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ABSTRACT. We establish different fundamental inequalities on a class of multistructures, more
precisely Poincaré’s inequality for second and fourth order (scalar) operators as well as Korn’s
inequality for the elasticity systems. Some consequences to the corresponding variational prob-
lems are deduced.

Key words and phrases:Poincaré’s inequality, Korn’s inequality, Multistructures.

2000Mathematics Subject Classification.35J50, 35R05, 35Q72.

1. I NTRODUCTION

Partial differential equations on multistructures is one of the most popular areas of the gen-
eral theory of differential equations with a wide range of applications in continuous mechanics,
aerodynamics, biology, and others (see for example [3]). In that field the important problems
are solvability, regularity of the solution, spectral theory, control problems and numerical ap-
proximations of the solutions. For different aspects of that kind of considerations we may refer
to [2, 3, 4, 5, 7, 15, 17] and the references cited there.

As usual, the first step is to look at the solvability of the boundary value problems which
depends on the smoothness of the coefficients of the differential equations and on the regularity
of the boundaries of the domains where the differential equations are considered. For multi-
structures these aspects have to be combined with the geometry and the algebraic structure of
the domain. The main goal of that paper is to answer to this question for different operators on
a class of multistructures, called stratified sets. For both examples the main ingredient is the
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2 SERGENICAISE AND OLEG M. PENKIN

validity of a fundamental inequality of Poincaré’s type that we first establish. Analogous re-
sults were presented in [12] in pure geometrical form where we proved that the so-called firmly
connectedness of the stratified set guarantees the validity of Poincaré’s inequality and then the
solvability of the Dirichlet problems in Sobolev’s type spaces. For perforated domains a similar
answer was found by V.V. Zhikov [23] in a pure analytical form.

This paper may be then considered as a second part of [12] but is devoted to new develop-
ments and applications of our previous results. Indeed the results given here are more general
on several aspects: first we extend our notion of firmly connectedness, this new notion allows
us to combine the algebraic structure and the geometry of the domains with mechanical con-
siderations. We further give applications to second order elliptic (scalar) operators but also to
fourth order elliptic (scalar) operators (models of beams and plates) as well as for the elasticity
system.

Figure 1.1: An example of stratified set

Before going on let us illustrate our considerations by the following example: consider a
mechanical systemΩ, lying in the plainΠ and consisting of strings and membranes as shown in
Figure 1.1. Dotted lines on this figure are the places where the membranes adjoin to each other
directly. Full lines represent the strings, in that last case the membranes adjoin to each other
indirectly. In both cases we assume that there exist a one-dimensional element (stratum)σ1i

between two-dimensional ones. In the case whenσ1i is a string we call it elastic, in the opposite
case, i.e. whenσ1i is a place of direct adjoining of membranes we call it a soft stratum. On the
above figureσ12 is an elastic stratum andσ11 is a soft one. It is convenient to imagine that in
both cases we have strings but the soft ones are not stretched. We assume all membranes to be
stretched (i.e. all two-dimensional strata are elastic).

Let us denote byp : Ω → R a function which describes the elasticity of the system. The
function p then vanishes in the interior of the soft strata and is a positive constantpki in the
elastic stratumσki. Let f be a small force which acts orthogonally to the planeΠ. Small
displacementsu : Ω → R caused by this force are solution of the following collection of
differential relations (the notationσ2j � σ1i means thatσ1i adjoins toσ2j):

−p∆u(x) = f(x)

on two-dimensional strata and

−p
∂2u

∂τ 2
(x)−

∑
σ2j�σ1i

(
p
∂u

∂ν

)
|2j

(x) = f(x),

whenx lies in the one-dimensional stratumσ1i. Whenx lies in σ1i we denote by~τ(x) any
tangent direction toσ1i. Besides we denote by~ν the unit vector directed to the interior of some
σk+1j � σki orthogonally toσki. The notation

w|kj(x)
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FUNDAMENTAL INEQUALITIES ON FIRMLY STRATIFIED SETS AND SOME APPLICATIONS 3

means the extension of the restrictionw|σkj
by continuity toσkj. Whenx belongs to some

null-dimensional stratumσ0i (like σ01 on the above figure), we have

−
∑

σ1j�σ0i

(
p
∂u

∂ν

)
|1j

(x) = f(x).

One can show (see [22]) that the left-hand sides of the last three equations may be rewritten
in the divergence form

−∇(p∇u) = f,

where the divergence operator∇ may be defined in a classical manner, as the density of the
flow of the vector field with respect to a special “stratified” measure onΩ (more details will be
given in the next section).

Adding boundary conditions to the above system, the goal is to find sufficient conditions
guaranteeing the solvability of that problem. A positive answer of that problem is given in [12]
if all strata are elastic. In the next sections we will extend these results to the case explained
here, i.e., when some strata are soft.

