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ABSTRACT. In this paper we give conditions which assure the coercive solvability of an abstract
differential equation of elliptic type with an operator in the boundary conditions, and the com-
pleteness of generalized eigenfunctions. We apply the abstract result to show that a non regular
boundary value problem for a second order partial differential equation of an elliptic type in a
cylindrical domain is coercive solvable.
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1. I NTRODUCTION

Many works are devoted to the study of hyperbolic or parabolic abstract equations [16, 18, 9].
In [16, 20] regular boundary value problems for elliptic abstract equations are considered. A
few works are concerned with non regular problems.

In this paper we establish conditions guaranteeing that non local boundary value problem for
elliptic abstract differential equation of the second order in an interval is coercive solvable in
the Hilbert spaceL2 (0, 1; H). A coercive estimates, when the problem is regular, was proved
in [1, 3]. The considered problem is not regular, since the boundary conditions are non local,
similar problems have been considered in [4, 5, 7, 22]. Moreover, we prove the completeness
of root functions. The completeness of root functions for regular boundary value problems are
proved in [1, 6, 10, 14] and in the book [22].

The obtained results are then applied to study a non local boundary value problem for the
Laplace equation in a cylinder.
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2. NOTATIONS AND DEFINITIONS

Let H be a Hilbert space,A a linear closed operator inH andD(A) its domain. We denote
by L(H) the space of bounded linear operators acting onH, with the usual operator norm, and
by Lp(0, 1; H) the space of strongly measurable functionsx → u(x) : [0, 1] → H, whose
pth−power are summable, with the norm

‖u‖p
0,p = ‖u‖p

Lp(0,1;H) =

∫ 1

0

‖u(x)‖p
H dx < ∞, p ∈ [1,∞] .

Now, introduce theLp(0, 1; H) vector-valued Sobolev spacesW 2
p (0, 1; H1, H), whereH1, H

are Hilbert spaces such thatH1 ⊂ H with continuous embedding

W 2
p (0, 1; H1, H) = {u : u′′ ∈ Lp(0, 1; H) andu ∈ Lp(0, 1; H1)}

and
‖u‖W 2

p (0,1;H1,H) = ‖u‖Lp(0,1;H1) + ‖u′′‖Lp(0,1;H) < ∞.

Let E0, E1 be two Banach spaces, which are continuously injected in the Banach spaceE,
the pair{E0, E1} is said to be an interpolation couple. Consider the Banach space

E0 + E1 = {u : u ∈ E, ∃uj ∈ Ej, j = 0, 1, with u = u0 + u1} ,

‖u‖E0+E1
= inf

u=u0+u1;uj∈Ej

(
‖u0‖E0

+ ‖u1‖E1

)
,

and the functional
K(t, u) = inf

u=u0+u1;uj∈Ej

(
‖u0‖E0

+ t ‖u1‖E1

)
.

The interpolation space for the couple{E0, E1} is defined, by theK-method, as follows

(E0, E1)θ,p =

{
u : u ∈ E0 + E1, ‖u‖θ,p =

(∫ ∞

0

t−1−θpKp(t, u)dt

) 1
p

< ∞

}
,

0 < θ < 1, 1 ≤ p ≤ ∞.

(E0, E1)θ,∞ =

{
u : u ∈ E0 + E1, ‖u‖θ,∞ = sup

t∈(0,∞)

t−θK(t, u)dt < ∞

}
,

0 < θ < 1. Let A be a closed operator inH. H(A) is the domain ofA provided with the
Hilbertian graph norm

‖u‖2
H(A) = ‖Au‖2 + ‖u‖2 , u ∈ D(A).

