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Abstract

This paper is devoted to the investigation of sinc interpolation properties cor-
responding to a sequence of functions having the sinc function as a basis, the
interpolation is taken over the dyadic partition of the interval [0, 2π]. In particular,
a new class of functions for which the interpolation converge is introduced. The
convergence of our interpolation processes is studied and answered in quite a
comprehensive way. In fact, the paper aims to provide a guideline towards a
large number of problems of interest in applied sciences.
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1. Introduction
The sinc approximation method is a very promising method for function ap-
proximation, for approximation of derivatives, for approximate definite and in-
definite integration, for solving initial value problems, for approximation and
inversion of Fourier and Laplace transforms. The sinc method is an attractive al-
ternative for numerical solutions to those problems which have no closed form.
The theory of sinc series on the whole real line is developed in [8]. There are
several reasons to approximate by sinc functions. Firstly, they are easily imple-
mented and give good accuracy for problems with singularities; approximations
by sinc function are typified by errors of the formO(exp(−c/h)) wherec > 0
is a constant andh is a step size. Secondly, approximation by sinc functions
handles singularities in the problem. The effect of any such singularities will
appear in some form in any scheme of numerical solution, and it is well known
that polynomial methods do not perform well near singularities. Finally, these
kinds of approximation yield both an effective and rapidly convergent scheme
for solving the problem, and so circumvents the instability problems that one
typically encounters in some difference methods. Numerical processes of in-
terpolation on the real line, with the help of adroitly selected conformal maps
is adapted to handle these same processes on finite intervals, or in general on
other subsets of the real line. For more details see, [3, 4, 5]. Also, it is worthy to
mention the work by Stenger [9], where he presents practically useful construc-
tive linear methods of approximation of analytic functions by polynomials, sinc
functions and rational functions. In [6], the author proves some convergence
results on finite intervals, using the linear combination of the basis functions

Bn,k = S(k, h) ◦ sin h−1
(
cos h−1

(
1
|x|

))
wherek = −n, . . . , n, h = log n/n,
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andS(k, h) is the sinc translated function, to be defined later.
Although there is no unique choice for the conformal map, and so one will

not guarantee an exponential decay of the convergence rate using the sinc method.
It should be pointed out that it might be possible that the selection of the confor-
mal mapping does not lead to a symmetric discrete system. While a symmetric
approximation system is not necessary for a good approximation, it is computa-
tionally efficient and analytically advantageous for solving the discrete system.
As a final note on selection availability of the conformal mapping. In problems
where two (or more) maps are applicable, the use of either of the maps leads
to a smaller size of the discrete system, for example, in the case of the domain
(0,∞) there are available the selectionsln(x) andln(sinh(x)). The mapln(x)
often leads to a smaller discrete system that does the mapln(sinh(x)) for equiv-
alent accuracy. To avoid these difficulties and as an alternative for the extension
(using conformal maps) made by Stenger [8], this paper is devoted to the inves-
tigation of sinc interpolation on the interval[0, 2π] (see, [7]). The paper is orga-
nized as follows. In Section2 we define our interpolation processesSn(f ; x),
where the nodes are taken to be the diadic partition of the interval[0, 2π]. We
then study some basic properties of the interpolating functionSn(f ; x). In Sec-
tion 3 we take up the functional properties ofSn(f ; x). Section4 deals with
new classes of functions for which the interpolation processes converges. In the
last section of this chapter, we give the most important convergence results in
this paper.
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2. The Interpolation Processes
Let E1 = {0, π, 2π}, andE2 = {0, π/2, π, 3π/2, 2π}. In general let

(2.1) En =

{
2kπ

2n
, 0 ≤ k ≤ 2n

}
.

In the following Lemma we state, without proof, some properties of the partition
En

Lemma 2.1. For the setsEn the following holds true

1. The sequence{En} is an increasing sequence, i.e,E1 ⊂ E2 ⊂ . . . .

2. E = ∪∞n=1En is dense subset of[0, 2π].

Definition 2.1. Let f : [0, 2π] → R be any function. For each natural number
n we define,

(2.2) Sn(f, x) =
∑

xk∈En

f(xk)Ln,k(x),

where

(2.3) Ln,k(x) =


sin[2(n−1)(x− xk)]

2(n−1)(x− xk)
, x 6= xk

1, x = xk

andxk = 2kπ
2n for 0 ≤ k ≤ 2n.
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In the following sequence of lemmas we will give the basic properties of
Sn(f, x) as an interpolating function.

