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1. I NTRODUCTION

The most celebrated Ostrowski inequality can be stated as follows (see [5, p. 469]).
Let f : [a, b] → R be continuous on[a, b] and differentiable on(a, b) whose derivative

f ′ : (a, b) → R is bounded on(a, b) , i.e.,‖f ′‖∞ = sup
t∈(a,b)

|f ′ (t)| < ∞, then

(1.1)

∣∣∣∣f (x)− 1

b− a

∫ b

a

f (t) dt

∣∣∣∣ ≤
[

1

4
+

(
x− a+b

2

)2
(b− a)2

]
(b− a) ‖f ′‖∞ ,

for all x ∈ [a, b] .
Another remarkable inequality established by Grüss (see [4, p. 296]) in 1935 states that

(1.2)

∣∣∣∣ 1

b− a

∫ b

a

f (x) g (x) dx−
(

1

b− a

∫ b

a

f (x) dx

)(
1

b− a

∫ b

a

g (x) dx

)∣∣∣∣
≤ 1

4
(M −m) (N − n) ,

provided thatf andg are two integrable functions on[a, b] and satisfy the conditionsm ≤
f (x) ≤ M, n ≤ g (x) ≤ N for all x ∈ [a, b] , wherem, M, n,N are constants.
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Many papers have been written dealing with generalisations, extensions and variants of the
inequalities (1.1) and (1.2), see [1] – [10] and the references cited therein. It appears that, the
finite difference inequalities of the Ostrowski and Grüss type are more difficult to establish and
require more effort. The main purpose of the present paper is to establish the Ostrowski and
Grüss type finite difference inequalities involving functions of many independent variables and
their first order forward differences. An interesting feature of the inequalities established here
is that the analysis used in their proofs is quite elementary and provides new estimates on these
types of inequalities.

2. STATEMENT OF RESULTS

In what follows, R and N denote the sets of real and natural numbers respectively. Let

Ni [0, ai] = {0, 1, 2, . . . , ai} , ai ∈ N. i = 1, 2, . . . , n andB =
n∏

i=1

Ni [0, ai] . For a function

z (x) : B → R we define the first order forward difference operators as

∆1z (x) = z (x1 + 1, x2, . . . , xn)− z (x) , . . . , ∆nz (x) = z (x1, . . . , xn−1, xn + 1)− z(x)

and denote then−fold sum overB with respect to the variabley = (y1, . . . , yn) ∈ B by

∑
y

z (y) =

a1−1∑
y1=0

· · ·
an−1∑
yn=0

z (y1, . . . , yn) .

Clearly
∑
y

z (y) =
∑
x

z (x) for x, y ∈ B. The notation

xi−1∑
ti=yi

∆iz (y1, . . . , yi−1, ti, xi+1, . . . , xn) , xi, yi ∈ Ni [0, ai]

for i = 1, 2, . . . , n we mean fori = 1 it is
x1−1∑
t1=y1

∆1z (t1, x2, . . . , xn) and so on and fori = 1 it

is
xn−1∑
tn=yn

∆nz (y1, . . . , yn−1, tn) . We use the usual convention that the empty sum is taken to be

zero.
Our main results are given in the following theorems.

Theorem 2.1.Letf, g be real-valued functions defined onB and∆if, ∆ig are bounded, i.e.,

‖∆if‖∞ = sup
x∈B

|∆if (x)| < ∞,

‖∆ig‖∞ = sup
x∈B

|∆ig (x)| < ∞.

Letw be a real-valued nonnegative function defined onB and
∑
y

w (y) > 0. Then forx, y ∈ B,

(2.1)

∣∣∣∣∣f (x) g (x)− 1

2M
g (x)

∑
y

f (y)− 1

2M
f (x)

∑
y

g (y)

∣∣∣∣∣
≤ 1

2M

n∑
i=1

[|g (x)| ‖∆if‖∞ + |f (x)| ‖∆ig‖∞] Hi (x) ,
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(2.2)

∣∣∣∣∣∣∣f (x) g (x)−
g (x)

∑
y

w (y) f (y) + f (x)
∑
y

w (y) g (y)

2
∑
y

w (y)

∣∣∣∣∣∣∣
≤

∑
y

w (y)
n∑

i=1

[|g (x)| ‖∆if‖∞ + |f (x)| ‖∆ig‖∞] |xi − yi|

2
∑
y

w (y)
,

whereM =
n∏

i=1

ai andHi (x) =
∑
y

|xi − yi| .