The schedule of the paper is the following one: After recalling some basic notions in Section
2, we prove in Section 3 the “standard” Poincaré’s inequality on stratified sets under a firmly
connectedness property. In Section 4 we give applications to some variational inequalities.
Section 5 is devoted to Poincaré’s inequality for fourth order operators and an application to
the solvability of some boundary value problems with such operators. Finally in Section 6 we
prove Korn’s inequality on stratified sets and present applications to the elasticity system.

2. SOME PRELIMINARIES

Here we recall some basic definitions on stratified sets. For more details we refer to [12].
Since our considerations are rather sophisticated we also present some examples (see also the
simple example of the previous section).

A connected setΩ in Rn is said to be stratified if there exists a finite sequence of closed
subsets ofRn

(2.1) Ωk0 ⊂ Ωk1 ⊂ · · · ⊂ Ωkm = Ω whenk0 < k1 < · · · < km,

with the following properties:
i) Ωki \ Ωki−1 is a smooth submanifold inRn of dimensionki. Its connected components

will be calledki-dimensional strata and will be denoted byσkij. The second index serves
for the numeration of the strata. We shall assume that there is a finite number of strata
in Ω and that each of them has a compact closure inRn. It is important to notice that
the boundary of the stratum is piecewise smooth, because it consists of strata. However,
it could have some singularities like cracks, cuspidal edges and so on. In order to avoid
some serious difficulties we then assume that the boundary of the strata is Lipschitz.

ii) The boundary∂σki = σki \ σki of each stratumσki with k ≥ 1 is a union of strataσmj

with m < k. We writeσmj ≺ σki if σmj ⊂ ∂σki.
iii) If σk−1,j ≺ σki andy ∈ σki tends tox ∈ σk−1,j along some continuous curve, then

the tangent spaceTyσki has a limit positionlim
y→x

Tyσki which contains the tangent space

Txσk−1,j.
The sequence (2.1) is called a stratification ofΩ. Each set can be stratified in several ways.

More exactly a stratified set is a triple(Ω, S, φ), whereΩ is an initial set,S is a stratification
like (2.1) andφ describes how to constructΩ using all the piecesσki. Nevertheless we shall
refer toΩ itself as a stratified set (with fixedS andφ).

Before going on, let us present some examples of stratified sets:
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4 SERGENICAISE AND OLEG M. PENKIN

• One-dimensional networks (see [2, 4, 15, 16, 17, 21]), where 0-d strata are the vertices
and 1-d strata are the edges.

• Two-dimensional polygonal topological networks in the sense of [17], in that case, 1-d
strata are the edges and 2-d strata are the faces of the network.

• Take the unit cube ofR3 with the following stratification: the vertices are the 0-d strata,
the edges are the 1-d strata, the faces are the 2-d strata and finally the interior of the
cube is the 3-d stratum.

• Take for 1-d strata two concentric circles of the plane and as 2-d stratum the area be-
tween them.

• In the plane, take as 0-d strata the pointsσ04 = (0, 0), σ02 = (1, 0), σ01 = (2, 0) and
σ03 = (0, 1), as 1-d strata the intervals(σ04, σ02), (σ02, σ01), (σ02, σ03) and(σ04, σ03)
and finally as 2-d stratum the triangle of verticesσ02, σ03, σ04.

• Take asn-d stratum (n ≥ 1) a bounded open setO of Rn with a smooth boundary and
as(n− 1)-d stratum the boundary ofO.

The setΩ inherits the topology fromRn. In terms of this topology we fix inΩ some connected
and open subsetΩ0 consisting of some strata ofΩ and such thatΩ0 = Ω. The complement
Ω \Ω0 = ∂Ω0 is the boundary ofΩ0 in Ω. The setΩ0 plays the role of a classical domain where
a partial differential equation is considered while∂Ω0 corresponds to the classical boundary. In
this paper we always assume thatΩ 6= Ω0, i.e. ∂Ω0 6= ∅.

The set of strata ofΩ0 is divided in two groups. The first one consists of so-called elastic
strata. The second one is the set of so-called soft strata. That division is motivated by the
example of the previous section as well as problems considered in [1, 6, 7, 9, 17, 18, 20].
We assume null-dimensional strata to be soft (since a point has no mechanical properties like
elasticity). So, in contrast to [12] the setΩ0 has an additional mechanical structure in form of
the above mentioned division in elastic and soft strata. In the sequelE(Ω0) will denote the set
of elastic strata andS(Ω0) the set of soft strata.

Now we introduce inΩ a “stratified” measureµ by means of the following expression

µ(ω) =
∑

σki⊂Ω

µk(ω ∩ σki),

whereµk is the usualk-dimensional Lebesgue measure onσki. A subsetω of Ω for which
this formula makes sense will be calledµ-measurable. Obviously theµ-measurability ofω is
equivalent to the measurability in the Lebesgue sense of all “traces”ω ∩ σki.

We can then define Lebesgue’s integral with respect to this measure. One can show that for
an integrable functionf : Ω → R its integral is equal to the sum of the Lebesgue integrals over
the setsσki. In other words we have∫

Ω

fdµ =
∑ ∫

σki

fdµ.

