

## Journal of Inequalities in Pure and Applied Mathematics

http://jipam.vu.edu.au/

Volume 4, Issue 2, Article 46, 2003

## ON THE PRODUCT OF DIVISORS OF n AND OF $\sigma(n)$

FLORIAN LUCA MATHEMATICAL INSTITUTE, UNAM AP. POSTAL 61-3 (XANGARI), CP 58 089 MORELIA, MICHOACÁN, MEXICO. fluca@matmor.unam.mx

Received 15 January, 2003; accepted 21 February, 2003 Communicated by J. Sándor

ABSTRACT. For a positive integer n let  $\sigma(n)$  and T(n) be the sum of divisors and product of divisors of n, respectively. In this note, we compare T(n) with  $T(\sigma(n))$ .

Key words and phrases: Divisors, Arithmetic functions.

2000 Mathematics Subject Classification. 11A25, 11N56.

Let  $n \ge 1$  be a positive integer. In [7], Sándor introduced the function  $T(n) := \prod_{d|n} d$  as the multiplicative analog of  $\sigma(n)$ , which is the sum of all the positive divisors of n, and studied some of its properties. In particular, he proved several results pertaining to *multiplicative perfect numbers*, which, by analogy, are numbers n for which the relation  $T(n) = n^k$  holds with some positive integer k.

In this paper, we compare T(n) with  $T(\sigma(n))$ . Our first result is:

**Theorem 1.** The inequality  $T(\sigma(n)) > T(n)$  holds for almost all positive integers n.

In light of Theorem 1, one can ask whether or not there exist infinitely many n for which  $T(\sigma(n)) \leq T(n)$  holds. The fact that this is indeed so is contained in the following more precise statement.

**Theorem 2.** Each one of the divisibility relations  $T(n) | T(\sigma(n))$  and  $T(\sigma(n)) | T(n)$  holds for an infinite set of positive integers n.

Finally, we ask whether there exist positive integers n > 1 so that  $T(n) = T(\sigma(n))$ . The answer is no.

**Theorem 3.** The equation  $T(n) = T(\sigma(n))$  has no positive integer solution n > 1.

Throughout this paper, for a positive real number x and a positive integer k we write  $\log_k x$  for the recursively defined function given by  $\log_k x := \max\{\log \log_{k-1} x, 1\}$ , where  $\log$  stands for the natural logarithm function. When k = 1, we simply write  $\log x$ , and we understand that

ISSN (electronic): 1443-5756

<sup>© 2003</sup> Victoria University. All rights reserved.

This work was partly supported by Grant SEP-CONACyT 37259-E..

<sup>021-03</sup> 

this number is always greater than or equal to 1. For a positive real number x we use  $\lfloor x \rfloor$  for the integer part of x, i.e., the largest integer k so that  $k \leq x$ . We use the Vinogradov symbols  $\gg$  and  $\ll$  as well as the Landau symbols O and o with their regular meanings. For a positive integer n, we write  $\tau(n)$ , and  $\omega(n)$  for the number of divisors of n, and the number of distinct prime divisors of n, respectively.

*Proof of Theorem 1.* Let x be a large positive real number, and let n be a positive integer in the interval  $I := (x/\log x, x)$ . Since

$$\frac{1}{x} \cdot \sum_{n < x} \tau(n) = O(\log x),$$

it follows that the inequality

(1)  $\tau(n) < \log^2 x$ 

holds for all  $n \in I$ , except for a subset of such n of cardinality  $O(x/\log x) = o(x)$ .

A straighforward adaptation of the arguments from [4, p. 349] show that the inequality

(2) 
$$\omega(\sigma(n)) > \frac{1}{3} \cdot \log_2^2 x$$

holds for all  $n \in I$ , except, eventually, for a subset of such n of cardinality o(x). So, we can say that for most  $n \in I$  both inequalities (1) and (2) hold. For such n, we have

(3) 
$$T(n) = n^{\frac{\tau(n)}{2}} = \exp\left(\frac{\tau(n)\log n}{2}\right) < \exp\left(\frac{\log^3 x}{2}\right),$$

while

(4)  

$$T(\sigma(n)) = (\sigma(n))^{\frac{\tau(\sigma(n))}{2}}$$

$$> n^{\frac{\tau(\sigma(n))}{2}}$$

$$> \exp\left(\frac{\tau(\sigma(n))\log n}{2}\right)$$

$$> \exp\left(\frac{2^{\omega(\sigma(n))}\log n}{2}\right)$$

$$> \exp\left(\frac{2^{\frac{\log^2 x}{3}}}{2} \cdot \log\left(\frac{x}{\log x}\right)\right),$$

and it is easy to see that for large values of x the function appearing in the right hand side of (4) is larger than the function appearing on the right hand side of (3). This completes the proof of Theorem 1.