Lemma 2.2. For any natural numbersn, k andj where0 ≤ k, j ≤ 2n we have

Ln,k(xj) = δj,k.

Proof. If j = k thenLn,k(xj) = 1 by the definition ofLn,k(x). Now if j 6= k,
we have

Ln,k(xj) =
sin[2n−1(xj − xk)]

2n−1(xj − xk)

=
sin
[
2n−1

(
2jπ
2n − 2kπ

2n

)]
2n−1(xj − xk)

=
sin[(j − k)π]

2n−1(xj − xk)
= 0.

This completes the proof.

Lemma 2.3.Sn(f, x) interpolatesf onEn for any functionf defined on[0, 2π].
i.e.,Sn(f, xk) = f(xk) for all xk ∈ En.

Proof.

Sn(f, xk) =
2n∑

j=0

f(xj)Ln,j(xk)

= f(xk)Ln,k(xk) +
∑

xj 6=xk

f(xj)Ln,j(xk) = f(xk).

Sincexk is an arbitrary element ofEn, the result follows.
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We have shown thatSn(f, x) interpolatesf on the setEn, the following
lemma is a generalization:

Lemma 2.4. For any real valued functionf on [0, 2π], if limn→∞ Sn(f, x) =
g(x) theng(x) = f(x) for all x ∈ E.

Proof. Let x be arbitrary element ofE. SinceE is the union of the setsE ′
ns

there must ben0 such thatx ∈ En for all n ≥ n0. Now for n ≥ n0 we have
Sn(f, x) = f(x) thereforelimn→∞ Sn(f, x) = f(x), thusg(x) = f(x). Since
x is an arbitrary element ofE the result follows.

Lemma 2.5. Sn(f, x) = Sm(f, x) for all x in Ek, wherek = min(n, m).

Proof. Let n and m be any two natural numbers, andk = min(m, n). Let
x` ∈ Ek for some`, thenx` ∈ En becausek ≤ n. But Sn interpolatesf
on En, so thatSn(f, x`) = f(x`). By the same argument, we can show that
Sm(f, x`) = f(x`).

The following sequence of lemmas give some result on the derivative of the
basis of the interpolation, from which one can approximate the solution for
some differential equations.

Lemma 2.6. For any natural numbersn andk with 0 ≤ k ≤ 2n we have

(2.4) L′n,k(xk) = 0.

Proof. Forx = xk, we have

L′n,k(xk) = lim
x→xk

Ln,k(x)− Ln,k(xk)

x− xk
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= lim
x→xk

sin[2n−1(x− xk)]− 2n−1(x− xk)

2n−1(x− xk)2

= lim
x→xk

2n−1 cos[2n−1(x− xk)]− 2n−1

22n−1(x− xk)

= lim
x→xk

−2n−12n−1 sin[2n−1(x− xk)]

22n−1(1)
= 0

and the lemma is proved.

Lemma 2.7. For any natural numbersn andk with 0 ≤ k ≤ 2n we have

(2.5) L′n,k(xj) =
2n × (−1)j−k

2π(j − k)
.

Proof.

L′n,k(xj) = lim
x→xj

Ln,k(x)− Ln,k(xj)

x− xk

= lim
x→xj

sin[2n−1(x− xk)]

2n−1(x− xk)(x− xj)

= lim
x→xj

2n−1 cos[2n−1(x− xj)]

2n−1
lim

x→xj

1

x− xk

=
(−1)j−k

xj − xk

=
2n × (−1)j−k

2π(j − k)
.

Now the proof is complete.
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For the second derivative, we have

Lemma 2.8. For any natural numbersn andk with 0 ≤ k ≤ 2n we have

(2.6) L′′n,k(xk) =
−22n−2

3
.

Proof.

L′′n,k(xk) = lim
x→xk

L′n,k(x)− L′n,k(xk)

x− xk

= lim
x→xk

2n−1(x− xk) cos[2n−1(x− xk)]− sin[2n−1(x− xk)]

2n−1(x− xk)3

= lim
x→xj

−2n−12n−1(x− xk) sin[2n−1(x− xk)]

3.2n−1(x− xk)2

=
−2n−1.2n−1

3

=
−22n−2

3
.