In the right-hand side we writedµ instead ofdµk becausedµ(ω∩σki) = dµk(ω∩σki) according
to our definition.

We now introduce some functional spaces on a stratified set that will be useful later on.

• Cσ(Ω0) is the set of functions with continuous restrictionsuki (such restrictions might
also be denoted byu|σki

or u|ki).
• C(Ω0) is the set of continuous functions onΩ0.
• C1

σ(Ω0) is the set of functionsu : Ω → R such that for eachσkj the restrictionukj has
continuous first order partial derivatives with respect to the local coordinates onσkj and
these derivatives may be extended by continuity to thoseσk−1i ≺ σkj which are not
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FUNDAMENTAL INEQUALITIES ON FIRMLY STRATIFIED SETS AND SOME APPLICATIONS 5

in ∂Ω0. Note that a function inC1
σ(Ω0) may be discontinuous (jumps are possible by

passage from one stratum to another one).
• C1(Ω0) = C1

σ(Ω0) ∩ C(Ω).
• C1

0(Ω0) is the set of functions fromC1(Ω0) vanishing on the boundary∂Ω0.
• L2

µ(Ω0) is the completion ofC(Ω0) with respect to the norm inC(Ω0) generated by the
inner product

(u, v) =

∫
Ω0

uvdµ.

•
◦
H1

µ(Ω0) is the completion ofC1
0(Ω0) with respect to the norm‖·‖<> in C1

0(Ω0) induced
by the inner product

〈u, v〉 =

∫
Ω0

uvdµ +

∫
E(Ω0)

∇u · ∇vdµ.

Here above and below, forf ∈ C1(Ω0), the gradient∇f is the collection of gradients on each
stratum, i.e. on the stratumσki it is the usual gradient of the restrictionf|σki

of f to σki.
Let ~F be a tangent vector field onΩ0 in the sense that for eachx ∈ σk−1i ⊂ Ω0, ~F (x)

belongs to the tangent spaceTx(σk−1i). Letx ∈ σk−1i andω be a small portion ofΩ0 containing
x. We should imagineω as the intersection ofΩ0 with some smooth domainG of Rn. If we
calculate the flow of~F through the surface ofω and divide it byµ(ω) then we shall obtain an
approximated value of the divergence∇~F (x). Exact calculations give the following expression
for the divergence

∇~F (x) = ∇k−1
~F (x) +

∑
σkj�σk−1i

~ν · ~F|kj(x),

where∇k−1 is the usual(k − 1)-dimensional divergence operator onσk−1i. Note that we use
the tradition of Physicians to denote the divergence and the gradient by the same symbol∇.

For some functionp ∈ Cσ(Ω0) we can now define the elliptic operator

∆pu = ∇(p∇u)

onΩ0. In the full paper we will assume thatp ≡ 0 on the soft strata and thatp is positive on the
elastic ones.

In [12] we have considered the Dirichlet problem

∆pu(x) = f(x) x ∈ Ω0,

u = 0 on∂Ω0,

when the set of soft strata is empty. The solvability of that problem is based on the so-called
Poincaré inequality inΩ0. Therefore our first goal is to extend this inequality to the case when
the set of soft strata is not empty.

3. POINCARÉ ’ S I NEQUALITY

We start with the following definition:

Definition 3.1. The triplet(E(Ω0), S(Ω0), ∂Ω0) is said to befirmly connected if for any stratum
σki of Ω0, there exists a stratumσmj of ∂Ω0 and afirm chain joiningσki to σmj in the following
sense: there exists a connected sequenceσk1i1 , σk2i2 . . . , σkpip with the following properties:

• σk1i1 = σki, σkpip = σmj andσkqiq ⊂ Ω0 whenq 6= p,
• |kq+1 − kq| = 1 for eachq < p and eitherσkqiq ≺ σkq+1iq+1 or σkqiq � σkq+1iq+1 ,
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6 SERGENICAISE AND OLEG M. PENKIN

• For1 ≤ q ≤ p− 1, if σkqiq is a soft stratum then bothσkq−1iq−1 andσkq+1iq+1 are elastic
and have a dimension equal tokq + 1 (except ifq = 1 when onlyσk2i2 is elastic and is
of dimension equal tok1 + 1).

We remark that in the above definitionσkp−1ip−1 is always elastic (sinceσkpip is not elastic).
This implies that each stratumσki such that∂σki ∩ ∂Ω0 6= ∅ is elastic. We further remark that
from this definition strata of higher dimension are elastic as well.

Remark 3.1. In [12] we take a subdomainΩ1 of Ω with the same properties thanΩ0 and assume
that ∂Ω1 = ΓD ∪ ΓN (ΓD andΓN being also union of strata ofΩ), we finally introduce the
notion of a firmly connected pair(Ω1, ΓD). This definition is a particular case of our definition
since we can verify that if(Ω1, ΓD) is firmly connected (in the sense of [12]), then the triplet
(E(Ω0), S(Ω0), ∂Ω0) is firmly connected with the choice:E(Ω0) = Ω1, S(Ω0) = ΓN and
∂Ω0 = ΓD. The applications given in [12] are also particular cases of applications given below.