If −A is the infinitesimal generator of the semigroupexp(−xA) which is analytic forx > 0,
decreasing at infinity and strongly continuous forx ≥ 0, then the following holds [19, p. 96]:

(H, H(An))θ,p =
{

u : u ∈ H, ‖u‖p
θ,p < ∞

}
,

where

‖u‖p
θ,p =

∫ ∞

0

t−n(1−θ)p−1 ‖An exp(−tA)u‖p dt + ‖u‖p ,

0 < θ < 1, n ∈ N, 1 ≤ p < ∞ and‖u‖θ,p its norm.
Let H andH1 be Hilbert spaces such that the imbeddingH1 ⊂ H is continuous andH1 = H.

Then(H, H1)θ,2 , is a Hilbert space, we denote it by(H, H1)θ . It is known that(H, H1)θ =

H(Sθ), whereS is a self-adjoint positive-definite operator inH [17].

Let Ff(σ) = (2π)−
1
2

+∞∫
−∞

exp(iσx)f(x)dx be the Fourier transform of the functionf.
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Lemma 2.1. [22, p. 300]LetA be a self adjoint and positive definite operator inH. Then

(1) ∃ω > 0,
∥∥∥Aα exp

[
−x (A + λI)

1
2

]∥∥∥ ≤ C exp
[
−ωx |λ|

1
2

]
for all α ∈ R, x ≥ x0 > 0,

|arg λ| ≤ ϕ < π, whereC does not depend onx andλ.

(2)
∫ 1

0

∥∥∥(A + λI)α exp
[
−x (A + λI)

1
2

]
u
∥∥∥ ≤ C

(∥∥∥Aα− 1
4 u
∥∥∥2

+ |λ|2α− 1
2 ‖u‖2

)
for all α ≥

1
4
, |arg λ| ≤ ϕ < π, andu ∈ D

(
Aα− 1

4

)
, whereC does not depend onu andλ.

(3)
∥∥∥Aα (A + λI)−β

∥∥∥ ≤ C (1 + |λ|)α−β , for all 0 ≤ α ≤ β, |arg λ| ≤ ϕ < π, whereC

does not depend onλ.

3. SOLVABILITY OF THE PRINCIPAL PROBLEM

3.1. Homogeneous Problem.Consider in the Hilbert spaceH the boundary value problem for
the second order abstract differential equation

(3.1) L(D)u = −u′′(x) + Au(x) + A(x)u(x) = f(x) x ∈ (0, 1),

(3.2)
L1u = δu(0) = f1,

L2u = u′(1) + Bu(0) = f2,

A, A(x), B are linear operators andδ is a complex number.
Looking to the principal part of the problem(3.1), (3.2) with a parameter

(3.3) L(D)u = −u′′(x) + (A + λI)u(x) = 0 x ∈ (0, 1),

(3.4)
L1u = δu(0) = f1,

L2u = u′(1) + Bu(0) = f2.

Theorem 3.1.Assume that the following conditions are satisfied

(1) A is a self-adjoint and positive-definite operator inH.
(2) δ 6= 0.
(3) B is continuous fromH(A1/2) in H(A) and fromH in H(A1/2).

Then the problem(3.3), (3.4) for f1 ∈ (H, H(A)) 1
4
, f2 ∈ (H, H(A)) 3

4

and forλ such that

|arg λ| ≤ φ < π, |λ| −→ ∞, has a unique solution in the spaceW 2
2 (0, 1; H(A), H), and for

the solution of the problem(3.3), (3.4) the following coercive estimate holds

(3.5) ‖u′′‖L2(0,1;H) + ‖Au‖L2(0,1;H) + |λ| ‖u‖L2(0,1;H)

≤ C
(∥∥∥A 3

4 f1

∥∥∥
H

+ |λ|
3
4 ‖f1‖H +

∥∥∥A 1
4 f2

∥∥∥
H

+ |λ|
1
4 ‖f2‖H

)
,

whereC does not depend onλ.

Proof. The solutionu, belonging toW 2
2 (0, 1; H(A), H), of the equation(3.3) is in the form

(3.6) u(x) = e−xA
1
2
λ g1 + e−(1−x)A

1
2
λ g2

with Aλ = A + λI andg1, g2 ∈ (H, H(A)) 3
4
.