The following result is a consequence of Theorem 2.1.
Corollary 2.2. Letg (x) = 1 in Theorem 2.1 and hence∆ig (x) = 0, then forx, y ∈ B,

(2.3)

∣∣∣∣∣f (x)− 1

M

∑
y

f (y)

∣∣∣∣∣ ≤ 1

M

n∑
i=1

‖∆if‖∞Hi (x) ,

(2.4)

∣∣∣∣∣∣∣f (x)−

∑
y

w (y) f (y)∑
y

w (y)

∣∣∣∣∣∣∣ ≤
∑
y

w (y)
n∑

i=1

‖∆if‖∞ |xi − yi|∑
y

w (y)
,

whereM, w andHi (x) are as in Theorem 2.1.

Remark 2.3. It is interesting to note that the inequalities (2.3) and (2.4) can be considered as
the finite difference versions of the inequalities established by Milovanović [3, Theorems 2 and
3]. The one independent variable version of the inequality given in (2.3) is established by the
present author in [10].
Theorem 2.4.Letf, g, ∆if, ∆ig be as in Theorem 2.1. Then for everyx, y ∈ B,

(2.5)

∣∣∣∣∣f (x) g (x)− 1

M
g (x)

∑
y

f (y)− 1

M
f (x)

∑
y

g (y) +
1

M

∑
y

f (y) g (y)

∣∣∣∣∣
≤ 1

M

∑
y

[
n∑

i=1

‖∆if‖∞ |xi − yi|

][
n∑

i=1

‖∆ig‖∞ |xi − yi|

]
,

(2.6)

∣∣∣∣∣f (x) g (x)− 1

M
g (x)

∑
y

f (y)− 1

M
f (x)

∑
y

g (y) +
1

M2

(∑
y

f (y)

)(∑
y

g (y)

)∣∣∣∣∣
≤ 1

M2

(
n∑

i=1

‖∆if‖∞Hi (x)

)(
n∑

i=1

‖∆ig‖∞Hi (x)

)
,

whereM andHi (x) are as defined in Theorem 2.1.

Remark 2.5. In [8, 9] the discrete versions of Ostrowski type integral inequalities established
therein are given. Here we note that the inequalities in Theorem 2.4 are different and the analysis
used in the proof is quite elementary.
Theorem 2.6.Letf, g, ∆if, ∆ig be as in Theorem 2.1. Then

(2.7)

∣∣∣∣∣ 1

M

∑
x

f (x) g (x)−

(
1

M

∑
x

f (x)

)(
1

M

∑
x

g (x)

)∣∣∣∣∣
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≤ 1

2M2

∑
x

(∑
y

[
n∑

i=1

‖∆if‖∞ |xi − yi|

] [
n∑

i=1

‖∆ig‖∞ |xi − yi|

])
,

(2.8)

∣∣∣∣∣ 1

M

∑
x

f (x) g (x)−

(
1

M

∑
x

f (x)

)(
1

M

∑
x

g (x)

)∣∣∣∣∣
≤ 1

2M2

∑
x

(
n∑

i=1

[|g (x)| ‖∆if‖∞ + |f (x)| ‖∆ig‖∞] Hi (x)

)
,

whereM andHi (x) are as defined in Theorem 2.1.

Remark 2.7. In [4] and the references cited therein, many generalisations of Grüss inequality
(1.2) are given. Multidimensional integral inequalities of the Grüss type were recently estab-
lished in [6, 7]. We note that the inequality (2.8) can be considered as the finite difference
analogue of the inequality recently established in [7, Theorem 2.3].

3. PROOF OF THEOREM 2.1

Forx = (x1, . . . , xn) , y = (y1, . . . , yn) in B, it is easy to observe that the following identities
hold:

(3.1) f (x)− f (y) =
n∑

i=1

{
xi−1∑
ti=yi

∆if (y1, . . . , yi−1, ti, xi+1, . . . , xn)

}
,

(3.2) g (x)− g (y) =
n∑

i=1

{
xi−1∑
ti=yi

∆ig (y1, . . . , yi−1, ti, xi+1, . . . , xn)

}
.