*Proof of Theorem 2.* We first construct infinitely many n such that  $T(n) | T(\sigma(n))$ . Let  $\lambda$  be an odd number to be chosen later and put  $n := 2^{\lambda} \cdot 3$ . Then,  $\tau(n) = 2(\lambda + 1)$ , therefore

(5) 
$$T(n) = (2^{\lambda} \cdot 3)^{\frac{\tau(n)}{2}} \mid 6^{(\lambda+1)^2}$$

Now  $\sigma(n) = 4 \cdot (2^{\lambda+1}-1)$  is a multiple of 6 because  $\lambda + 1$  is even, and so  $2^{\lambda+1}-1$  is a multiple of 3. Thus,  $T(\sigma(n))$  is a multiple of

$$6^{\lfloor \frac{\tau(4(2^{\lambda+1}-1))}{2} \rfloor} = 6^{\lfloor \frac{3\tau(2^{\lambda+1}-1)}{2} \rfloor},$$

and since the inequality  $\lfloor 3k/2 \rfloor \ge k$  holds for all positive integers k, it follows that  $T(\sigma(n))$  is a multiple of  $6^{\tau(2^{\lambda+1}-1)}$ .

It suffices therefore to see that we can choose infinitely many such odd  $\lambda$  so that  $\tau(2^{\lambda+1}-1) > (\lambda+1)^2$ . Since  $\tau(2^{\lambda+1}-1) \ge 2^{\omega(2^{\lambda+1}-1)}$ , it follows that it suffices to show that we can choose infinitely many odd  $\lambda$  so that

$$2^{\omega(2^{\lambda+1}-1)} > (\lambda+1)^2,$$

which is equivalent to

$$\omega(2^{\lambda+1}-1) > \frac{2}{\log 2} \cdot \log(\lambda+1).$$

Since  $2/\log 2 < 3$ , it suffices to show that the inequality

(6) 
$$\omega(2^{\lambda+1}-1) > 3\log(\lambda+1)$$

holds for infinitely many odd positive integers  $\lambda$ .

Let  $(u_k)_{k\geq 1}$  be the *Lucas sequence* of general term  $u_k := 2^k - 1$  for  $k = 1, 2, \ldots$ . The primitive divisor theorem (see [1], [2]), says that for all  $d \mid k, d \neq 1$ , 6, there exists a prime number  $p \mid u_d$  (hence,  $p \mid u_k$  as well), so that  $p \not\mid u_m$  for any  $1 \leq m < d$ . In particular, the inequality  $\omega(2^k - 1) \geq \tau(k) - 2$  holds for all positive integers k. Thus, in order to prove that (6) holds for infinitely many odd positive integers  $\lambda$ , it suffices to show that the inequality

$$\tau(\lambda+1) \ge 2+3\log(\lambda+1)$$

holds for infinitely many odd positive integers  $\lambda$ .

Choose a large real number y and put

(7) 
$$\lambda + 1 := \prod_{p < y} p.$$

Clearly,  $\lambda + 1$  is even, therefore  $\lambda$  is odd. With the prime number theorem, we have that

$$\lambda + 1 = \exp(1 + o(1))y)$$

holds for large y, and therefore the inequality

$$\lambda + 1 < \exp(2y)$$

holds for large values of y. In particular,

(8) 
$$2 + 3\log(\lambda + 1) < 2 + 6y$$

holds for large y. However,

$$\tau(\lambda+1) \ge 2^{\omega(\lambda+1)} = 2^{\pi(y)}$$

where we write  $\pi(y)$  for the number of prime numbers p < y. Since  $\pi(y) \ge y/\log y$  holds for all y > 17 (see [6]), it follows that for y sufficiently large we have

(9) 
$$\tau(\lambda+1) \ge 2^{\frac{y}{\log y}}.$$

It is now clear that the right hand side of (9) is larger than the right hand side of (8) for sufficiently large values of y, and therefore the numbers  $\lambda$  shown at (7) do fulfill inequality (6) for large values of y.