The following is a connection between our interpolation and the Lagrange
interpolation.

Lemma 2.9. Let f be a real-valued function on[0, 2π] and letHn denote the
Lagrange interpolation function onEn, thenSn(f, x) = Sn(Hn, x).
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Proof. We recall thatHn(xk) = f(xk) for all xk ∈ En. Now,

Sn(f, x) =
∑

xk∈En

f(xk)Ln,k(x)

=
∑

xk∈En

Hn(xk)Ln,k(x)

= Sn(Hn, x).

In fact the previous lemma is a particular case of the following lemma.

Lemma 2.10. Let f andg be two real-valued functions defined on[0, 2π] such
thatg(xk) = f(xk) for all xk ∈ En for some natural numbern, thenSn(f, x) =
Sn(g, x) for all x ∈ [0, 2π].
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3. The Functional Properties OfSn

Notice thatSn can be considered as an operator on the space of all real-valued
functions on[0, 2π]. So that, it is convenient to study the functional properties
of Sn as an operator on the dual space of[0, 2π]. Note thatSn(f, x) is a linear
operator on the space of all functions defined on[0, 2π].

Lemma 3.1. For each natural numbern, the operatorSn is a bounded linear
operator.

Proof. In order to show the boundedness ofSn, we find a real numbercn such
that‖Sn(f)‖ ≤ cn‖f‖. This is an immediate result.

Corollary 3.2. For each natural numbern, Sn is a continuous linear operator.

We have shown thatSn is a continuous function on[0, 2π] and is a continu-
ous linear operator on the dual space of[0, 2π]. Therefore,Sn is a continuous
maping in both its components, i.e., if we consider

Sn : X × [0, 2π] −→ R,

thenSn is continuous onX × [0, 2π], whereX is the dual space of[0, 2π].
The following few results give us some fixed points forSn.

Lemma 3.3. For any natural numbersn andk where0 ≤ k ≤ 2n we have

(3.1) Sn(Ln,k, x) = Ln,k(x).
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Proof.

Sn(Ln,k, x) =
∑

xj∈En

Ln,k(xj)Ln,j(x)

= Ln,k(xk)Ln,k(x) +
∑

xj 6=xk

Ln,k(xj)Ln,j(x)

= Ln,k(x).

Lemma 3.4. For any natural numbern and for any functionf on [0, 2π] we
haveSn(Sn(f), x) = Sn(f, x).

Proof.

Sn(Sn(f), x) =
∑

xk∈En

Sn(f, xk)Ln,k(x)

=
∑

xk∈En

∑
xj∈En

f(xj)Ln,j(xk)Ln,k(x)

=
∑

xk∈En

∑
xj∈En

f(xk)δk,jLn,k(x)

=
∑

xk∈En

f(xk)Ln,k(x) = Sn(f, x).
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ThusSn as a linear operator on the class of all real valued functions defined
on [0, 2π] has at least2n + 2 fixed points.

Talking about fixed points of a linear operator leads to talking about the
contraction which is considered in the following corollary.

Theorem 3.5. For any functionf on [0, 2π], the operatorSn(f, x) is not a
contraction.

Proof. We firstly recall that the space of all real valued functions on[0, 2π] is a
complete metric space with respect to the metric

(3.2) d(f, g) = sup{f(x)− g(x) : x ∈ [0, 2π]}.

Now, if we assume on the contrary thatSn(f, x) is a contraction, thenSn will
satisfy the requirments of the “Banach fixed point theorem”, and, hence,Sn has
a unique fixed point. The last statement is a contradiction becauseSn has at
least2n + 2 fixed points. Thus, we conclude thatSn is not a contraction.

SinceSn is not a contraction, one may ask about the relation betweend(f, g)
andd(Sn(f), Sn(g)). The following theorem answers this question.

Theorem 3.6. Let f and g be any two functions on[0, 2π]. For each natural
numbern, we have

(3.3) d(Sn(f), Sn(g)) ≤ (2n + 1)d(f, g).