Indeed, letu ∈ W 2
2 (0, 1; H(A), H) be a solution of(3.3). Then we have(

D − A
1
2
λ

)(
D + A

1
2
λ

)
u(x) = 0.
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Note by

v(x) =
(
D + A

1
2
λ

)
u(x).

From [22, p. 168]v ∈ W 1
2 (0, 1; H(A

1
2 ), H) and

(3.7)
(
D − A

1
2
λ

)
v(x) = 0.

So

(3.8) v(x) = e−(1−x)A
1
2
λ v(1),

where, according to [19, p. 44],

v(1) ∈
(
H(A

1
2 ), H

)
1
2

=
(
H, H(A

1
2 )
)

1
2

.

From(3.7) , (3.8) we have

u(x) = e−xA
1
2
λ u(0) +

∫ x

0

e−(x−y)A
1
2
λ e−(1−y)A

1
2
λ v(1)dy

= e−xA
1
2
λ u(0) +

1

2
A
− 1

2
λ

{
e−(1−x)A

1
2
λ − e−xA

1
2
λ e−A

1
2
λ

}
v(1),

whereu(0) ∈ (H(A), H) 1
2

[19, p. 44]. Now,

A
1
2 : (H, H(A)) 3

4
→ (H, H(A)) 1

4
=
(
H, H(A

1
2 )
)

1
2

is an isomorphism. Consequently the last inequality is in the form(3.6).
Let us show the reverse, i.e. the functionu in the form(3.6) with g1 andg2 in (H, H(A)) 3

4
,

belongs toW 2
2 (0, 1; H(A), H). From interpolation spaces properties see [15], [19, p. 96] and

the expression(3.6) of the functionu we have

‖u‖W 2
2 (0,1;H(A),H)

≤
(∥∥AA−1

λ

∥∥+ 1
)

×


(∫ 1

0

∥∥∥∥Aλe
−xA

1
2
λ g1

∥∥∥∥2

dx

) 1
2

+

(∫ 1

0

∥∥∥∥Aλe
−(1−x)A

1
2
λ g2

∥∥∥∥2

dx

) 1
2


≤ C

(
‖g1‖(H,H(Aλ)) 3

4

+ ‖g2‖(H,H(Aλ)) 3
4

)
≤ C(λ)

(
‖g1‖(H,H(A)) 3

4

+ ‖g2‖(H,H(A)) 3
4

)
.(3.9)

The functionu satisfies the boundary conditions(3.4) if
δg1 + δe−A

1
2
λ g2 = f1,

−A
1
2
λe−A

1
2
λ g1 + Bg1 + A

1
2
λg2 + Be−A

1
2
λ g2 = f2,

which we can write in matrix form as:

(3.10)


 δI 0

B A
1
2
λ

+

 0 δe−A
1
2
λ

−A
1
2
λe−A

1
2
λ Be−A

1
2
λ


( g1

g2

)
=

(
f1

f2

)
.
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The first matrix of operators is invertible, its inverse is

(3.11)

 1
δ
I 0

−1
δ
A
− 1

2
λ B A

− 1
2

λ

 .

Multiplying the two members of(3.10) by the matrix inverse(3.11), we get the following
system: 

g1 + e−A
1
2
λ g2 = 1

δ
f1

e−A
1
2
λ g1 + g2 = −1

δ
A
− 1

2
λ Bf1 + A

− 1
2

λ f2

we can solve it by Cramer’s method, because the coefficients of the linear system are bounded

linear operators. The determinant is given byI+e−2A
1
2
λ which is invertible as a little perturbation

of unity, in fact

∥∥∥∥e−2A
1
2
λ

∥∥∥∥ ≤ q < 1.

