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ABSTRACT. Inthis paper we give conditions which assure the coercive solvability of an abstract
differential equation of elliptic type with an operator in the boundary conditions, and the com-
pleteness of generalized eigenfunctions. We apply the abstract result to show that a non regular
boundary value problem for a second order partial differential equation of an elliptic type in a
cylindrical domain is coercive solvable.
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1. INTRODUCTION

Many works are devoted to the study of hyperbolic or parabolic abstract equations![16, 18, 9].
In [16,[20] regular boundary value problems for elliptic abstract equations are considered. A
few works are concerned with non regular problems.

In this paper we establish conditions guaranteeing that non local boundary value problem for
elliptic abstract differential equation of the second order in an interval is coercive solvable in
the Hilbert spacd., (0, 1; H). A coercive estimates, when the problem is regular, was proved
in [1,3]. The considered problem is not regular, since the boundary conditions are non local,
similar problems have been considered in [4,5, 7, 22]. Moreover, we prove the completeness
of root functions. The completeness of root functions for regular boundary value problems are
proved in[1] 6| 10, 14] and in the boak [22].

The obtained results are then applied to study a non local boundary value problem for the
Laplace equation in a cylinder.
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2. NOTATIONS AND DEFINITIONS

Let H be a Hilbert spaced a linear closed operator il and D(A) its domain. We denote
by L(H) the space of bounded linear operators actingiomwith the usual operator norm, and
by L,(0,1; H) the space of strongly measurable functions— u(x) : [0,1] — H, whose
p"—power are summable, with the norm

1
(O / Ja(@) 1%, dz < oo, p € [1,00].

Now, introduce thel, (0, 1; H) vector-valued Sobolev spacﬁég(o, 1; Hy,H), where H,, H
are Hilbert spaces such thet C H with continuous embedding
W2(0,1; Hy, H) = {u: u" € L,(0,1; H) andu € L,(0,1; H)}
and
||U||Wg(o,1;H1,H) = ||u||Lp(O,1;H1) + ||u//||Lp(0,1;H) < 0.
Let Fy, F; be two Banach spaces, which are continuously injected in the Banach Bpace
the pair{ £y, £, } is said to be an interpolation couple. Consider the Banach space

Eo—f—El:{U:UEE, HUJEE],]IO,l, Withu:u0+u1},

fllggre, = _,, it _, (lollg, + ulls,).

and the functional
K(tu)= inf  (fuollg, +ullg,)-

u=uo+tul;u; €Ly

The interpolation space for the coudl&y, E:} is defined, by theé<-method, as follows

(Eo, Ev)g, = {U tu € By + By lully, = (/ t_l_epr(tau)dt) "< OO} ;
0
0<f<l1 1<p<x.

(Eo, E1)g oo = {u tu € By + By flully, = sup tOK(t,u)dt < oo} :

te(0,00)
0 < 0 < 1. Let A be a closed operator iff. H(A) is the domain ofA provided with the
Hilbertian graph norm
ullFrcay = 1Aul® + [[ull*;u € D(A).
If —A is the infinitesimal generator of the semigrotyp(—zA) which is analytic forz > 0,
decreasing at infinity and strongly continuous for 0, then the following holds [19, p. 96]:

(H,H(A™)),, = {u cue H, |ulfh < oo} ,

where .
ull?, = / £ =001 | A% exp(—t AYall” dt + [l
0

0<f#<1,neN,1<p<ocand|ul,, its norm.
Let H andH, be Hilbert spaces such that the imbeddifigC H is continuous andl, = H.
Then(H, Hy),,, is a Hilbert space, we denote it kY7, H,), . It is known that(H, H;), =

H(S%), whereS is a self-adjoint positive-definite operator ih [17].
+o00o
Let Ff(0) = (27) 2 [ exp(ioz)f(x)dz be the Fourier transform of the functigh

—0o0
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Lemma 2.1. [22, p. 300]Let A be a self adjoint and positive definite operatoriin Then
ﬂ)iu>(L‘A“@m[—xL4+AD%])g(ﬁmp[—wﬂkﬁ}Mrmlaeﬂ&$§2x0>0,
larg A| < ¢ < m, whereC does not depend anand \.
(2)j§H(A4—AUQexp[—x(A-+AIﬁ}14(g(j(HA@iu

2 1
‘ + |\z HuHQ) forall o >
i, larg A\| < ¢ < m,andu € D (Aa‘i) , WwhereC' does not depend anand \.