We now construct infinitely many n such that  $T(\sigma(n)) | T(n)$ . For coprime integers a and d with d positive and a large positive real number  $x \text{ let } \pi(x; d, a)$  be the number of primes p < x with  $p \equiv a \pmod{d}$ . For positive real numbers  $y < x \text{ let } \pi(x; y)$  stand for the number of primes p < x so that p + 1 is free of primes  $q \ge y$ . Let  $\mathcal{E}$  denote the set of all real numbers E in the range 0 < E < 1 so that there exists a positive constant  $\gamma(E)$  and a real number  $x_1(E)$  such that the inequality

(10) 
$$\pi(x;x^{1-E}) > \gamma(E)\pi(x)$$

holds for all  $x > x_1(E)$ . Thus,  $\mathcal{E}$  is the set of all real numbers E in the interval 0 < E < 1 such that for large x a positive proportion (depending on E) of all the prime numbers p up to x have p + 1 free of primes  $q \ge x^{1-E}$ . Erdős (see [3]) showed that  $\mathcal{E}$  is nonempty. In fact, he did not exactly treat this question, but the analogous question for the primes p < x such that p - 1 is free of primes larger than  $x^{1-E}$ , but his argument can be adapted to the situation in which p - 1 is replaced by p + 1, which is our instance. The best result known about  $\mathcal{E}$  is due to Friedlander [5], who showed that every positive number E smaller than  $1 - (2\sqrt{e})^{-1}$  belongs to  $\mathcal{E}$ . Erdős has conjectured that  $\mathcal{E}$  is the full interval (0, 1).

Let E be some number in  $\mathcal{E}$ . Let  $x > x_1(E)$  be a large real number. Let  $\mathcal{P}_E(x)$  be the set of all the primes p < x counted by  $\pi(x; x^{1-E})$ . Note that all the primes  $p < x^{1-E}$  are already in  $\mathcal{P}_E(x)$ . Put

(11) 
$$n := \prod_{p \in \mathcal{P}_E(x)} p.$$

Clearly,

(12) 
$$T(n) = n^{\frac{\tau(n)}{2}}$$

and

(13) 
$$\frac{\tau(n)}{2} = 2^{\#\mathcal{P}_E(x)-1} = 2^{\pi(x;x^{1-E})-1} > 2^{c\pi(x)} > 2^{\frac{cx}{\log x}}$$

where one can take  $c := \gamma(E)/2$ , and inequality (13) holds for sufficiently large values of x. In particular, T(n) is divisible by all primes  $q < x^{1-E}$ , and each one of them appears at the power at least  $2^{\frac{cx}{\log x}}$ .

We now look at  $T(\sigma(n))$ . We have

(14) 
$$T(\sigma(n)) = \left(\prod_{p \in \mathcal{P}_E(x)} (p+1)\right)^{\frac{\tau(\sigma(n))}{2}}$$

From the definition of  $\mathcal{P}_E(x)$ , we know that the only primes than can divide  $T(\sigma(n))$  are the primes  $q < x^{1-E}$ . Thus, to conclude, it suffices to show that the exponent at which each one of these primes  $q < x^{1-E}$  appears in the prime factorization of  $T(\sigma(n))$  is smaller than  $2^{\frac{cx}{\log x}}$ . Let q be such a prime, and let  $\alpha_q$  be so that  $q^{\alpha_q} || \sigma(n)$ . It is easy to see that

(15) 
$$\alpha_q \le \pi(x, q, -1) + \pi(x, q^2, -1) + \dots + \pi(x, q^j, -1) + \dots$$

Let  $j \ge 1$ . Then  $\pi(x; q^j, -1)$  is the number of primes p < x such that  $q^j \mid p+1$ . In particular,  $\pi(x; q^j, -1)$  is at most the number of numbers m < x+1 which are multiples of  $q^j$ , and this number is  $\left|\frac{x+1}{q^j}\right| \le \frac{x+1}{q^j}$ . Thus,

$$\alpha_q < (x+1) \sum_{j \ge 1} \frac{1}{q^j} = \frac{x+1}{q-1} \le x+1.$$

Thus,

$$\alpha_q + 1 \le x + 2 < 2x$$

holds for all  $q < x^{1-E}$ , and therefore

$$\tau(\sigma(n)) < (2x)^{\pi(x^{1-E})} = \exp(\pi(x^{1-E}) \cdot \log(2x)).$$

By the prime number theorem,

$$\pi(x^{1-E}) = (1+o(1)) \cdot \frac{x^{1-E}}{\log(x^{1-E})},$$

and therefore the inequality

(16) 
$$\pi(x^{1-E}) < \frac{2x^{1-E}}{\log(x^{1-E})} = \frac{2}{1-E} \cdot \frac{x^{1-E}}{\log x}$$

holds for large values of x. Thus,

(17) 
$$\tau(\sigma(n)) < \exp\left(\frac{2}{1-E} \cdot \frac{x^{1-E}}{\log x} \cdot \log(2x)\right) < \exp\left(\frac{3x^{1-E}}{1-E}\right),$$

holds for large values of x. In particular, the exponent at which a prime number  $q < x^{1-E}$  can appear in the prime factorization of  $T(\sigma(n))$  is at most

