Journal of Inequalities in Pure and Applied Mathematics

INEQUALITIES ARISING OUT OF THE VALUE DISTRIBUTION OF A DIFFERENTIAL MONOMIAL

INDRAJIT LAHIRI AND SHYAMALI DEWAN

Department of Mathematics,
University of Kalyani,
West Bengal 741235, INDIA
EMail: indrajit@cal2.vsnl.net.in
volume 4, issue 2 , article 27, 2003.

Received 4 June, 2002; accepted 23 January, 2003.

Communicated by: A. Sofo

Abstract
Contents
Home Page
Go Back
Close

Abstract

In the paper we derive two inequalities that describe the value distribution of a differential monomial generated by a transcendental meromorphic function and which improve some earlier results.

2000 Mathematics Subject Classification: 30D35, 30A10.
Key words: Meromorphic function, Monomial, Value distribution, Inequality.
The second author is thankful to C.S.I.R. for awarding her a junior research fellowship.
The authors are thankful to the referee for valuable comments towards the improvement of the paper.

Contents

1 Introduction and Definitions 3
2 Lemmas 5
3 Theorems 8
References

Inequalities Arising out of the Value Distribution of a Differential Monomial

Indrajit Lahiri and Shyamali Dewan

Title Page
Contents

Go Back

Close
Quit

Page 2 of 13
J. Ineq. Pure and Appl. Math. 4(2) Art. 27, 2003
http://jipam.vu.edu.au

1. Introduction and Definitions

Let f be a transcendental meromorphic function defined in the open complex plane \mathbb{C}. We do not explain the standard definitions and notations of the value distribution theory as these are available in [3].

Definition 1.1. A meromorphic function $\alpha \equiv \alpha(z)$ defined in \mathbb{C} is called a small function of f if $T(r, \alpha)=S(r, f)$.

Hiong [5] proved the following inequality.
Theorem A. If a, b, c are three finite complex numbers such that $b \neq 0, c \neq 0$ and $b \neq c$ then
$T(r, f) \leq N(r, a ; f)+N\left(r, b ; f^{(k)}\right)+N\left(r, c ; f^{(k)}\right)-N\left(r, 0 ; f^{(k+1)}\right)+S(r, f)$.
Improving Theorem A, K.W.Yu [7] proved the following result.
Theorem B. Let $\alpha(\not \equiv 0, \infty)$ be a small function of f, then for any finite nonzero distinct complex numbers b and c and any positive integer k for which $\alpha f^{(k)}$ is non-constant, we obtain

$$
\begin{aligned}
& T(r, f) \leq N(r, 0 ; f)+N\left(r, b ; \alpha f^{(k)}\right)+N\left(r, c ; \alpha f^{(k)}\right) \\
& \quad-N(r, \infty ; f)-N\left(r, 0 ;\left(\alpha f^{(k)}\right)^{\prime}\right)+S(r, f)
\end{aligned}
$$

Recently K.W.Yu [8] has further improved Theorem B and has proved the
Inequalities Arising out of the Value Distribution of a Differential Monomial

Indrajit Lahiri and Shyamali Dewan

Title Page

Contents
Go Back
Close
Quit
Page 3 of 13

Theorem C. Let $\alpha(\not \equiv 0, \infty)$ be a small function of f. Suppose that b and c are any two finite non-zero distinct complex numbers and $k(\geq 1), n(\geq 0)$ are integers. If $n=0$ or $n \geq 2+k$ then
(1.1) $(1+n) T(r, f)$

$$
\begin{aligned}
& \leq(1+n) N(r, 0 ; f)+N\left(r, b ; \alpha(f)^{n} f^{(k)}\right)+N\left(r, c ; \alpha(f)^{n} f^{(k)}\right) \\
& -N(r, \infty ; f)-N\left(r, 0 ;\left(\alpha(f)^{n} f^{(k)}\right)^{\prime}\right)+S(r, f)
\end{aligned}
$$

If, in particular, f is entire, then (1.1) is true for all non-negative integers $n(\neq 1)$.

Yu [8] also remarked that inequality (1.1) might be valid even for $n=1$ if f is entire.

In this paper we first show that inequality (1.1) is valid for all integers $n(\geq 0)$ and $k(\geq 1)$ even if f is meromorphic.