)

Aa@4+AD_q‘S(jﬂf%MDwﬁ,mrMIOS(yg/i|mgA|§49<ﬂywhaeC
does not depend ch

3. SOLVABILITY OF THE PRINCIPAL PROBLEM

3.1. Homogeneous Problem.Consider in the Hilbert spadé the boundary value problem for
the second order abstract differential equation

(3.1) LDy = —u"(z)+ Au(z) + A(x)u(z) = f(x) z€(0,1),

Llu = 6U<0) = f17
(3.2)
Lou = u/(1)+ Bu(0) = fo

A, A(x), B are linear operators ards a complex number.
Looking to the principal part of the problefd.1]), (3.2) with a parameter

(3.3) LDy = —u"(z)+(A+Au(x) = 0 x€(0,1),

Liuw = 6u(0) = fi,
(3.4)
Lou = u/'(1)+ Bu(0) = fo.
Theorem 3.1. Assume that the following conditions are satisfied
(1) Ais a self-adjoint and positive-definite operatorin

(2) § #0.
(3) B is continuous froni (A/2) in H(A) and fromH in H(AY?).
Then the proble ib for fi € (H,H(A)):, fo € (H,H(A)), and for such that
larg \| < ¢ < , |A\| — oo, has a unique solution in the spa&&? (0, 1; H(A), H), and for
the solution of the problerfs.3), the following coercive estimate holds

oo

(3.5) Hu”HLg(O,l;H) + HAUHLQ(OJ;H) + [A] HUHLQ(O,LH)
3 3 1 1
<co([atn]|, +Enal + |[ats]|, +DEILIL)
whereC does not depend ok
Proof. The solutionu, belonging toiV} (0, 1; H(A), H), of the equatior(3.3) is in the form

(3-6) u(w) = e Mg e 7N,
with A)\ =A+ A andgl,gg € (H, H(A))g
Indeed, let: € W}(0,1; H(A), H) be a solution of3.3]). Then we have

(D - A%) (D + Aé) u(z) = 0.
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Note by
v(z) = <D + AE) u(x).
From [22, p. 168 € W} (0,1; H(A2), H) and

3.7) (p- A%) () = 0.
So
(3.8) v(z) = e_(l_”;)A%U(l),

where, according ta [19, p. 44],
(1) e (H(A%),H) - (H,H(A%))

From (3.7) , (3.8) we have

whereu(0) € (H(A), H), [19, p. 44]. Now,

Az (H, H(A))s — (H, H(A)), = (H H(A%>>1

1
1

is an isomorphism. Consequently the last inequality is in the 6.
Let us show the reverse, i.e. the functioin the form(3.6) with g, andgs in (H, H(A)):,

belongs toiV}(0, 1; H(A), H). From interpolation spaces properties see [15], [19, p. 946] and
the expressioif3.6) of the functionu we have

HUHWQQ(O,l;H(A),H)
< ([[AAgM] +1)

1 1 2 % 1 1 2 %
2 2
X (/ Aye ™ g dx) + (/ Aye” 07245 ¢, d:v)
0 0
<C (Hng(H,H(A)\))% + HgQH(H,H(AA))%)
(3.9) <C(M) (Hng(H,H(A))% + ”gQH(H,H(A))%) :
The functionu satisfies the boundary conditio(s4]) if
1
5g1—|—5e*‘4392 = i
1 A% 1 A%
—Aje g1+ Bgi + A5ga + Be gy = fy,
which we can write in matrix form as:
1
oI 0 0 g3 9 f
(3.10) |t L X = )
B A3 _Ag\e—Af Be—A% 92 f2
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The first matrix of operators is invertible, its inverse is
%[ 0

(3.11) B B

—2A2B A,*

Multiplying the two members ofj3.10) by the matrix inversg(3.11)), we get the following
system:

1
e Mg = %fl
_al 1473 -3

e g +g = —5A°Bfi+ A [

we can solve it by Cramer’s method, because the coefficients of the linear system are bounded
1
linear operators. The determinant is given/bye 24X which is invertible as a little perturbation
1

of unity, in factHe“A2 ' <g<l.