(18) 
$$\alpha_q \cdot \frac{\tau(\sigma(n))}{2} < \tau(\sigma(n))^2 < \exp\left(\frac{6x^{1-E}}{1-E}\right).$$

Comparing (13) with (18), it follows that it suffices to show that the inequality

(19) 
$$\exp\left(\frac{6x^{1-E}}{1-E}\right) < 2^{\frac{cx}{\log x}}$$

holds for large values of x, and taking logarithms in (19), we see that (19) is equivalent to

$$(20) c_1 \log x < x^E,$$

where  $c_1 := \frac{6}{c(1-E)\log 2}$ , and it is clear that (20) holds for large values of x. Theorem 2 is therefore proved.

*Proof of Theorem 3.* Assume that n > 1 satisfies  $T(n) = T(\sigma(n))$ . Write  $t := \omega(n)$ . It is clear that t > 1, for otherwise the number n will be of the form  $n = q^{\alpha}$  for some prime number q and some positive integer  $\alpha$ , and the contradiction comes from the fact that  $\sigma(q^{\alpha})$  is coprime to q. We now note that it is not possible that the prime factors of n are in  $\{2, 3\}$ . Indeed, if this were so, then  $n = 2^{\alpha_1} \cdot 3^{\alpha_2}$ , and  $\sigma(n) = (2^{\alpha_1+1}-1)(3^{\alpha_2+1}-1)$ . Since the prime factors of  $\sigma(n)$  are also in the set  $\{2, 3\}$ , we get the diophantine equations  $2^{\alpha_1+1}-1=3^{\beta_1}$  and  $3^{\alpha_2+1}-1=2^{\beta_2}$ , and it is wellknown and very easy to prove that the only positive integer solution  $(\alpha_1, \alpha_2, \beta_1, \beta_2)$  of the above equations is (1, 1, 1, 3). Thus, n = 6, and the contradiction comes from the fact that this number does not satisfy the equation  $T(n) = T(\sigma(n))$ .

Write

(21) 
$$n := q_1^{\alpha_1} \cdots q_t^{\alpha_t}$$

where  $q_1 < q_2 < \cdots < q_t$  are prime numbers and  $\alpha_i$  are positive integers for  $i = 1, \ldots, t$ . We claim that

$$(22) q_1 \cdot \cdots \cdot q_t > e^t.$$

This is clearly so if t = 2, because in this case  $q_1q_2 \ge 2 \cdot 5 > e^2$ . For  $t \ge 3$ , one proves by induction that the inequality

$$p_1 \cdots p_t > e^t$$

holds, where  $p_i$  is the *i*th prime number. This takes care of (22).

We now claim that

(23) 
$$\frac{\sigma(n)}{n} < \exp(1 + \log t).$$

Indeed,

(24)  

$$\frac{\sigma(n)}{n} = \prod_{i=1}^{t} \left( 1 + \frac{1}{q_i} + \dots + \frac{1}{q_i^{\alpha_i}} \right)$$

$$< \exp\left(\sum_{i=1}^{t} \sum_{\beta \ge 1} \frac{1}{p_i^{\beta}}\right)$$

$$< \exp\left(\sum_{i=1}^{t} \frac{1}{p_i - 1}\right),$$

and so, in order to prove (23), it suffices, via (24), to show that

(25) 
$$\sum_{i=1}^{t} \frac{1}{p_i - 1} \le 1 + \log t.$$

One checks that (25) holds at t := 1 and t := 2. Assume now that  $t \ge 3$  and that (25) holds for t - 1. Then,

(26) 
$$\sum_{i=1}^{t} \frac{1}{p_i - 1} = \frac{1}{p_t - 1} + \sum_{i=1}^{t-1} \frac{1}{p_i - 1} < 1 + \frac{1}{p_t - 1} + \log(t - 1) < 1 + \log t,$$

where the last inequality in (26) above holds because it is equivalent to

$$\left(1+\frac{1}{t-1}\right)^{p_t-1} > e,$$

which in turn holds because  $p_t \ge t + 1$  holds for  $t \ge 3$ , and

$$\left(1 + \frac{1}{t-1}\right)^t > e$$

holds for all positive integers t > 1.

