previous lemma the following inequality holds

(5.6) Jaswappze | [ g [k

Okj Ok—1i Okj

Proof. By the estimate (5]2), for any> 0 we have
C
/\Vu\zdu < e/quu—i- 2 / | H (u)]|*dp.

Lemmd 3.4 then yields
C
[1vutans ce [ ausce [t S [ ia@)Pd.
Okj Ok—1i Okj Okj

Choosings > 0 such thatC'e < 1/2 we obtain

/ VuPdu < C / Pdyi / | H (w)|dp

Okj Tk—1i Okj

This estimate and (3.3) directly yield (5.6). O
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Proof of Theorer 5]1The arguments of Theorgm B.2 replacing Lenima 3.3 (resp. L-na 3.4)
by Lemmg 5.B (resp. Lemnja 5.4) directly lead to the conclusion.

Let us shortly give an application of the above Poincaré inequality to some boundary value
problems with fourth order operators. The problem considered below is actually an extension
of particular problems studied in [177,118,[7, 9]. For each elastic stratyrwe introduce the
Young modulusZy; > 0 and the Poisson coefficient; € (0, 1) of the constitutive material of

the stratunv,;. We then sep,; = lEkl for each elastic stratum,; andp,; = 0 for each soft

stratumoki . With these notation We 'define the bilinear fornon any closed subspadé of
H2() N HL(QO) by

a(u,v) = Z Pri@ri (Ukis Vki),

0k CE(Qo)
where we set

9%*u 0%v Pu v
ag;i(u,v) /Uk { ulAv — (1 — vg) #Zm [81/? oy, OYOYm 8y18ym} } Y

Owing to Theoren 5]1 we shall show that this bilinear form is coercivé”’ pnamely we
have (compare with Lemma 2.5 6f [17] or Lemma 2.1 0of [18]):

Lemma 5.5. There exists a positive constansuch that for alk, € V" we have
(5.7) a(u,u) > aull}

Proof. By direct calculations we see that

k 2
0?u 0*u 0%u
ai(u,u):/ —|—ViE ——+(1—Vi)§ ( ) dy.
’ Oki {lzl ’ I#m 8y12 ay?n ’ 8ylaym

l#m
By Young’s type inequality

0u?
P

k
> wan > = |af,
=1

l#m
2 2
0%u )
| > d

valid for all real numbers;, we arrive at

The conclusion follows from Poincare’s inequality (5.1). O

The so-called Lax-Milgram lemma allows to conclude the existence and uniqueness of the
solutionu € V' of

(5.8) a(u,v) = fodu,Yv eV,
Qo

forany f € L2 ().
Let us give the interpretation of problefn (5.8) in terms of partial differential equations in

the special cas&’ = H (%) N ]OiL(QO). In that case for each stratum; we introduce the
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boundary operators

(5.9 Myu = pi; | v A +(1—y-)@
. kil ‘= Pki kiU ki 81/2 y
0A 0

on its boundary. Then by applications of Green’s formula we see that &mdv sufficiently
regular we have

Pkiaki(% U) = pki/

Oki

A?uvdy — / {M;ﬂu@ - Nkiuv} do
& 0o ov

0 (ou
+pi1_7/i/ —(— )vda.
kil k) (00;) OV \ OV |,

Using this identity in ) we see that the solutiore H7(€) N ﬁ[i(Qo) of ) is a weak
solution of

2
Pril ug; + E Nit1 jU+1,

Oki=<O0k+1,j

v \Ov lok+1,5

0 [0u )
+ Z Prr2g(1 — Vk+2,l)a_ ( ) = fri IN o,

Oki=O0k+1,j <0k+2,1

Myiuk; = 0 on 0oy,
u = O on 890

Note that this problem extends boundary value problems studied ih [7, 9] on one-dimensional
networks and in [17, 18] on two-dimensional ones.

6. KORN’S INEQUALITY

The so-called Korn’s inequality is the basic ingredient for coerciveness property of problems
involving the elasticity systen [8, 11]. We now show that this inequality is also valid on strati-
fied sets. An application to the elasticity system on such sets will be presented at the end of the
section.

Let us first recall Korn’s inequality on one stratuiy (see for instance [1.3] for a proof of the
estimate below in the case of domains with a Lipschitz boundary), which says that there exists
a positive constant’ such that

(6.1) / |Vul?dy < C (/ He(u)||2dy+/ |u|2dy) Yu e Hl(aki)k,
Oki Oki Oki

where, as usuak(u) = (e (1))}, is the strain tensore;, (u) = 3 <§yi; + 8;—;) and for
2
shorthness we writs/u|? = >, _, | 4

This estimate and Lemnpa 3.3 directly lead to
Lemma 6.1. Letoy_1; < ox;. Then there exists a constafitsuch that for allu € H'(oy;)*

6.2) [ wranzc | [lapans [ lewied
Ukj

Ok—1i Ok
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The equivalent of Lemna 3.4 requires a more careful analysis and, to our knowledge, seems
to be new:

Lemma 6.2. Under the assumptions of the previous lemma we have

6.3) /|u| dp<C /|ut| du+/ll 2ds | |

Jk—1i
whereu, is the tangent componentofono;_q;, i.e.,
U = u — (U - Vy;) Vg ONOp_1;.