Proof.

d(Sn(f), Sn(g)) = sup
[0,2π]

|Sn(f, x)− Sn(g, x)|
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= sup
[0,2π]

|Sn(f − g)|

= sup
[0,2π]

|
2n∑

k=0

[f(xk − g(xk)] Ln,k(x)|

≤ sup
[0,2π]

2n∑
k=0

|f(xk)− g(xk)||Ln,k(x)|

≤ sup
[0,2π]

2n∑
k=0

|f(xk)− g(xk)|

≤ sup
[0,2π]

2n∑
k=0

|f(x)− g(x)| = (2n + 1)d(f, g).
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4. Special Classes Of Functions
Since the nodes of the interpolation are of the form2kπ

2n , one can think about
the limit; limn→∞

∑2n

k=0

∣∣f (2kπ
2n

)∣∣. In fact this idea introduces the following
definition.

Definition 4.1. LetU [0, 2π] be the class of all real valued-functionsf on [0, 2π]
and for which

lim
n→∞

2n∑
k=0

∣∣∣∣f (2kπ

2n

)∣∣∣∣ < ∞.

Lemma 4.1. The condition in the last lemma is equivalent to the condition∑
xk∈E

|f(xk)| < ∞.

Proof. We show that

lim
n→∞

2n∑
k=0

∣∣∣∣f (2kπ

2n

)∣∣∣∣ =
∑
xk∈E

|f(xk)|

in order to prove the lemma. For, numerate the countable setE as following:
The elements ofE1 arex0, x1 andx2.
The elements ofE2 − E1 arex3, x4.
The elements ofE3 − E2 arex5, ..., x9.
In general, the elements ofEn+1 − En arex2n+1, ..., x2n+1 . Now,∑

xk∈E

|f(xk)| = lim
n→∞

2n∑
k=0

|f(xk)| = lim
n→∞

2n∑
k=0

∣∣∣∣f (2kπ

2n

)∣∣∣∣
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the last equation is valid because of our choice of the numeration.

The reader must realize that any rearrangement of the above sums is not
important because we are dealing with absolute sums.

Example 4.1. Here we give an example of a function that belongs to the class
U [0, 2π], i.e, we show thatU [0, 2π] 6= ∅. For, let f : [0, 2π] −→ R be defined
by

f(x) =

{ 1
k2 , x = xk,

1, x 6= xk.

Here we consider some numeration for the countable setE. It is clear that

lim
n→∞

2n∑
k=0

∣∣∣∣f (2kπ

2n

)∣∣∣∣ =
∑
xk∈E

|f(xk)| =
∞∑

k=1

1

k2
=

π2

6
.

Therefore,f ∈ U [0, 2π]

Example 4.2. In this example we show that the classU [0, 2π] doesn’t contain
any polynomial of the formf(x) = axm. For, consider

an =
2n∑

k=0

∣∣∣∣f (2kπ

2n

)∣∣∣∣ =
2n∑

k=0

∣∣∣∣a(2kπ)m

2nm

∣∣∣∣ = |a|2
mπm

2nm

2n∑
k=0

km.

Although the exact formula for the last sum needs more complicated computa-
tions, we know that this sum will be a polynomial in2n of degreem + 1. Thus,
an = |a| (2π)m

2nm × g(m + 1), whereg(m + 1) is the indicated polynomial. Now it
is clear that,limn→∞ an = ∞. Thereforef 6= U [0, 2π].
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Lemma 4.2. If f is any real valued function on[0, 2π] such that|f | is integrable
in the sense of Reimann andf ∈ U [0, 2π] then

∫ 2π

0
|f(x)|dx = 0.

Proof. For each natural numbern, En =
{

2kπ
2n , 0 ≤ k ≤ 2n

}
is a partition for

[0, 2π]. The subintervals of this partition are[
0,

2π

2n

]
,

[
2π

2n
,
4π

2n

]
, . . . ,

[
2(2n − 1)π

2n
, 2π

]
.

Now consider the Riemann sum off over this partition,

Rn(f) =
2π

2n

2n∑
k=1

|f(x∗k)|,

wherex∗k is any point of thek−th interval of the partition. Since|f | is integrable
(in the sense of Riemann) we can takex∗k to bexk = 2kπ and, hence,

Rn(|f |) =
2π

2n

2n∑
k=1

|f(xk)| =
2π

2n

2n∑
k=1

∣∣∣∣f (2kπ

2n

)∣∣∣∣ .
Now write the integral off as the limit of a Riemann sum to get∫ 2π

0

|f(x)|dx = lim
n→∞

Rn(|f |) = lim
n→∞

2π

2n

2n∑
k=1

∣∣∣∣f (2kπ

2n

)∣∣∣∣ .
But sincef ∈ U [0, 2π] we havelimn→∞

∑2n

k=1

∣∣f (2kπ
2n

)∣∣ is finite. Thus,∫ 2π

0

|f(x)|dx = lim
n→∞

2π

2n
× (finite value) = 0.
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Lemma 4.3. If f ∈ U [0, 2π] and|f | is integrable in the sense of Riemann, then
[0, 2π] does not contain any intervalI such thatf(x) 6= 0 for all x ∈ I.