Figure 3.1: Firm and not firm triplets

Figure 3.1 shows examples of firm and not firm triplets. The right example presents a non
firm triplet (E(Ω0), S(Ω0), ∂Ω0), whenE(Ω0) = σ21 ∪ σ22 ∪ σ11, S(Ω0) = σ12 ∪ σ02 and
∂Ω0 = σ01 ∪ σ03, since there exists no firm chain joiningσ21 to σ01. On the left we can see a
firm triplet (E(Ω0), S(Ω0), ∂Ω0), with E(Ω0) = σ21 ∪ σ22 ∪ σ11 ∪ σ12, S(Ω0) = σ02 and∂Ω0

as before (the desired chain joiningσ21 to σ01 is hereσ21, σ12, σ02, σ11, σ01).
If Ω0 is a 1-d network (with the stratification described above) with elastic strata equal to 1-d

strata, with a nonempty boundary∂Ω0 equal to a subset of 0-d strata, the other 0-d strata being
soft, then the triplet(E(Ω0), S(Ω0), ∂Ω0) is firmly connected. LetΩ0 be a two-dimensional
polygonal topological networkΩ0 (with the stratification described above), and take as elastic
strata the two-dimensional strata, as well as a part of the one-dimensional strata, the other ones
being either soft or on the external boundary, then we get a firmly connected triplet.

Now we can formulate the main result of this section.

Theorem 3.2. Let (E(Ω0), S(Ω0), ∂Ω0) be a firmly connected stratified triplet. Then there
exists a positive constantC such that

(3.1)
∫
Ω0

u2dµ ≤ C

∫
E(Ω0)

|∇u|2dµ

for all u ∈
◦
H1

µ(Ω0).

Our proof is based on the following two lemmas proved in [12].

J. Inequal. Pure and Appl. Math., 4(1) Art. 9, 2003 http://jipam.vu.edu.au/

http://jipam.vu.edu.au/


FUNDAMENTAL INEQUALITIES ON FIRMLY STRATIFIED SETS AND SOME APPLICATIONS 7

Lemma 3.3. Let σk−1i ≺ σkj. Then there exists a positive constantC such that for allu ∈
H1(σkj) the following inequality holds

(3.2)
∫

σk−1i

u2dµ ≤ C

∫
σkj

u2dµ +

∫
σkj

|∇u|2dµ

 .

Lemma 3.4. Under the assumption of the previous lemma the following inequality also holds

(3.3)
∫

σkj

u2dµ ≤ C

 ∫
σk−1i

u2dµ +

∫
σkj

|∇u|2dµ

 .

Now we are ready to prove (3.1).

Proof of Theorem 3.2.Let σkj be an arbitrary stratum ofΩ0. We can connect it with some
stratum in∂Ω0 by means of a firm chain of strataσk1i1 , . . . σkpip like in Definition 3.1. For
1 ≤ q < p we consider the stratumσkqiq . If σkqiq ⊂ S(Ω0) thenσkq+1iq+1 ⊂ E(Ω0) and
kq+1 = kq + 1 according to the definition of firmly connectedness and we can apply (3.2) to the
pairσkqiq , σkq+1iq+1 . As a result we have

(3.4)
∫

σkqiq

u2dµ ≤ Cq

 ∫
σkq+1iq+1

u2dµ +

∫
σkq+1iq+1

|∇u|2dµ

 ,

for someCq > 0. In the caseσkqiq ⊂ E(Ω0) andσkq+1iq+1 ⊂ S(Ω0) (or ∂Ω0) we havekq+1 =
kq − 1 and we can apply (3.3) to obtain

(3.5)
∫

σkqiq

u2dµ ≤ Cq

 ∫
σkq+1iq+1

u2dµ +

∫
σkqiq

|∇u|2dµ

 .

Finally let us consider the case when bothσkqiq andσkq+1iq+1 are included inE(Ω0). In this case
both possibilitieskq+1 = kq + 1 andkq+1 = kq − 1 are possible. Using (3.2) or (3.3) we obtain
(3.4) or (3.5).

It is important to note that in the right-hand sides of (3.4) and (3.5) we have integrals of|∇u|2
only over elastic strata, in other words (3.4) or (3.5) implies that

(3.6)
∫

σkqiq

u2dµ ≤ Cq

 ∫
σkq+1iq+1

u2dµ +
∑

q′=q,q+1:σkq′ iq′
⊂E(Ω0)

∫
σkq′ iq′

|∇u|2dµ

 .