Multiplying both sides of (3.1) and (3.2) byg (x) andf (x) respectively and adding we get

(3.3) 2f (x) g (x)− g (x) f (y)− f (x) g (y)

= g (x)
n∑

i=1

{
xi−1∑
ti=yi

∆if (y1, . . . , yi−1, ti, xi+1, . . . , xn)

}

+ f (x)
n∑

i=1

{
xi−1∑
ti=yi

∆ig (y1, . . . , yi−1, ti, xi+1, . . . , xn)

}
.

Summing both sides of (3.3) with respect toy overB, using the fact thatM > 0 and rewriting
we have

(3.4) f (x) g (x)− 1

2M
g (x)

∑
y

f (y)− 1

2M
f (x)

∑
y

g (y)

=
1

2M

[
g (x)

∑
y

[
n∑

i=1

{
xi−1∑
ti=yi

∆if (y1, . . . , yi−1, ti, xi+1, . . . , xn)

}]

+ f (x)
∑

y

[
n∑

i=1

{
xi−1∑
ti=yi

∆ig (y1, . . . , yi−1, ti, xi+1, . . . , xn)

}]]
.
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From (3.4) and using the properties of modulus we have∣∣∣∣∣f (x) g (x)− 1

2M
g (x)

∑
y

f (y)− 1

2M
f (x)

∑
y

g (y)

∣∣∣∣∣
≤ 1

2M

[
|g (x)|

∑
y

[
n∑

i=1

{∣∣∣∣∣
xi−1∑
ti=yi

∆if (y1, . . . , yi−1, ti, xi+1, . . . , xn)

∣∣∣∣∣
}]

+ |f (x)|
∑

y

[
n∑

i=1

{∣∣∣∣∣
xi−1∑
ti=yi

∆ig (y1, . . . , yi−1, ti, xi+1, . . . , xn)

∣∣∣∣∣
}]]

≤ 1

2M

[
|g (x)|

∑
y

[
n∑

i=1

{
‖∆if‖∞

∣∣∣∣∣
xi−1∑
ti=yi

1

∣∣∣∣∣
}]

+ |f (x)|
∑

y

[
n∑

i=1

{
‖∆ig‖∞

∣∣∣∣∣
xi−1∑
ti=yi

1

∣∣∣∣∣
}]]

=
1

2M

n∑
i=1

[|g (x)| ‖∆if‖∞ + |f (x)| ‖∆ig‖∞]

(∑
y

|xi − yi|

)

=
1

2M

n∑
i=1

[|g (x)| ‖∆if‖∞ + |f (x)| ‖∆ig‖∞] Hi (x) .

The proof of the inequality (2.1) is complete.
Multiplying both sides of (3.4) byw (y) , y ∈ B and summing the resulting identity with

respect toy on B and following the proof of inequality (2.1), we get the desired inequality in
(2.2).

4. PROOF OF THEOREM 2.4

From the hypotheses, as in the proof of Theorem 2.1, the identities (3.1) and (3.2) hold.
Multiplying the left sides and right sides of (3.1) and (3.2) we get

(4.1) f (x) g (x)− g (x) f (y)− f (x) g (y) + f (y) g (y)

=

[
n∑

i=1

{
xi−1∑
ti=yi

∆if (y1, . . . , yi−1, ti, xi+1, . . . , xn)

}]

×

[
n∑

i=1

{
xi−1∑
ti=yi

∆ig (y1, . . . , yi−1, ti, xi+1, . . . , xn)

}]
.

Summing both sides of (4.1) with respect toy onB and rewriting we have

(4.2) f (x) g (x)− 1

M
g (x)

∑
y

f (y)− 1

M
f (x)

∑
y

g (y) +
1

M

∑
y

f (y) g (y)

=
1

M

∑
y

[
n∑

i=1

{
xi−1∑
ti=yi

∆if (y1, . . . , yi−1, ti, xi+1, . . . , xn)

}]

×

[
n∑

i=1

{
xi−1∑
ti=yi

∆ig (y1, . . . , yi−1, ti, xi+1, . . . , xn)

}]
.
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From (4.2) and using the properties of modulus we have∣∣∣∣∣f (x) g (x)− 1

M
g (x)

∑
y

f (y)− 1

M
f (x)