Proof. Assume that there is an intervalI ⊂ [0, 2π] such thatf(x) 6= 0 for all
x ∈ I, then ∫ 2π

0

|f(x)|dx =

∫
I

|f(x)dx +

∫
[0,2π]−I

|f(x)|dx

≥
∫

I

|f(x)|dx

> 0

but this contradicts the last lemma, and the lemma is proved.

Lemma 4.4. The only continuous function inU [0, 2π] is the zero function.

Proof. Let f be a non-zero continuous function on[0, 2π], then there is at least
onex ∈ [0, 2π] such thatf(x) 6= 0. Sincef is continuous atx, there must be
an intervalI containingx for whichf(x) 6= 0 for all x ∈ I. But m(I) > 0 and
this contradicts the last lemma.
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5. Some Convergence Results
Lemma 5.1. For any natural numbersn andk with 0 ≤ k ≤ 2n, we have

(5.1) Ln,k(x) =
1

2n

∫ 2n−1

−2n−1

exp

(
2πkit

2n

)
e−ixtdt.

Proof.

1

2n

∫ 2n−1

−2n−1

e
2πkit
2n −ixtdt

=
1

2n

∫ 2n−1

−2n−1

ei( 2kπ
2n −x)tdt

=
1

2n

1

i
(

2πk
2n − x

) [ei( 2kπ
2n −x)t

]2n−1

−2n−1

=
1

2n

1

i
(

2πk
2n − x

) [ei( 2kπ
2n −x)2n−1 − e−i( 2kπ

2n −x)2n−1
]

=
1

2n

1

i
(

2πk
2n − x

) [cos[2n−1

(
2kπ

2n
− x

)
]

]
+

1

2n

1

i
(

2πk
2n − x

) [i sin

[
2n−1

(
2kπ

2n
− x

)]
− cos

[
2n−1

(
2kπ

2n
− x

)]]
+

1

2n

1

i
(

2πk
2n − x

) [i sin

[
2n−1

(
2kπ

2n
− x

)]]
=

sin
[
2n−1

(
x− 2kπ

2n

)]
2n−1

(
x− 2kπ

2n

) = Ln,k(x).
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The last proof is valid wheneverx 6= xk; the case wherex = xk is easy to
seen.

Corollary 5.2. The Fourier transform ofLn,k(x) is

(5.2) F (t) =

{ 2π
2n exp(2kiπt

2n ), |t| < 2n−1

0, |t| > 2n−1

Proof. Let F be the Fourier transform off , thenF must satisfy the equation

Ln,k(t) =
1

2π

∫
R

e−ixtF (x)dx.

By the last lemma we find that the function defined in equation (5.2) satisfies
this condition, and since the Fourier transform is unique, the result follows.

Corollary 5.3. For any natural numbersn, k and j where0 ≤ k, j ≤ 2n we
have

(5.3)
∫

R
Ln,k(x)Ln,j(x)dx =

2π

2n
δk,j.

Proof. Let F andG denote the Fourier transforms ofLn,k andLn,j respectively,
then by Parseval’s theorem,∫

R
Ln,k(x)Ln,j(x)dx =

1

2π

∫
R

F (t)G(t)dt.
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Firstly, if k = j, then∫
R

Ln,k(x)Ln,j(x)dx =
1

2π

∫ 2n−1

−2n−1

4π2

22n
dt =

2π

2n
=

2π

2n
δk,k.

Secondly, ifk 6= j then∫
R

Ln,k(x)Ln,j(x)dx =
1

2π

∫ 2n−1

−2n−1

4π2

22n
e2πit( k−j

2n )dt

=
2π

22n

2n

2iπ(k − j)

[
e2πit( k−j

2n )
]2n−1

−2n−1

=
1

2ni(k − j)
2i sin[(k − j)π]

= 0.