Hence the solution is written as
g = %fl + Rii(A) fi + Ri2(A) fo,

o g2 = —E(I+TO)AZBf+ (1 +TO) Ay fo + RN .
whereR;;(\) are given by
( Riu(\) = —1 (I+T()\))e‘“% + 3 ([+T()\))A;%e‘A%B,
R = —(I+T(0)4; et
| Ba(N) = 5 (I+T()\))€7A%7

1
and satisfyl| R;;(\)|| — 0 when|\| — oo. (I + T()\)) is the inverse off + ¢24% obtained
from the corresponding Neumann series.
Finally the solutionu is given by

u(r) = e—o43 <%f1 + Ru(M)fi+ Rlz(A)fz)

. o—(1-2)A} (—% (I+T(N) A;%Bf1 + (I +T(\) A;%fz + Rm(A)ﬁ) :

From the assumptions of Theorém|3.1 and the properties of interpolation spaces, the following
applications are continuous,

(I+TOW\) A B« (H H(A)s +— (H,H(A))s ,

3
1

oo

(I+T(N) A2 (H,H(A))
Then we have the estimates
| +T0On A7 B

— (H,H(A))

NI
wlw

<C
ey, = O 1l

and

|+ 700 430 < C el ny

(H,H(A)) 1

L]
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Setu(z) = ui(x) + us(x) + uz(x), where

1 43
uy(z) = —e ¥ fy,

uy(x) = —%G—U-W‘% ((I +T(N\)) A;%Bﬁ) ,

uy(r) = 67(171)‘4% ((I +T(\) A;%fz) :

Then

1 —xA% 1 —IA%

HU1||W22(0,1;H(A),H) = 7| Axe ™5 f + 31 Ae ™5 fi .

| L2(0,1;H) | | L2(0,1;H)

However, from Lemma 2]1, we have
Al 3 3
Ay <co(|latn] +tinal).
Lo(0,1;H) H

Similarly we obtain bounds fai; andus. O

3.2. Non Homogeneous Problem.Consider, now, the principal problem for the non homoge-
neous equation with a parameter

(3.13) LA, D)u = —u"(x)+ Au(z) = f(z) x€(0,1),

ngu = 5U(0) = fl,
(3.14)
LQOU = U,(l) + BU(O) = fg.

We have the result.

Theorem 3.2. Suppose the following conditions satisfied
(1) Ais a self-adjoint and positive-definite operator/ih
(2) B is continuous from (A'/2) in H(A) and fromH in H(A'?).
3) 6 #0.
Thenthe problen@.13)), (3.14)), for £, f and fyin Ly(0,1; H), (H, H(A))% and(H,H(A)),
respectively, and fok such thafarg A\| < ¢ < 7, |\| — o0, has a unique solution belong;ring
to the spacéV (0, 1; H(A), H), for p € (1, 00), and the following coercive estimate holds

3.15) Nl o0 + IAull o1 + M 1l Lo
3 3 1 1
< C (Iflgaoan + A4+ INF AN+ [A55] +NFIR0)
whereC' does not depend ok

problem (3.13), belonging tolV}(0,1; H(A), H) can be written in the formu(z) =
uy(z) + ug(x), uy(z) is the restriction tdo, 1] of u,(z), wherew,(z) is the solution of the
equation

Proof. In Theoren{ 3.[1, we proved the uniqueness. Let us now show that the solution of the
3.11)
1

(3.16) Lo\, D)ir(2) = f(x), @ €R,
with f(z) = f(x)if z € [0,1] and f(z) = 0 otherwise.u,(z) is the solution of the problem
(3.17) Lo(\, D)uy = 0, Ligug = f1 — Liour, Laouz = fo — Laous.
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The solution of the equatiof3.16)) is given by the formula

o~

(3.18) ) = <= [ Lo i) Fl

wheref is the Fourier transform of the functiof{z), Lo(), s) is the characteristic pencil of the
equation(3.16)) i.e. Lo(\, s) = —s*T + A + Al
From (3.18)) and Plancherel equality it follows that:

Al HU1HL2(O,1;H) + ||U/1/HL2(0,1;H) + HA“1||L2(0,1;H)

< NNy erray + 18y ey + 1AQ 2y ey

< | Zoin) BR) |, o [F7 ) LoV i) EF ()

La(R;H Lo (R;H)

(3.19) n HF*IALO(A, m)*lFf(u)‘

Lo(R;H)
whereF' is the Fourier transform.
From condition(1) of Theorenj 3., fofarg \| < ¢ < 7 and|\| sufficiently large, we have

(3.20) |Zo(N i) | = [[(A+ M+ p2D)7Y| < C(L+ A+ p?)) 7 < Clpul ™
(3.21) |ALo(X,ip)7H| = |[A(A+ M+ p*)7H| < C

(3.22)  [M||Zo(N i) | = M [(A+ M+ 2D 7Y < CIA[(L+ A+ p2) 7t < C
Then it follows that
Al ||u1HL2(0,1;H) + HUII/”LQ(O,I;H) + ||AU1HL2(0,1;H) <C ||f||L2(0,1;H) ’
Sinceu; € W2(0,1; H(A), H) and from [19, p. 44] we have
ui(0) € (H(A), H)s = (H, H(A))
ui(0) € (H,H(A))s.
ThereforeLyu; € (H,H(A))% andLyyu; € (H,H(A))i.