By induction we get

(3.7)
∫

σkj

u2dµ ≤ Ckj

 ∫
σkpip

u2dµ +
∑

1≤q′≤p−1:σkq′ iq′
⊂E(Ω0)

∫
σkq′ iq′

|∇u|2dµ

 ,

with Ckj = 2 max
1≤i≤p−1

{C1 · · ·Ci}. Taking into account thatu vanishes on∂Ω0 we obtain∫
σkj

u2dµ ≤ Ckj

∑
1≤q′≤p−1:σkq′ iq′

⊂E(Ω0)

∫
σkq′ iq′

|∇u|2dµ ≤ Ckj

∫
E(Ω0)

|∇u|2dµ.
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8 SERGENICAISE AND OLEG M. PENKIN

Taking the sum on all strata we obtain (3.1) withC =
∑

Ckj. �

4. APPLICATION TO SOME VARIATIONAL I NEQUALITIES

Here we discuss a standard obstacle problem. This is a generalization of the mechanical
problem illustrated by Figure 4.1 consisting of a finite number of membranes (two-dimensional
strata) and strings (one dimensional strata) initially stretched in the plane. For a general stratified
setΩ0 subdivided into the elastic strataE(Ω0) and the soft onesS(Ω0), let us fixp, q ∈ Cσ(Ω0)
such thatq ≥ 0 on Ω0, p > 0 on E(Ω0) andp ≡ 0 on S(Ω0). Consider furtherf ∈ L2

µ(Ω0) as

a small force acting on our system and letφ be the obstacle which is assumed to be in
◦
H1

µ(Ω0).
Then the displacementu of the points ofΩ0 is described by means of the following variational
problem

(4.1)
∫
Ω0

(p|∇u|2 + qu2 − 2fu)dµ = min
v∈K

∫
Ω0

(p|∇v|2 + qv2 − 2fv)dµ,

whereK is the convex and closed subset of
◦
H1

µ(Ω0) defined by

(4.2) K = {u ∈
◦
H1

µ(Ω0) : u(x) ≥ φ(x) (x ∈ Ω0)}.

Figure 4.1: A mechanical system with an obstacle.

Remark 4.1. We give the weak formulation (in
◦
H1

µ(Ω0)) of the problem, because it has no
classical solution even in the case when our mechanical system has no contact with the obstacle.
The classical solvability requires stronger conditions than firmly connectedness.

By the standard approach problem (4.1) may be reduced to the variational inequality: Find
u ∈ K solution of

(4.3) a(u, v − u)− (f, v − u)µ ≥ 0, ∀v ∈ K,

where the forma(u, v) is defined by

a(u, v) =

∫
Ω0

(p∇u · ∇v + quv)dµ.(4.4)

Theorem 4.2. Under the above assumptions if the triplet(E(Ω0), S(Ω0), ∂Ω0) is firmly con-
nected, then the problem (4.3) has a unique solution inK.
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FUNDAMENTAL INEQUALITIES ON FIRMLY STRATIFIED SETS AND SOME APPLICATIONS 9

Proof. The bounded and bilinear forma(u, v) is clearly coercive as an easy consequence of
Poincaré’s inequality. So, the assertion is a consequence of the well-known theorem about
variational inequalities in a Hilbert space (see, for example [10, 11]). �

Remark 4.3. The setN = {x ∈ Ω0 : u(x) > φ(x)} is called the noncoincidence set of the
solutionu. This set is clearly open and one can show that the above mentioned solutionu of the
variational inequality (4.3) is a weak solution of∫

N

(p∇u∇ϕ + quϕ)dµ =

∫
N

fϕdµ,∀ϕ ∈ D(N ).

If we takeK =
◦
H1

µ(Ω0), then the variational inequality (4.3) becomes the variational identity:

a(u, v) = (f, v)µ, ∀v ∈
◦
H1

µ(Ω0).

In this case using Green’s formula on each stratum,u is a weak solution of

−∆puki + quki −
∑

σki≺σk+1,j

pk+1,j

(
∂

∂ν
uk+1,j

)
|σki

= fki in σki,

u = 0 on∂Ω0.

In the setting of Remark 3.1 this problem is exactly the one studied in Section 5 of [12]. Let us
further remark that this problem extends particular problems considered in [2, 4, 7, 15, 17, 19].

5. POINCARÉ ’ S I NEQUALITY FOR FOURTH ORDER OPERATORS

In this section and the next one, we assume that the strata are flat in the sense that eachσki

is included into a hyperplane ofRn of dimensionk. Consequently we may fix a global system
of Cartesian coordinates on each stratum. Under this assumption we shall prove the following
Poincaré inequality, useful for boundary value problems involving fourth order operators (see
below for some applications).

As before we introduce the spaceH2
µ(Ω0) as the closure ofC2(Ω0) for the norm‖·‖2 induced

by the inner product

(u, v)2 =

∫
Ω0

(u2 + |∇u|2)dµ +

∫
E(Ω0)

‖H(u)‖2dµ,

whereH(u) is the Hessian matrix ofu defined on each stratumσki with Cartesian coordinates
(y1, . . . , yk) by

H(uki) =

(
∂2uki

∂yl∂ym

)
l,m=1,...,k

.