Hence the solution is written as

(3.12)

 g1 = 1
δ
f1 + R11(λ)f1 + R12(λ)f2,

g2 = −1
δ
(I + T (λ)) A

− 1
2

λ Bf1 + (I + T (λ)) A
− 1

2
λ f2 + R21(λ)f1,

whereRij(λ) are given by
R11(λ) = −1

δ
(I + T (λ)) e−2A

1
2
λ + 1

δ
(I + T (λ)) A

− 1
2

λ e−A
1
2
λ B,

R12(λ) = − (I + T (λ)) A
− 1

2
λ e−A

1
2
λ ,

R21(λ) = 1
δ

(I + T (λ)) e−A
1
2
λ ,

and satisfy‖Rij(λ)‖ → 0 when |λ| → ∞. (I + T (λ)) is the inverse ofI + e−2A
1
2
λ obtained

from the corresponding Neumann series.
Finally the solutionu is given by

u(x) = e−xA
1
2
λ

(
1

δ
f1 + R11(λ)f1 + R12(λ)f2

)
+ e−(1−x)A

1
2
λ

(
−1

δ
(I + T (λ)) A

− 1
2

λ Bf1 + (I + T (λ)) A
− 1

2
λ f2 + R21(λ)f1

)
.

From the assumptions of Theorem 3.1 and the properties of interpolation spaces, the following
applications are continuous,

(I + T (λ)) A
− 1

2
λ B : (H, H(A)) 3

4
7−→ (H, H(A)) 3

4

,

(I + T (λ)) A
− 1

2
λ : (H, H(A)) 1

4
7−→ (H, H(A)) 3

4

.

Then we have the estimates∥∥∥(I + T (λ)) A
− 1

2
λ Bf1

∥∥∥
(H,H(A)) 3

4

≤ C ‖f1‖(H,H(A)) 3
4

and ∥∥∥(I + T (λ)) A
− 1

2
λ f2

∥∥∥
(H,H(A)) 3

4

≤ C ‖f2‖(H,H(A)) 1
4

.
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Setu(x) = u1(x) + u2(x) + u3(x), where

u1(x) =
1

δ
e−xA

1
2
λ f1,

u2(x) = −1

δ
e−(1−x)A

1
2
λ

(
(I + T (λ)) A

− 1
2

λ Bf1

)
,

u2(x) = e−(1−x)A
1
2
λ

(
(I + T (λ)) A

− 1
2

λ f2

)
.

Then

‖u1‖W 2
2 (0,1;H(A),H) =

1

|δ|

∥∥∥∥Aλe
−xA

1
2
λ f1

∥∥∥∥
L2(0,1;H)

+
1

|δ|

∥∥∥∥Ae−xA
1
2
λ f1

∥∥∥∥
L2(0,1;H)

.

However, from Lemma 2.1, we have∥∥∥∥Aλe
−xA

1
2
λ f1

∥∥∥∥
L2(0,1;H)

≤ C
(∥∥∥A 3

4 f1

∥∥∥
H

+ |λ|
3
4 ‖f1‖H

)
.

Similarly we obtain bounds foru2 andu3. �

3.2. Non Homogeneous Problem.Consider, now, the principal problem for the non homoge-
neous equation with a parameter

(3.13) L0(λ, D)u = −u′′(x) + Aλu(x) = f(x) x ∈ (0, 1),

(3.14)
L10u = δu(0) = f1,

L20u = u′(1) + Bu(0) = f2.

We have the result.

Theorem 3.2.Suppose the following conditions satisfied

(1) A is a self-adjoint and positive-definite operator inH.
(2) B is continuous fromH(A1/2) in H(A) and fromH in H(A1/2).
(3) δ 6= 0.

Then the problem(3.13), (3.14), for f, f1 andf2 in L2(0, 1; H), (H, H(A)) 3
4

and(H, H(A)) 1
4

respectively, and forλ such that|arg λ| ≤ φ < π, |λ| −→ ∞, has a unique solution belonging
to the spaceW 2

p (0, 1; H(A), H), for p ∈ (1,∞), and the following coercive estimate holds

(3.15) ‖u′′‖L2(0,1;H) + ‖Au‖L2(0,1;H) + |λ| ‖u‖L2(0,1;H)

≤ C
(
‖f‖L2(0,1;H) +

∥∥∥A 3
4 f1

∥∥∥
H

+ |λ|
3
4 ‖f1‖H +

∥∥∥A 1
4 f2

∥∥∥
H

+ |λ|
1
4 ‖f2‖H

)
,

whereC does not depend onλ.