∑
y

g (y) +
1

M

∑
y

f (y) g (y)

∣∣∣∣∣
≤ 1

M

∑
y

[
n∑

i=1

∣∣∣∣∣
{

xi−1∑
ti=yi

|∆if (y1, . . . , yi−1, ti, xi+1, . . . , xn)|

}∣∣∣∣∣
]

×

[
n∑

i=1

∣∣∣∣∣
{

xi−1∑
ti=yi

|∆ig (y1, . . . , yi−1, ti, xi+1, . . . , xn)|

}∣∣∣∣∣
]

≤ 1

M

∑
y

[
n∑

i=1

‖∆if‖∞ |xi − yi|

][
n∑

i=1

‖∆ig‖∞ |xi − yi|

]
,

which is the required inequality in (2.5).
Summing both sides of (3.1) and (3.2) with respect toy and rewriting we get

(4.3) f (x)− 1

M

∑
y

f (y) =
1

M

∑
y

[
n∑

i=1

{
xi−1∑
ti=yi

∆if (y1, . . . , yi−1, ti, xi+1, . . . , xn)

}]

and

(4.4) g (x)− 1

M

∑
y

g (y) =
1

M

∑
y

[
n∑

i=1

{
xi−1∑
ti=yi

∆ig (y1, . . . , yi−1, ti, xi+1, . . . , xn)

}]
,

respectively. Multiplying the left sides and right sides of (4.3) and (4.4) we get

(4.5) f (x) g (x)− 1

M
g (x)

∑
y

f (y)− 1

M
f (x)

∑
y

g (y)

+
1

M2

(∑
y

f (y)

)(∑
y

g (y)

)

=
1

M2

(∑
y

[
n∑

i=1

{
xi−1∑
ti=yi

∆if (y1, . . . , yi−1, ti, xi+1, . . . , xn)

}])

×

(∑
y

[
n∑

i=1

{
xi−1∑
ti=yi

∆ig (y1, . . . , yi−1, ti, xi+1, . . . , xn)

}])
.

From (4.5) and using the properties of modulus we have∣∣∣∣∣f (x) g (x)− 1

M
g (x)

∑
y

f (y)− 1

M
f (x)

∑
y

g (y)

+
1

M2

(∑
y

f (y)

)(∑
y

g (y)

)∣∣∣∣∣
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≤ 1

M2

(∑
y

[
n∑

i=1

∣∣∣∣∣
{

xi−1∑
ti=yi

|∆if (y1, . . . , yi−1, ti, xi+1, . . . , xn)|

}∣∣∣∣∣
])

×

(∑
y

[
n∑

i=1

∣∣∣∣∣
{

xi−1∑
ti=yi

|∆ig (y1, . . . , yi−1, ti, xi+1, . . . , xn)|

}∣∣∣∣∣
])

≤ 1

M2

(
n∑

i=1

‖∆if‖∞Hi (x)

)(
n∑

i=1

‖∆ig‖∞Hi (x)

)
.

This is the desired inequality in (2.6) and the proof is complete.

5. PROOF OF THEOREM 2.6

From the hypotheses, the identities (4.2) and (3.4) hold. Summing both sides of (4.2) with
respect tox onB, rewriting and using the properties of modulus we have∣∣∣∣∣ 1

M

∑
x

f (x) g (x)−

(
1

M

∑
x

f (x)

)(
1

M

∑
x

g (x)

)∣∣∣∣∣
≤ 1

2M2

∑
x

(∑
y

[
n∑

i=1

∣∣∣∣∣
{

xi−1∑
ti=yi

|∆if (y1, . . . , yi−1, ti, xi+1, . . . , xn)|

}∣∣∣∣∣
]

×

[
n∑

i=1

∣∣∣∣∣
{

xi−1∑
ti=yi

|∆ig (y1, . . . , yi−1, ti, xi+1, . . . , xn)|

}∣∣∣∣∣
])

≤ 1

2M2

∑
x

(∑
y

[
n∑

i=1

‖∆if‖∞ |xi − yi|

][
n∑

i=1

‖∆ig‖∞ |xi − yi|

])
,

which proves the inequality (2.7).
Summing both sides of (3.4) with respect tox on B and following the proof of inequality

(2.7) with suitable changes we get the required inequality in (2.8). The proof is complete.
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