Corollary 5.4. Letf : [0, 2π] −→ R. For each natural nubern we define

(5.4) Fn(x) =


2π

2n

2n∑
k=0

f

(
2kπ

2n

)
exp

(
2kπix

2n

)
, |x| < 2n−1,

0, |x| > 2n−1,

then for any natural numbern, we have

(5.5) Sn(f, t) =
1

2π

∫ 2n−1

−2n−1

Fn(x)e−ixtdx.

In fact,Fn is the Fourier transform ofSn.
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Proof.

1

2π

∫ 2n−1

−2n−1

Fn(x)e−itxdx =
1

2π

∫ 2n−1

−2n−1

2π

2n

2n∑
k=0

f

(
2kπ

2n

)
e

2kπix
2n e−itxdx

=
2n∑

k=0

f

(
2kπ

2n

)∫ 2n−1

−2n−1

e
2kπix

2n e−itxdx

=
2n∑

k=0

f

(
2kπ

2n

)
Ln,k(t)

= Sn(f, t).

Corollary 5.5. Let f be a real-valued function such that bothf and |f | are
integrable in the sense of Riemann, and such thatf = 0 outside[0, 2π], also let
F be the Fourier transform off , then

(5.6) lim
n→∞

Fn(x) = F (x),

whereFn is defined in Corollary5.4. MoreoverFn −→ F uniformly.

Proof. For fix x ∈ [−2n−1, 2n−1], let

(5.7) g(t) = f(t) exp(itx), t ∈ [0, 2π]

and consider then-th Reimann sum ofg over [0, 2π];

(5.8) Rn(g) =
2π

2n

2n∑
k=1

f

(
2kπ

2n

)
exp

(
2kπix

2n

)
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therefore,

lim
n→∞

Rn(g) = lim
n→∞

2π

2n

2n∑
k=1

f

(
2kπ

2n

)
exp

(
2kπix

2n

)
= lim

n→∞
Fn(x),

which implies ∫ 2π

0

f(t) exp(itx)dt = lim
n→∞

Fn(x)

thus,
F (x) = lim

n→∞
Fn(x)

The uniformly convergence fact follows because

(5.9) lim
n→∞

2n∑
k=0

∣∣∣∣2π2n
f

(
2kπ

2n

)
exp

(
2kπix

2n

)∣∣∣∣ ≤ lim
n→∞

2n∑
k=0

∣∣∣∣2π2n
f

(
2kπ

2n

)∣∣∣∣
and the last series converges to a real number because|f | is integrable. By the
M−testwe have the result. And the corollary is proved.

Corollary 5.6. For any natural numbersn andk with 0 ≤ k ≤ 2n, we have

(5.10) f

(
2kπ

2n

)
=

1

2π

∫ 2n−1

−2n−1

Fn(x) exp

(
−2kπix

2n

)
dx,

where{Fn} as defined in corollary5.4.
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Proof. Consider the Fourier series representation forFn in (−2n−1, 2n−1);

Fn(x) =
∞∑

k=−∞

ck exp

(
2kπix

2n

)
, |x| < 2n−1.

Compare this with the definition ofFn(x) to getck = 0 for k < 0 andk > 2n

andck = 2π
2n f

(
2kπ
2n

)
for 0 ≤ k ≤ 2n. Also we know that

ck =
1

2n

∫ 2n−1

−2n−1

F (x) exp

(
−2kπix

2n

)
dx,

and hence

f

(
2kπ

2n

)
=

1

2π

∫ 2n−1

−2n−1

F (x) exp

(
−2kπix

2n

)
dx.

The last corollary gives rise to the following new class of functions.

Definition 5.1. LetJ [0, 2π] be the class of all real-valued functions,f on [0, 2π]
and0 outside this interval) for which there is a functionFn satisfying the fol-
lowing conditions:

• Fn(x) = 0 for all x outside(−2n−1, 2n−1) for some natural numbern

• f(t) = 1
2π

∫ 2n−1

−2n−1 Fn(x)e−ixt for all t ∈ [0, 2π].
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Although the classJ [0, 2π] seems to be very complicated, it has many nice
properties. In the following sequence of theorems we give the most important
properties for this class.

Theorem 5.7.For any functionf ∈ J [0, 2π] we have the series representation

f(x) = Sn(f, x),

wheren is as in the definition ofJ [0, 2π] and

(5.11) Sn(f, x) =
2n∑

k=0

f

(
2kπ

2n

)
Ln,k(x).