Proof. In Theorem 3.1, we proved the uniqueness. Let us now show that the solution of the
problem(3.13), (3.14) belonging toW 2

p (0, 1; H(A), H) can be written in the formu(x) =
u1(x) + u2(x), u1(x) is the restriction to[0, 1] of ũ1(x), where ũ1(x) is the solution of the
equation

(3.16) L0(λ, D)ũ1(x) = f̃(x), x ∈ R,

with f̃(x) = f(x) if x ∈ [0, 1] andf̃(x) = 0 otherwise.u2(x) is the solution of the problem

(3.17) L0(λ, D)u2 = 0, L10u2 = f1 − L10u1, L20u2 = f2 − L20u1.
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The solution of the equation(3.16) is given by the formula

(3.18) û1(x) =
1√
2π

∫
R

eiµxL0(λ, iµ)−1̂̃f(µ)dµ

wherễf is the Fourier transform of the functioñf(x), L0(λ, s) is the characteristic pencil of the
equation(3.16) i.e. L0(λ, s) = −s2I + A + λI.
From(3.18) and Plancherel equality it follows that:

|λ| ‖u1‖L2(0,1;H) + ‖u′′1‖L2(0,1;H) + ‖Au1‖L2(0,1;H)

≤ |λ| ‖û1‖L2(R;H(A)) + ‖û′′1‖L2(R;H) + ‖Aû1‖L2(R;H)

≤ |λ|
∥∥∥F−1L0(λ, iµ)−1F f̃(µ)

∥∥∥
L2(R;H)

+
∥∥∥F−1(iµ)2L0(λ, iµ)−1F f̃(µ)

∥∥∥
L2(R;H)

+
∥∥∥F−1AL0(λ, iµ)−1F f̃(µ)

∥∥∥
L2(R;H)

,(3.19)

whereF is the Fourier transform.
From condition(1) of Theorem 3.2, for|arg λ| ≤ ϕ < π and|λ| sufficiently large, we have

(3.20)
∥∥L0(λ, iµ)−1

∥∥ =
∥∥(A + λI + µ2I)−1

∥∥ ≤ C(1 +
∣∣λ + µ2

∣∣)−1 ≤ C |µ|−2

(3.21)
∥∥AL0(λ, iµ)−1

∥∥ =
∥∥A(A + λI + µ2I)−1

∥∥ ≤ C

(3.22) |λ|
∥∥L0(λ, iµ)−1

∥∥ = |λ|
∥∥(A + λI + µ2I)−1

∥∥ ≤ C |λ| (1 +
∣∣λ + µ2

∣∣)−1 ≤ C.

Then it follows that

|λ| ‖u1‖L2(0,1;H) + ‖u′′1‖L2(0,1;H) + ‖Au1‖L2(0,1;H) ≤ C ‖f‖L2(0,1;H) .

Sinceu1 ∈ W 2
2 (0, 1; H(A), H) and from [19, p. 44] we have

u′1(0) ∈ (H(A), H) 3
4

= (H, H(A)) 1
4
,

u1(0) ∈ (H, H(A)) 3
4
.

ThereforeL10u1 ∈ (H, H(A)) 3
4

andL20u1 ∈ (H, H(A)) 1
4
.