The spaceC2(Ω0) is defined exactly asC1(Ω0) replacing first order derivatives by first and
second order derivatives.
Theorem 5.1. Let the triplet(E(Ω0), S(Ω0), ∂Ω0) be firmly connected such that each stratum
is flat in the above sense. Then there exists a positive constantC such that

(5.1)
∫
Ω0

(u2 + |∇u|2)dµ ≤ C

∫
E(Ω0)

‖H(u)‖2dµ,

for all u ∈ H2
µ(Ω0) ∩

◦
H1

µ(Ω0).

The proof of this estimate relies on Lemmas 3.3 and 3.4 as well as the so-called interpolation
inequalities (see for instance Theorem 1.4.3.3 of [14]):

J. Inequal. Pure and Appl. Math., 4(1) Art. 9, 2003 http://jipam.vu.edu.au/

http://jipam.vu.edu.au/


10 SERGENICAISE AND OLEG M. PENKIN

Lemma 5.2. There exists a constantC such that for allε > 0 and allu ∈ H2(σki) it holds

(5.2)
∫

σki

|∇u|2dµ ≤ ε

∫
σki

u2dµ +
C

ε2

∫
σki

‖H(u)‖2dµ.

Lemma 5.3. Letσk−1,i ≺ σkj. Then there exists a constantC such that for allu ∈ H2(σkj) we
have

(5.3)
∫

σk−1,i

(u2 + |∇u|2)dµ ≤ C

∫
σkj

u2dµ +

∫
σkj

‖H(u)‖2dµ

 .

Proof. Applying Lemma 3.3 to∂u
∂yl

with l = 1, . . . , k and summing onl, we may write

∫
σk−1,i

|∇u|2dµ ≤
k∑

l=1

∫
σk−1,i

∣∣∣∣ ∂u

∂yl

∣∣∣∣2 dµ ≤ C

∫
σkj

|∇u|2dµ +

∫
σkj

‖H(u)‖2dµ

 .

Thanks to the estimate (5.2) we obtain

(5.4)
∫

σk−1,i

|∇u|2dµ ≤ C

∫
σkj

u2dµ +

∫
σkj

‖H(u)‖2dµ

 .

The estimates (3.2) and (5.2) directly yields

(5.5)
∫

σk−1,i

u2dµ ≤ C

∫
σkj

u2dµ +

∫
σkj

‖H(u)‖2dµ

 .

We conclude by taking the sum of (5.4) and (5.5). �

Lemma 5.4. Under the assumptions of the previous lemma the following inequality holds

(5.6)
∫

σkj

(u2 + |∇u|2)dµ ≤ C

 ∫
σk−1i

u2dµ +

∫
σkj

‖H(u)‖2dµ

 .

Proof. By the estimate (5.2), for anyε > 0 we have∫
σkj

|∇u|2dµ ≤ ε

∫
σkj

u2dµ +
C

ε2

∫
σkj

‖H(u)‖2dµ.

Lemma 3.4 then yields∫
σkj

|∇u|2dµ ≤ Cε

∫
σk−1i

u2dµ + Cε

∫
σkj

|∇u|2dµ +
C

ε2

∫
σkj

‖H(u)‖2dµ.

Choosingε > 0 such thatCε < 1/2 we obtain∫
σkj

|∇u|2dµ ≤ C

 ∫
σk−1i

u2dµ +

∫
σkj

‖H(u)‖2dµ

 .

This estimate and (3.3) directly yield (5.6). �
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Proof of Theorem 5.1.The arguments of Theorem 3.2 replacing Lemma 3.3 (resp. Lemma 3.4)
by Lemma 5.3 (resp. Lemma 5.4) directly lead to the conclusion. �

Let us shortly give an application of the above Poincaré inequality to some boundary value
problems with fourth order operators. The problem considered below is actually an extension
of particular problems studied in [17, 18, 7, 9]. For each elastic stratumσki we introduce the
Young modulusEki > 0 and the Poisson coefficientνki ∈ (0, 1) of the constitutive material of
the stratumσki. We then setpki = Eki

1−ν2
ki

for each elastic stratumσki andpki = 0 for each soft
stratumσki . With these notation we define the bilinear forma on any closed subspaceV of

H2
µ(Ω0) ∩

◦
H1

µ(Ω0) by

a(u, v) =
∑

σki⊂E(Ω0)

pkiaki(uki, vki),

where we set

aki(u, v) =

∫
σki

{
∆u∆v − (1− νki)

∑
l 6=m

[
∂2u

∂y2
l

∂2v

∂y2
m

− ∂2u

∂yl∂ym

∂2v

∂yl∂ym

]}
dy.

Owing to Theorem 5.1 we shall show that this bilinear form is coercive onV , namely we
have (compare with Lemma 2.5 of [17] or Lemma 2.1 of [18]):

Lemma 5.5. There exists a positive constantα such that for allu ∈ V we have

(5.7) a(u, u) ≥ α‖u‖2
2.

Proof. By direct calculations we see that

aki(u, u) =

∫
σki

{
k∑

l=1

∣∣∣∣∂2u

∂y2
l

∣∣∣∣2 + νki

∑
l 6=m

∂2u

∂y2
l

∂2u

∂y2
m

+(1− νki)
∑
l 6=m

(
∂2u

∂yl∂ym

)2
}

dy.