Proof. Sincef ∈ J [0, 2π], there existsn0 such that

f(t) =
1

2π

∫ 2n−1

−2n−1

e−ixtFn(x)dx

for all n ≥ n0. The functionF in the last equation can be represented on the
interval(−2n−1, 2n−1) by its Fourier series representation, i.e.

Fn(x) =
∞∑

k=−∞

ck exp

(
2kπix

2n

)
,−2n−1 < x < 2n−1

with

ck =
1

2n

∫ 2n−1

−2n−1

Fn(x) exp

(
−2kπix

2n

)
dx.
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By our choice ofFn we have,ck = 2π
2n f

(
2kπ
2n

)
.

Substitute this value in the Fourier series ofF to get

Fn(x) =


2π

2n

∞∑
k=−∞

f

(
2kπ

2n

)
exp

(
2kiπx

2n

)
, |x| < 2n−1,

0, |x| > 2n−1.

Now,

f(t) =
1

2π

∫ 2n−1

−2n−1

e−ixtF (x)dx

=
1

2π

∫ 2n−1

−2n−1

2π

2n

∞∑
k=−∞

f

(
2kπ

2n

)
exp

(
2kiπx

2n

)
e−ixtdx

=
1

2n

∞∑
k=−∞

f

(
2kπ

2n

)∫ 2n−1

−2n−1

exp

(
2kiπx

2n
− ixt

)
dx

=
∞∑

k=−∞

f

(
2kπ

2n

)
Ln,k(t) =

2n∑
k=0

f

(
2kπ

2n

)
Ln,k(t) = Sn(f, t).

Theorem 5.8. If f ∈ J [0, 2π] then forn as in Definition5.1,∫ 2π

0

|f(x)|2dx =
2π

2n

2n∑
k=0

∣∣∣∣f (2kπ

2n

)∣∣∣∣2 .
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Proof. Sincef ∈ J [0, 2π] we have

f(x) =
2n∑

k=0

f

(
2kπ

2n

)
Ln,k(x)

for n as in Definition5.1. Now,∫
R
|f(x)|2dx

=

∫
R

[
2n∑

k=0

f

(
2kπ

2n

)
Ln,k(x)

]2

dx

=

∫
R

[
2n∑

k=0

∣∣∣∣f (2kπ

2n

)∣∣∣∣2 L2
n,k(x) +

∑
k 6=j

f

(
2kπ

2n

)
f

(
2jπ

2n

)
Ln,k(x)Ln,j(x)

]
dx

=
2n∑

k=0

∣∣∣∣f (2kπ

2n

)∣∣∣∣2 ∫
R

L2
n,k(x)dx +

∑
k 6=j

(
2kπ

2n

)
f

(
2jπ

2n

)∫
R

Ln,k(x)Ln,j(x)dx

=
2π

2n

2n∑
k=0

∣∣∣∣f (2kπ

2n

)∣∣∣∣2 .

The following theorem tells us some type of convergence of our interpola-
tion.
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Theorem 5.9. Let f : [0, 2π] −→ R such thatf 2 is integrable in the sense of
Riemann, then

(5.12)
∫ 2π

0

|f(x)|2dx = lim
n→∞

∫ ∞

−∞
S2

n(f, x)dx

Proof. Firstly, we notice that

S2
n(f, x) =

(
2n∑

k=0

f

(
2kπ

2n

)
Ln,k(x)

)2

=
2n∑

k=0

∣∣∣∣f (2kπ

2n

)∣∣∣∣2 L2
n,k(x) +

∑
k 6=j

f

(
2kπ

2n

)
f

(
2jπ

2n

)
Ln,k(x)Ln,j(x).

Now integrate both sides of the last equation onR, to get∫
R

S2
n(f, x)dx

=

∫
R

(
2n∑

k=0

∣∣∣∣f (2kπ

2n

)∣∣∣∣2 L2
n,k(x) +

∑
k 6=j

f

(
2kπ

2n

)
f

(
2jπ

2n

)
Ln,k(x)Ln,j(x)