From Theorem 3.1, the problem(3.17) , when |arg λ| ≤ φ < π, |λ| → ∞, has a solution
u2(x) which is inW 2

2 (0, 1; H(A), H). Now, we have to find bounds for the following terms∥∥∥A 3
4 L10u1

∥∥∥
H

=
∥∥∥A 3

4 u1 (0)
∥∥∥

H
,

|λ|
3
4 ‖L10u1‖H = |λ|

3
4 ‖u1 (0)‖H ,∥∥∥A 1

4 L20u1

∥∥∥
H
≤
∥∥∥A 1

4 u′1 (1)
∥∥∥

H
+
∥∥∥A 1

4 Bu1 (0)
∥∥∥

H

and
|λ|

1
4 ‖L20u1‖H ≤ |λ|

1
4 ‖u′1 (1)‖H + |λ|

1
4 ‖Bu1 (0)‖H .

For example, we have

|λ|
3
4 ‖u1 (0)‖H ≤ C

(
‖u1‖W 2

2 (0,1;H(A),H) + |λ| ‖u1‖L2(0,1;H)

)
≤ C ‖f‖L2(0,1;H) .

Similarly, we get the other bounds and by the same way the coerciveness estimate. �
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4. SOLVABILITY OF THE GENERAL PROBLEM

Consider, now, the general problem with a parameter

(4.1) L0(λ, D)u = λu(x)− u′′(x) + Au(x) + A(x)u(x) = f(x) x ∈ (0, 1),

(4.2)
L10u = δu(0) = f1,

L20u = u′(1) + Bu(0) = f2.

We have the result.

Theorem 4.1.Suppose the following conditions satisfied

(1) A is a self-adjoint and positive-definite operator inH.
(2) The imbeddingH(A) ⊂ H is compact.
(3) B is continuous fromH(A1/2) in H(A) and fromH in H(A1/2).
(4) δ 6= 0.
(5) ‖A(.)u‖L2(0,1;H) ≤ ε ‖Au‖L2(0,1;H) + C(ε) ‖u‖L2(0,1;H) .

Then the problem(4.1), (4.2), for f, f1 andf2 in L2(0, 1; H), (H, H(A)) 3
4

and(H, H(A)) 1
4

respectively, and forλ such that|arg λ| ≤ φ < π, |λ| −→ ∞, has a unique solution belonging
to the spaceW 2

p (0, 1; H(A), H), for p ∈ (1,∞), and the following coercive estimate holds

(4.3) ‖u′′‖L2(0,1;H) + ‖Au‖L2(0,1;H) + |λ| ‖u‖L2(0,1;H)

≤ C
(
‖f‖L2(0,1;H) +

∥∥∥A 3
4 f1

∥∥∥
H

+ |λ|
3
4 ‖f1‖H +

∥∥∥A 1
4 f2

∥∥∥
H

+ |λ|
1
4 ‖f2‖H

)
.

whereC does not depend onu, f, f1, f2, andλ.

Proof. Let u be a solution of(4.1), (4.2) belonging toW 2
2 (0, 1; H(A), H). Thenu is a solution

of the problem

(P0)


L0(λ, D)u = f(x)− A(x)u(x) x ∈ (0, 1),

L10u = δu(0) = f1

L20u = u′(1) + Bu(0) = f2.

From Theorem 3.2, we get the estimate

‖u′′‖L2(0,1;H) + ‖Au‖L2(0,1;H) + |λ| ‖u‖L2(0,1;H)

≤ C
(
‖f − A(.)u‖L2(0,1;H) +

∥∥∥A 3
4 f1

∥∥∥
H

+ |λ|
3
4 ‖f1‖H +

∥∥∥A 1
4 f2

∥∥∥
H

+ |λ|
1
4 ‖f2‖H

)
.

Using condition (5) of Theorem 3.2, we get

‖u′′‖L2(0,1;H) + (1− Cε) ‖Au‖L2(0,1;H) + (|λ| − C.C(ε)) ‖u‖L2(0,1;H)

≤ C
(
‖f‖L2(0,1;H) +

∥∥∥A 3
4 f1

∥∥∥
H

+ |λ|
3
4 ‖f1‖H +

∥∥∥A 1
4 f2

∥∥∥
H

+ |λ|
1
4 ‖f2‖H

)
.