Proof. Assume that the estimafe (p.3) does not hold then there exists a sedugnsech that

(6.4) / s = 1,

(6.5) [ du+/ll (o) P =

Ok—14

By Korn’s inequality ) the sequence,,) is bounded inH* (o))" and by the compact em-
bedding of 7 (ay;) into L?(oy;) (Rellich-Kondrasov's theorem), there exists a subsequence,
still denoted by(u,), which is convergent in.?(o;;)*. By (6.8) and ) the sequence is
convergent ind ! (o;)*. Denote its limit byu. By (6.4) and|(6.5) it fulfils

(6.6) [ =1
(67) uy = 00Nog_q;,
(6.8) e(u) = 01in oy;.

This last property implies thatis a rigid body motion, i.e.,
u(y) = Ay + bavy € Okj,

for someb € R* and an antisymmetric matri4. Owing to the boundary conditio@.?), we
conclude that = 0 and A = 0 and sou = 0, which is in contradiction with (6]6). O

Now we define the space of vector valued functiongXgnWe first defineC(€)) as the set
of functions such that its restrictian,; to oy; is in C'(o4;, R¥) and such that for any strata,
andoy; with a common boundary;_, ;, we have the “continuity” conditions:

Ui = Uy ONOg_1 5,
Ug—1,j = Uki — (Uki - Vi )Vgi ON Ok—1,5-
Note that the first condition implies that
ki — (ki Vi) Vi = Ui — (Wkyt * Vit ) Viir ON O 1 .

We may now define€C?(€2,) as the subspace @¥()) such that its restrictiom;,; to oy, is
in C(o%;, R*), while C}(£2) is the subspace df! () of functions which are zero of.

Finally we take}ollﬂ(Qo) as the closure of’} () for the norm induced by the inner product

k ou; Ov
(u,v):/ uvdp + Z / ——L Ly

OYpm, O
O'kZCE QO Oki l,m=1 ym ym
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The arguments of the proof of Theor¢ém|3.2 replacing Lernmia 3.3 (resp. Lémina 3.4) by
Lemmg 6.1 (resp. Lemma 6.2) lead to the following result that we may call Korn's inequality
on stratified sets.

Theorem 6.3. Let the triplet(£(€), S(£20), 9€2) be firmly connected such that each stratum
is flat in the above sense. Then there exists a conétanuich that

(6.9) Jukan<c [ el
Qo E(Qo)

forall u € H},(€).

We finish this paper with an application to the elasticity system, extension of the notion
of transmission problems for the elasticity operators considered in [19, 20]: For each elas-
tic stratumoy,;, we suppose that Hooke’s law holds, namely the stress ter§ofu;;) =
(Ulm(uki))z,mzl . is related to the strain tensor by the relation

.....

k
Ot (i) = D € (1),

U m/=1

where the elastic modutil(sfl),m, are real constants, satisfy the standard symmetry relations

Cl(,’ifl)m = cl(/]ff;)/lm = c,(jffl)m = Cz%)nz and the positiveness condition: there exists> 0
such that
Z szy Eim&irm = Z &t |2, VEm € R.
Im,l’m'=1,...k Im=1,....k

We now introduce the bilinear form, on H*(oy;)* by
ag;(u,v) / alm ( Yeim (V) dy.

Note that the Lamé system is a partlcular case of the above one for a particular choice of

¥ inthat case one has

k
ap(u,v) = / {/\ki div u div v + 2 Z EZm(U)Elm(U)} dy,

I,m=1
where),; > 0 anduy; > 0 are the Lamé constants of;.
Finally we define the bilinear form on the spacé},(€,) by

a(u,v) = Z ki (Ukis Vki)-

ok CE(Q0)
The positiveness assumption qﬁ’l)m and Korn’s inequality9) lead to the coerciveness

of the forma. Consequently by the Lax-Milgram lemma, there exists a unique solutian

HL () of

(6.10) a(u,0) =3 / Fii - vri dy, Yo € HL(Qy),

for any fi; € L?(ox)F.
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Applying Green'’s formula we see that

/ _Ulm ( Jmdy — / (c®) () - v) - vdo.
Oki |=1 0o

Therefore the solution € IO{1 (QO) of (6.10) is a weak solution of

- Z 0 Jlm (ui) Z (U(kﬂ’j)(ukﬂ,j) V)¢ = [ IN ok,
Yi Oki=Ok+1,j
(U(ki)<uk+17]’) . I/) v =00n0doy; C Ny,
u = 00onof,
with the convention that*?) (u;;) = 0 on a soft stratuna,.
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