From Theorenf 3]1, the problef.17) , when|arg A| < ¢ < 7, |A\| — oo, has a solution
uy(x) which is inW2(0,1; H(A), H). Now, we have to find bounds for the following terms

1
Z’

it = 7001,
H H

3 3
AL [ Lo |l = [A[* [lua ()] 7,
tam], < 0], + 250
H H

H
and

1 1 1
AT I Laoua [l < A [y (D)l + [A[* [1Bua (0)]] -
For example, we have
3
(Al [[ur ()] = C <HU1HW§(0,1;H(A),H) + Al HuluLQ(O,l;H)>
< CfllL,00m) -
Similarly, we get the other bounds and by the same way the coerciveness estimate. [J
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4. SOLVABILITY OF THE GENERAL PROBLEM

Consider, now, the general problem with a parameter

4.1) Lo\, D)u = du(z) —u"(x) + Au(z) + A(x)u(z) = f(x) x€(0,1),

qu = (SU(O) = f17
LQOU = U’(l)—f-BU(O) = fg.

4.2)

We have the result.

Theorem 4.1. Suppose the following conditions satisfied

(1) Ais a self-adjoint and positive-definite operator/ih

(2) The imbedding? (A) C H is compact.

(3) B is continuous fronf (A/2) in H(A) and fromH in H(A'Y?).
(4) 0 #£0.

(5) ||A()“”L2 o) S € HAUHL2 o1;1) T C(e) ||“HL2 (0,1;H) -

Then the problen. . ), for f, frand f» in L(0,1; 1), (H, H(A)): and (1, H(A))

respectively, and fok such thatarg \| < ¢ < w, |\| — o0, has a unique solution belonglng
to the spacéV (0, 1; H(A), H), for p € (1, 00), and the followmg coercive estimate holds

(4.3) ||UNHL2(0,1;H) + ”Au||L2(O,1;H) + [Al ||u||L2(0,l;H)
3 3 1 1
< C (Iflaoan + A4+ INF AN+ A5 5] +FIR0L) -

whereC does not depend an f, f1 fo and\.

Proof. Let u be a solution off4.1)), (4.2) belonging tolVZ(0,1; H(A), H). Thenu is a solution
of the problem

Lo\, D)u = f(x)— Alx)u(z) 2z € (0,1),
(PO) Llou = 5U(0) = f1

Lgou = u’(l)—i—Bu(O) = fg.

From Theorem 3]2, we get the estimate

1" 0,060 + 1A 0120y T 1Al 20,2

< @ (IF = AQull o + | ATA]| -+ N 1Al + 435

1
DI

Using condition (5) of Theorem 3.2, we get

" a0y + (1 = €O AUl 010y + (X = CC(ED o 100
3 3 1 1
< C (Iflaoan + A4+ INF AN+ [A55] +NFIR0L) -

Choosinge such thatC - € < 1, the coerciveness estimates follows easily. O
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5. COMPLETENESS OF ROOT FUNCTIONS
Let us define the operat@ by
Lu= —u" + Au,
D(L)=W3(0,1;H(A),H, Lyu=0,k=0,1).
Lemma 5.1. Suppose thai; (1, H(A), H) ~ Cj~9 then

s; (Z,W3 (0,1, H(A),H), Ly (0,1; H)) ~Cj 3+,
I (resp. Z) is the imbedding off (A) in H (resp. of W3 (0,1; H(A), H) in Ly (0,1; H)) and
s; (I, H(A), H) are thes-numbers of the operatarfrom H(A) to H.
Proof. Let S; be the operator defined i, (0, 1) such thatS; = S; > 421, D(S,) = H(S,) =
W3(0,1). From [17], we know that iff; C H and H, is dense inH then there exists an
operatorS; such thatS; = S7 andD(S;) = H. Otherwise, letS; be the operator defined by
Sy = S5 > ~%I, D(S;) = H(A). If we define the operata$ on L,(0,1) ® H = Ly(0,1; H)
by S =S, ® I, + I, ® So, wherel, (resp.l,) is the identity operator i, (0, 1) (resp.H). We
have
s; (S1', La(0,1), Ly(0,1)) =~ s; (I, H(S1), L2(0,1)) ~ Cj 2,
s;j (53" H, H) ~s; (I, H(A),H) ~ Cj™".

Hence, from[[11], we obtais; (S~, Ly(0,1; H), Ly(0,1; H)) ~ Cj %+, O
Theorem 5.2. Let the conditions of Theorgm B.2 hold along with' € o, (H), ¢ > 0. Then,
the system of root functions of the operatbis complete in»(0, 1; H).