Choosingε such thatC · ε < 1, the coerciveness estimates follows easily. �

J. Inequal. Pure and Appl. Math., 4(2) Art. 43, 2003 http://jipam.vu.edu.au/

http://jipam.vu.edu.au/


COERCIVENESSINEQUALITY 9

5. COMPLETENESS OF ROOT FUNCTIONS

Let us define the operatorL by
Lu ≡ −u′′ + Au,

D (L) = W 2
2 (0, 1; H(A), H, Lku = 0, k = 0, 1) .

Lemma 5.1. Suppose thatsj (I, H(A), H) ' Cj−q then

sj

(
I, W 2

2 (0, 1; H(A), H) , L2 (0, 1; H)
)
' Cj

− 1
1
2+q .

I (resp. I) is the imbedding ofH(A) in H (resp. ofW 2
2 (0, 1; H(A), H) in L2 (0, 1; H)) and

sj (I, H(A), H) are thes-numbers of the operatorI fromH(A) to H.

Proof. Let S1 be the operator defined inL2(0, 1) such thatS1 = S∗1 ≥ γ2I, D(S1) = H(S1) =
W 2

2 (0, 1). From [17], we know that ifH1 ⊂ H andH1 is dense inH then there exists an
operatorS1 such thatS1 = S∗1 andD(S1) = H. Otherwise, letS2 be the operator defined by
S2 = S∗2 ≥ γ2I, D(S2) = H(A). If we define the operatorS on L2(0, 1) ⊗ H = L2(0, 1; H)
by S = S1⊗ I2 + I1⊗ S2, whereI1 (resp.I2) is the identity operator inL2(0, 1) (resp.H). We
have

sj

(
S−1

1 , L2(0, 1), L2(0, 1)
)
' sj (I, H(S1), L2(0, 1)) ' Cj−2,

sj

(
S−1

2 , H, H
)
' sj (I, H(A), H) ' Cj−q.

Hence, from [11], we obtainsj (S−1, L2(0, 1; H), L2(0, 1; H)) ' Cj
− 1

1
2+q . �

Theorem 5.2.Let the conditions of Theorem 3.2 hold along withA−1 ∈ σq (H) , q > 0. Then,
the system of root functions of the operatorL is complete inL2(0, 1; H).

Proof. From Theorem 4.1, we have‖R(λ,L)‖ ≤ C |λ|−1 for |arg λ| ≤ ϕ < π and |λ| suffi-
ciently large. Using Lemma 5.1, we haveR(λ,L) ∈ σp (L2(0, 1; H)) for p > 1

2
+ 1

q
, so, for the

operatorL, all the conditions of [8, Theorem 126, 2.3, p. 50], are fulfilled. This achieves the
proof of the theorem. �

Theorem 5.3.Suppose that the conditions of Theorem 5.2 are satisfied as well as the condition
D(A(x)) ⊂ D(A) and ∀ε > 0, ‖A(·)u‖H ≤ ε ‖Au‖H + C(ε) ‖u‖H . u ∈ D(A). LetA be
the operator defined by(Au) (x) = A(x)u(x), D (A) = L2(0, 1; H). Then the system of root
functions ofL+A is complete inL2(0, 1; H).

Proof. It is clear that

‖Au‖L2(0,1;H) ≤ ε ‖Au‖L2(0,1;H) + C(ε) ‖u‖L2(0,1;H) .

Since by Theorem 4.1, we have

‖Au‖L2(0,1;H) ≤ C ‖f‖L2(0,1;H) = C ‖(L − λI) u‖L2(0,1;H) ,

hence
‖Au‖L2(0,1;H) ≤ ε ‖(L − λI) u‖L2(0,1;H) + C(ε) ‖u‖L2(0,1;H)

and so, for|λ| sufficiently large and|arg λ| ≤ ϕ < π,

R(λ,L+A) ∈ σp (L2(0, 1; H)) ,

and from Theorem 4.1 we have

‖R(λ,L+A)‖ ≤ C |λ|−1

for |λ| sufficiently large and|arg λ| ≤ ϕ < π. Then the system of root functions is complete in
L2(0, 1; H). �
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6. APPLICATION