By Young’s type inequality ∑
l 6=m

alam ≥ −
k∑

l=1

|al|2,

valid for all real numbersal, we arrive at

aki(u, u) ≥ (1− νki)

∫
σki

{
k∑

l=1

∣∣∣∣∂2u

∂y2
l

∣∣∣∣2 +
∑
l 6=m

(
∂2u

∂yl∂ym

)2
}

dy

≥ (1− νki)

∫
σki

‖H(u)‖2dy.

The conclusion follows from Poincaré’s inequality (5.1). �

The so-called Lax-Milgram lemma allows to conclude the existence and uniqueness of the
solutionu ∈ V of

(5.8) a(u, v) =

∫
Ω0

fv dµ, ∀v ∈ V,

for anyf ∈ L2
µ(Ω0).

Let us give the interpretation of problem (5.8) in terms of partial differential equations in

the special caseV = H2
µ(Ω0) ∩

◦
H1

µ(Ω0). In that case for each stratumσki we introduce the
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12 SERGENICAISE AND OLEG M. PENKIN

boundary operators

Mkiu := pki

(
νki∆u + (1− νki)

∂2u

∂ν2

)
,(5.9)

Nkiu := pki

(
∂∆u

∂ν
+ (1− νki)∆T

∂u

∂ν

)
(5.10)

on its boundary. Then by applications of Green’s formula we see that foru andv sufficiently
regular we have

pkiaki(u, v) = pki

∫
σki

∆2uvdy −
∫

∂σki

{
Mkiu

∂v

∂ν
−Nkiuv

}
dσ

+ pki(1− νki)

∫
∂(∂σki)

∂

∂ν

(
∂u

∂ν |∂σki

)
vdσ.

Using this identity in (5.8) we see that the solutionu ∈ H2
µ(Ω0) ∩

◦
H1

µ(Ω0) of (5.8) is a weak
solution of

pki∆
2uki +

∑
σki≺σk+1,j

Nk+1,juk+1,j

+
∑

σki≺σk+1,j≺σk+2,l

pk+2,l(1− νk+2,l)
∂

∂ν

(
∂u

∂ν |σk+1,j

)
|σki

= fki in σki,

Mkiuki = 0 on∂σki,

u = 0 on∂Ω0.

Note that this problem extends boundary value problems studied in [7, 9] on one-dimensional
networks and in [17, 18] on two-dimensional ones.

6. K ORN’ S I NEQUALITY

The so-called Korn’s inequality is the basic ingredient for coerciveness property of problems
involving the elasticity system [8, 11]. We now show that this inequality is also valid on strati-
fied sets. An application to the elasticity system on such sets will be presented at the end of the
section.

Let us first recall Korn’s inequality on one stratumσki (see for instance [13] for a proof of the
estimate below in the case of domains with a Lipschitz boundary), which says that there exists
a positive constantC such that

(6.1)
∫

σki

|∇u|2 dy ≤ C

(∫
σki

‖ε(u)‖2 dy +

∫
σki

|u|2 dy

)
,∀u ∈ H1(σki)

k,

where, as usual,ε(u) = (εlm(u))k
l,m=1 is the strain tensor:εlm(u) = 1

2

(
∂ul

∂ym
+ ∂um

∂yl

)
and for

shorthness we write|∇u|2 =
∑k

l,m=1

∣∣∣ ∂ul

∂ym

∣∣∣2 .

This estimate and Lemma 3.3 directly lead to

Lemma 6.1. Letσk−1i ≺ σkj. Then there exists a constantC such that for allu ∈ H1(σkj)
k

(6.2)
∫

σk−1i

|u|2dµ ≤ C

∫
σkj

|u|2dµ +

∫
σkj

‖ε(u)‖2dµ

 .
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The equivalent of Lemma 3.4 requires a more careful analysis and, to our knowledge, seems
to be new:

Lemma 6.2. Under the assumptions of the previous lemma we have

(6.3)
∫

σkj

|u|2dµ ≤ C

 ∫
σk−1i

|ut|2dµ +

∫
σkj

‖ε(u)‖2dµ

 ,

whereut is the tangent component ofu onσk−1i, i.e.,

ut = u− (u · νkj)νkj onσk−1i.