)
dx

=
2n∑

k=0

∣∣∣∣f (2kπ

2n

)∣∣∣∣2 ∫
R

L2
n,kdx +

∑
k 6=j

f

(
2kπ

2n

)
f

(
2jπ

2n

)∫
R

Ln,k(x)Ln,j(x)dx

=
2π

2n

2n∑
k=0

∣∣∣∣f (2kπ

2n

)∣∣∣∣2 .
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The validity of the last equation arises from corollary5.3. Now take the limit of
the last equation asn −→∞ to get

lim
n→∞

∫
R

S2
n(f, x)dx = lim

n→∞

2π

2n

2n∑
k=0

∣∣∣∣f (2kπ

2n

)∣∣∣∣2
but

lim
n→∞

2π

2n

2n∑
k=0

∣∣∣∣f (2kπ

2n

)∣∣∣∣2 =

∫ 2π

0

|f(x)|2dx

because it is the limit of the Riemann sum forf 2 on [0, 2π], this completes the
proof of the theorem.

Lemma 5.10.Letf be any real-valued function on[0, 2π], then for any natural
numbersn andk with 0 ≤ k ≤ 2n, we have

(5.13)
∫

R
Sn(f, x)Ln,k(x)dx =

2π

2n
f

(
2kπ

2n

)
.

Proof. We recall that

Sn(f, x) =
2n∑

j=0

f

(
2jπ

2n

)
Ln,j(x),

multiply both sides byLn,k(x) and integrate onR to get:∫
R

Sn(f, x)Ln,k(x)dx

=

∫
R

2n∑
j=0

f

(
2jπ

2n

)
Ln,j(x)Ln,k(x)dx
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= f

(
2kπ

2n

)∫
R

L2
n,k(x)dx +

∑
j 6=k

f

(
2jπ

2n

)∫
R

Ln,k(x)Ln,j(x)dx

= f

(
2kπ

2n

)
2π

2n
+ 0

=
2π

2n
f

(
2kπ

2n

)
.

Theorem 5.11.Let f be a real-valued function such thatf and |f | are inte-
grable in the sense of Riemann on[0, 2π], then

(5.14) lim
n→∞

Sn(f, x) = f(x) a.e.

on [0, 2π].

Proof. We saw in Corollary5.4 thatFn is the Fourier transform ofSn, and that
in Corollary5.5,

lim
n→∞

Fn = F

uniformly, whereF is the Fourier transform off .
Therefore,

lim
n→∞

F(Sn) = F(f)

but by our conditions onf and,F is a continuous linear operator, we have,

F( lim
n→∞

Sn) = F(f)
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So, we conclude that
lim

n→∞
Sn = f a.e.

As a notation, LetPn(x) denote theLagrangeinterpolating function ofSn(f, x)
with the nodes ofEn, and letHn(x) denote theLagrangeinterpolating function
of f(x) with the nodes ofEn.

Lemma 5.12. Let f be any real-valued function on[0, 2π], then Pn(x) =
Hn(x).

Proof. By the definition of theLagrangeinterpolation we have,

Pn(x) =
∑

xk∈En

Sn(f, xk)Jn,k(x),

whereJn,k(x) =
∏

j 6=k
x−xj

xk−xj
andj ranges over the integers between0 and2n,

included. But sinceSn(f, xk) = f(xk) for all xk ∈ En, we would have

Pn(x) =
∑
j 6=k

f(xk)Jn,k(x)

= Hn(x).

Theorem 5.13.Let f ∈ C2n+1[0, 2π] for any natural numbern then for each
x ∈ [0, 2π] we have

(f(x)−Sn(f, x)) =
1

(2n + 1)!

∏
xk∈En

(x−xk)
{
S(2n+1)

n (ζ(x)) + f (2n+1)(ξ(x))
}

,
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whereζ(x) andξ(x) are two numbers in the interval(0, 2π) and depend onx
only.

Proof. Let Hn andPn as in the last lemma, then

(f(x)− Sn(f, x)) = (f(x)−Hn(x) + Hn(x)− Pn(x) + Pn(x)− Sn(f, x))

= (f(x)−Hn(x)) + (Hn(x)− Pn(x)) + (Pn(x)− Sn(f, x))

=
1

(2n + 1)!

∏
xk∈En

(x− xk)
(
f (2n+1)(ξ(x))

)
+

1

(2n + 1)!

∏
xk∈En

(x− xk)
(
S(2n+1)

n (ζ(x))
)

=
1

(2n + 1)!

∏
xk∈En

(x− xk)
{
S(2n+1)

n (ζ(x)) + f (2n+1)(ξ(x))
}

which completes the proof.
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