Let us consider, in the cylindrical domainΩ = [0, 1] × G the non local boundary value
problem for the Laplace equation with a parameter

(6.1) (P )



L(λ)u = λu(x, y)−∆u(x, y) + b(x, y)u(x, y) = f(x, y), (x, y) ∈ Ω;

L1u = δu(0, y) = f1(y), y ∈ G;

L2u = ∂
∂x

u(1, y) + Bu(0, y) = f2(y), y ∈ G;

Pu = u(x, y′) = 0, (x, y′) ∈ Γ,

whereΓ = [0, 1]× ∂G and∂G is the boundary ofG.
A numberλ0 is called an eigenvalue of(P ) if the problem

(6.2) (P ′)



L(λ0)u = 0, (x, y) ∈ Ω;

L1u = 0, y ∈ G;

L2u = 0, y ∈ G;

Pu = 0, (x, y′) ∈ Γ,

has a non trivial solution that belongs toW 2
2 (Ω). The non trivial solutionu0 of (P ′) that belongs

to W 2
2 (Ω) is called the eigenfunction of(P ) corresponding to the eigenvalueλ0. Solutionsuk

of

(6.3) (P ′′)



L(λ0)uk + uk−1 = 0, (x, y) ∈ Ω;

L1uk = 0, y ∈ G;

L2uk = 0, y ∈ G;

Puk = 0, (x, y′) ∈ Γ,

belonging toW 2
2 (Ω) are associated functions of thek − th rank to the eigenvalueu0 of (P ) .

Eigenfunctions and associated functions of(P ) are gathered under the general name of root
functions of(P ) .

Theorem 6.1.Let b(x, y) ∈ W 0,1
∞ (Ω), δ 6= 0, ∂G ∈ C2 then

(1) (P ) , for f ∈ W 0,1
2 (Ω, Pu = 0), fk ∈ W

−mk
2

+ 3
4

2 (G, Pu = 0) and forλ such that|λ|
sufficiently large and|arg λ| ≤ ϕ < π, has a unique solution that belongs to the space
W 2

2 (Ω), and for this solution we have the coercive estimate

|λ| ‖u′′‖L2(Ω) + ‖u‖W 2
2 (Ω)

≤ C

(
‖f‖L2(Ω) +

2∑
k=1

‖fk‖
W
−mk

2 +3
4

2 (G,Pu=0)
+

2∑
k=1

|λ|−
mk
2

+ 3
4 ‖fk‖H

)
,

whereC does not depend onu andλ.
(2) Root functions of(P ) are complete inL2(Ω).

Proof. Consider inH = L2(Ω) the operatorsA andA(x) defined by

Au = −∆u(y) + λ0u(y), D(A) = W 2
2 (G, Pu = 0)

A (x) u = b(x, y)u(y)− λ0u(y), D(A (x)) = W 1
2 (G, Pu = 0, m = 0).
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Then the problem(P ) can be written in the form
λu(x)− u′′(x) + Au(x) + A(x)u(x) = 0 x ∈ (0, 1),

δu(0) = f1

u′(1) + Bu(0) = f2.

We have the compact imbeddingW 2
2 (Ω) ⊂ L2(Ω). On the other hand

sj

(
I,W 2

2 (Ω), L2(Ω)
)
' j−

2
r+1 .

By virtue of Lemma 3.1 in [21, p. 60] we have

sj (I, H(A), L2(Ω)) ' sj

(
A−1, L2(Ω), L2(Ω)

)
.

SinceH(A) ⊂ W 2
2 (Ω), then it follows thatA−1 ∈ σp (L2(Ω), L2(Ω)) , then ‖R(λ, A)‖ ≤

C |λ|−1 for |arg λ| ≤ ϕ < π and|λ| sufficiently large. Hence, all conditions of Theorem 5.3
has been checked. �
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