Proof. From Theorem 4|1, we havgR(), £)|| < C|\|”" for Jarg \| < ¢ < = and|\| suffi-
ciently large. Using Lemr‘r@.l, we haii), £) € 0, (L2(0,1; H)) for p > § + 1, so, for the
operatorZ, all the conditions of([8, Theorem 126, 2.3, p. 50], are fulfilled. This achieves the
proof of the theorem. O

Theorem 5.3. Suppose that the conditions of Theofenj 5.2 are satisfied as well as the condition
D(A(z)) € D(A) andVe > 0, [[A(-)ully < €l|Aully + C(e) JJu|lg. v € D(A). Let A be

the operator defined bidu) () = A(x)u(z), D (A) = Ly(0,1; H). Then the system of root
functions ofL + A is complete in»(0, 1; H).

Proof. Itis clear that
||Au||L2(0,1;H) Se ||Au||L2(O,1;H) + C(e) HU||L2(0,1;H) :
Since by Theoren 4.1, we have
“AU’HLZ(O,I;H) <C HfHLg(O,l;H) = C|[(£—AI) U||L2(0,1;H) )
hence

||Au||L2(071;H) <e|[(£— M) U||L2(0,1;H) + C(e) ”UHL2(0,1;H)
and so, fo\| sufficiently large andarg \| < ¢ < ,

RN L+ A)€0,(L2(0,1;H)),
and from Theorerm 411 we have
IR L+ A)| < CA™

for || sufficiently large andarg A\| < ¢ < 7. Then the system of root functions is complete in
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6. APPLICATION

Let us consider, in the cylindrical domaia = [0,1] x G the non local boundary value
problem for the Laplace equation with a parameter

([ L(Nu= Au(z,y) — Au(z,y) + b(z,y)u(z,y) = f(z,y), (z,y) € Y
Liw= " 6u(0,y) = fi(y), y €G;
(6.1) (P) )
L2u = %u(lay) + BU(O,y) = f2(y)7 y e G;
| Pu= u(z,y') =0, (x,y) €T,

wherel’ = [0, 1] x 0G anddG is the boundary of5.
A number)\ is called an eigenvalue @¢P) if the problem

((L(Ao)u=0, (z,y) €
L1U = 0, Yy < G,

(6.2) (P")
LQU = 0, Yy < G,

Pu =0, (x,y) €T,

has a non trivial solution that belongsitc? (©2). The non trivial solution, of (') that belongs
to W3 () is called the eigenfunction dfP) corresponding to the eigenvalug Solutionsu;,
of

([ L(M\o)ur +up_1 =0, (x,9) €
| L =0, y € G;
(6.3) (P")
Louy, = 0, y e G,
| Pup =0, (x,y) €T,

belonging tolVZ(2) are associated functions of tie- ¢th rank to the eigenvalue, of (P).
Eigenfunctions and associated functions( 8% are gathered under the general name of root
functions of(P) .
Theorem 6.1. Letb(z,y) € W%H(Q), d # 0, dG € C? then
(1) (P), for f € Wy (Q, Pu = 0), fi € WQ_%%(G, Pu = 0) and for A such that|\|
sufficiently large andarg \| < ¢ < m, has a unique solution that belongs to the space
W3(Q), and for this solution we have the coercive estimate

AN 2y + [ullyz ()

2 2
<c (Hfuw Dy AT ufkuH) ,
whereC does not depend anand \.
(2) Root functions of P) are complete inL,(£2).
Proof. Consider ind = Ly({2) the operatorsi and A(x) defined by
Au = —Au(y) + Mou(y), D(A) = WZ(G, Pu=0)
A(z)u= bz, y)uly) = Mouly),  D(A(x)) = W3(G, Pu=0,m=0).
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Then the probleniP) can be written in the form

Mu(x) —u"(z) + Au(z) + A(z)u(z) = 0 x€(0,1),
u(0) = N
u/'(1) + Bu(0) = fo

We have the compact imbeddihg; (Q) C L,(2). On the other hand
55 (1 W2(), Ly(Q)) = j~ 7.
By virtue of Lemma 3.1 in[[21, p. 60] we have
Sj ([, H(A), LQ(Q)) =~ Sy (Ail, LQ(Q), LQ(Q)) .

Since H(A) C W2(Q), then it follows thatA™' € o, (L2(Q2), L(2)), then ||R(\, A)|| <
C|A|7" for Jarg A| < ¢ < 7 and|)| sufficiently large. Hence, all conditions of Theorm|5.3
has been checked. O
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