Proof. Assume that the estimate (6.3) does not hold then there exists a sequence(un) such that∫
σkj

|un|2dµ = 1,(6.4)

∫
σk−1i

|ut,n|2dµ +

∫
σkj

‖ε(un)‖2dµ =
1

n
.(6.5)

By Korn’s inequality (6.1) the sequence(un) is bounded inH1(σkj)
k and by the compact em-

bedding ofH1(σkj) into L2(σkj) (Rellich-Kondrasov’s theorem), there exists a subsequence,
still denoted by(un), which is convergent inL2(σkj)

k. By (6.5) and (6.1) the sequence is
convergent inH1(σkj)

k. Denote its limit byu. By (6.4) and (6.5) it fulfils∫
σkj

|u|2dµ = 1,(6.6)

ut = 0 onσk−1i,(6.7)

ε(u) = 0 in σkj.(6.8)

This last property implies thatu is a rigid body motion, i.e.,

u(y) = Ay + b, ∀y ∈ σkj,

for someb ∈ Rk and an antisymmetric matrixA. Owing to the boundary condition (6.7), we
conclude thatb = 0 andA = 0 and sou = 0, which is in contradiction with (6.6). �

Now we define the space of vector valued functions onΩ0: We first defineC(Ω0) as the set
of functions such that its restrictionuki to σki is in C(σki, Rk) and such that for any strataσki

andσki′ with a common boundaryσk−1,j, we have the “continuity” conditions:

uki = uki′ onσk−1,j,

uk−1,j = uki − (uki · νki)νki onσk−1,j.

Note that the first condition implies that

uki − (uki · νki)νki = uki′ − (uki′ · νki′)νki′ onσk−1,j.

We may now defineC1(Ω0) as the subspace ofC(Ω0) such that its restrictionuki to σki is
in C1(σki, Rk), while C1

0(Ω0) is the subspace ofC1(Ω0) of functions which are zero on∂Ω0.

Finally we take
◦
H1

µ(Ω0) as the closure ofC1
0(Ω0) for the norm induced by the inner product

(u, v) =

∫
Ω0

uvdµ +
∑

σki⊂E(Ω0)

∫
σki

k∑
l,m=1

∂ul

∂ym

∂vl

∂ym

dy.
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14 SERGENICAISE AND OLEG M. PENKIN

The arguments of the proof of Theorem 3.2 replacing Lemma 3.3 (resp. Lemma 3.4) by
Lemma 6.1 (resp. Lemma 6.2) lead to the following result that we may call Korn’s inequality
on stratified sets.

Theorem 6.3. Let the triplet(E(Ω0), S(Ω0), ∂Ω0) be firmly connected such that each stratum
is flat in the above sense. Then there exists a constantC such that

(6.9)
∫
Ω0

|u|2dµ ≤ C

∫
E(Ω0)

‖ε(u)‖2dµ

for all u ∈
◦
H1

µ(Ω0).

We finish this paper with an application to the elasticity system, extension of the notion
of transmission problems for the elasticity operators considered in [19, 20]: For each elas-
tic stratumσki, we suppose that Hooke’s law holds, namely the stress tensorσ(ki)(uki) =
(σlm(uki))l,m=1,...,k is related to the strain tensor by the relation

σ
(ki)
lm (uki) =

k∑
l′,m′=1

c
(ki)
lml′m′εl′m′(uki),

where the elastic modulic(ki)
lml′m′ are real constants, satisfy the standard symmetry relations

c
(ki)
lml′m′ = c

(ki)
l′m′lm = c

(ki)
mll′m′ = c

(ki)
lmm′l′, and the positiveness condition: there existsα > 0

such that ∑
l,m,l′,m′=1,...,k

c
(ki)
lml′m′ξlmξl′m′ ≥ α

∑
l,m=1,...,k

|ξlm|2,∀ξlm ∈ R.

We now introduce the bilinear formak onH1(σki)
k by

aki(u, v) =

∫
σki

∑
l,m=1,...,k

σ
(ki)
lm (u)εlm(v) dy.

Note that the Lamé system is a particular case of the above one for a particular choice of
c
(ki)
lml′m′, in that case one has

ak(u, v) =

∫
σki

{
λki div u div v + 2µki

k∑
l,m=1

εlm(u)εlm(v)

}
dy,

whereλki > 0 andµki > 0 are the Lamé constants ofσki.

Finally we define the bilinear forma on the space
◦
H1

µ(Ω0) by

a(u, v) =
∑

σki⊂E(Ω0)

aki(uki, vki).

The positiveness assumption onc
(ki)
lml′m′ and Korn’s inequality (6.9) lead to the coerciveness

of the forma. Consequently by the Lax-Milgram lemma, there exists a unique solutionu ∈
◦
H1

µ(Ω0) of

(6.10) a(u, v) =
∑
ki

∫
σki

fki · vki dy,∀v ∈
◦
H1

µ(Ω0),

for anyfki ∈ L2(σki)
k.
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Applying Green’s formula we see that

ak(u, v) = −
∫

σki

k∑
l=1

∂

∂yl

σ
(ki)
lm (u)vmdy −

∫
∂σki

(σ(ki)(u) · ν) · vdσ.

Therefore the solutionu ∈
◦
H1

µ(Ω0) of (6.10) is a weak solution of

−
k∑

l=1

∂

∂yl

σ
(ki)
lm (uki)−

∑
σki≺σk+1,j

(σ(k+1,j)(uk+1,j) · ν)t = fki in σki,

(σ(ki)(uk+1,j) · ν) · ν = 0 on∂σki ⊂ Ω0,

u = 0 on∂Ω0,

with the convention thatσ(ki)(uki) = 0 on a soft stratumσki.
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