After these preliminaries, we complete the proof of Theorem 3. Write the relation  $T(n) = T(\sigma(n))$  as

(27) 
$$\sigma(n) = n^{\frac{\tau(n)}{\tau(\sigma(n))}} = n \cdot n^{\frac{\tau(n) - \tau(\sigma(n))}{\tau(\sigma(n))}}.$$

Since  $\sigma(n) > n$ , we get that  $\tau(n) > \tau(\sigma(n))$ . We now use (23) to say that

$$n^{\frac{\tau(n)-\tau(\sigma(n))}{\tau(\sigma(n))}} = \frac{\sigma(n)}{n} < \exp(1 + \log t),$$

therefore

(28) 
$$\frac{\tau(n) - \tau(\sigma(n))}{\tau(\sigma(n))} < \frac{1 + \log t}{\log n}.$$

Let 
$$d := \gcd(\tau(n), \tau(\sigma(n))) = \gcd(\tau(n) - \tau(\sigma(n)), \tau(\sigma(n)))$$
. From (28), we get that

$$d < \left(\frac{1 + \log t}{\log n}\right) \cdot \tau(\sigma(n))$$

Write

(29) 
$$\frac{\tau(n) - \tau(\sigma(n))}{\tau(\sigma(n))} = \frac{\beta}{\gamma},$$

where  $\beta$  and  $\gamma$  are coprime positive integers. We have

(30) 
$$\gamma = \frac{\tau(\sigma(n))}{d} > \frac{\log n}{1 + \log t}.$$

The number  $n^{\frac{\beta}{\gamma}} = \sigma(n)/n$  is both a rational number and an algebraic integer, and is therefore an integer. Since  $\beta$  and  $\gamma$  are coprime, it follows, by unique factorization, that  $\alpha_i$  is a multiple of  $\gamma$  for all  $i = 1, \ldots, t$ . Thus,  $\alpha_i \ge \gamma$  holds for  $i = 1, \ldots, t$ , therefore

(31) 
$$n \ge (q_1 \cdots q_t)^{\gamma} > e^{t\gamma} = \exp(t\gamma) > \exp\left(\frac{t\log n}{1 + \log t}\right) = n^{\frac{t}{1 + \log t}},$$

and now (31) implies that

 $1 + \log t > t,$ 

which is impossible. Theorem 3 is therefore proved.

**Remark 4.** We close by noting that if n is a multiply perfect number, then  $T(n) | T(\sigma(n))$ . Recall that a multiply perfect number n is a number so that  $n | \sigma(n)$ . If n has this property, then  $\tau(\sigma(n)) > \tau(n)$ , and now it is easy to see that  $T(\sigma(n)) = \sigma(n)^{\frac{\tau(\sigma(n))}{2}}$  is a multiple of  $n^{\frac{\tau(n)}{2}} = T(n)$ . Unfortunately, we still do not know if the set of multiply perfect numbers is infinite.

## REFERENCES

- [1] Y. BILU, G. HANROT AND P.M. VOUTIER, Existence of primitive divisors of Lucas and Lehmer numbers. With an appendix by M. Mignotte, *J. Reine Angew. Math.*, **539** (2001), 75–122.
- [2] R.D. CARMICHAEL, On the numerical factors of the arithmetic forms  $\alpha^n \pm \beta^n$ , Ann. Math., 15(2) (1913), 30–70.
- [3] P. ERDŐS, On the normal number of prime factors of p 1 and some other related problems concerning Euler's  $\phi$ -function, *Quart. J. of Math.* (Oxford Ser.), **6** (1935), 205–213.
- [4] P. ERDŐS AND C. POMERANCE, On the normal number of prime factors of  $\phi(n)$ , *Rocky Mtn. J.* of Math., **15** (1985), 343–352.
- [5] J.B. FRIEDLANDER, Shifted primes without large prime factors, in *Number Theory and Applications*, (Ed. R.A. Mollin), (Kluwer, NATO ASI, 1989), 393–401.
- [6] J.B. ROSSER AND L. SHOENFELD, Approximate formulas for some functions of prime numbers, *Illinois J. of Math.*, 6 (1962), 64–94.
- [7] J. SÁNDOR, On multiplicatively perfect numbers, J. Inequal. Pure Appl. Math., 2(1) (2001), Article
   3. [ONLINE: http://jipam.vu.edu.au/v2n1/019\_99.html]

 $\square$