Next we prove that the following inequality of Q.D. Zhang [9] can be extended to a differential monomial of the form $\alpha(f)^{n}\left(f^{(k)}\right)^{p}$, where $\alpha(\not \equiv 0, \infty)$ is a small function of f and $n(\geq 0), p(\geq 1), k(\geq 1)$ are integers.

Theorem D. [9] Let $\alpha(\not \equiv 0, \infty)$ be a small function of f, then

$$
2 T(r, f) \leq \bar{N}(r, \infty ; f)+2 \bar{N}(r, 0 ; f)+\bar{N}\left(r, 1 ; \alpha f f^{\prime}\right)+S(r, f)
$$

Definition 1.2. For a positive integer k we denote by $N_{k}(r, 0 ; f)$ the counting function of zeros of f, where a zero with multiplicity q is counted q times if $q \leq k$ and is counted k times if $q>k$.

Inequalities Arising out of the Value Distribution of a Differential Monomial

Indrajit Lahiri and Shyamali Dewan

Title Page
Contents

| Go Back |
| :---: | :---: |
| Close |
| Quit |
| Page 4 of 13 |

2. Lemmas

In this section we discuss some lemmas which will be needed in the sequel.
Lemma 2.1. [4] Let $A>1$, then there exists a set $M(A)$ of upper logarithmic density at most $\delta(A)=\min \left\{\left(2 e^{A-1}-1\right)^{-1}, 1+e(A-1) \exp (e(1-A))\right\}$ such that for $k=1,2,3, \ldots$

$$
\limsup _{r \longrightarrow \infty, r \notin M(A)} \frac{T(r, f)}{T\left(r, f^{(k)}\right)} \leq 3 e A
$$

Lemma 2.2. Let f be a transcendental meromorphic function and $\alpha(\not \equiv 0, \infty)$ be a small function of f, then $\psi=\alpha(f)^{n}\left(f^{(k)}\right)^{p}$ is non-constant, where $n(\geq 0)$, $p(\geq 1)$ and $k(\geq 1)$ are integers.

Proof. We consider the following two cases.
Case 2.1. Let $n=0$.
If possible suppose that ψ is a constant, then we get

$$
T\left(r,\left(f^{(k)}\right)^{p}\right) \leq T(r, \alpha)+O(1)=S(r, f)
$$

i.e.,

$$
T\left(r, f^{(k)}\right)=S(r, f)
$$

which is impossible by Lemma 2.1. Hence ψ is non-constant in this case.
Case 2.2. Let $n \geq 1$.
Since

$$
\left(\frac{1}{f}\right)^{p+n}=\alpha\left(\frac{f^{(k)}}{f}\right)^{p} \frac{1}{\psi},
$$

Inequalities Arising out of the Value Distribution of a Differential Monomial

Indrajit Lahiri and Shyamali Dewan

Title Page

Contents
Go Back
Close
Quit
Page 5 of 13

it follows, by the first fundamental theorem and the Milloux theorem ([3, p.55]), that

$$
\begin{align*}
(p+n) T(r, f) & \leq T(r, \alpha)+p T\left(r, \frac{f^{(k)}}{f}\right)+T(r, \psi)+O(1) \tag{2.1}\\
& =p N\left(r, \frac{f^{(k)}}{f}\right)+T(r, \psi)+S(r, f) \\
& \leq p k\{\bar{N}(r, 0 ; f)+\bar{N}(r, \infty ; f)\}+T(r, \psi)+S(r, f)
\end{align*}
$$

We note that if all the zeros (poles) of $(f)^{n}\left(f^{(k)}\right)^{p}$ are poles (zeros) of α in the same multiplicities then

$$
\bar{N}(r, 0 ; f) \leq N\left(r, 0 ;(f)^{n}\left(f^{(k)}\right)^{p}\right)=N(r, \infty ; \alpha)=S(r, f)
$$

and

$$
\bar{N}(r, \infty ; f) \leq N\left(r, \infty ;(f)^{n}\left(f^{(k)}\right)^{p}\right)=N(r, 0 ; \alpha)=S(r, f)
$$

because $n \geq 1$. Since $n \geq 1$, it follows that

$$
\bar{N}(r, 0 ; f) \leq N(r, 0 ; \psi)+S(r, f) \text { and } \bar{N}(r, \infty ; f) \leq N(r, \infty ; \psi)+S(r, f)
$$

Hence, from (2.1), we get

$$
\begin{aligned}
(p+n) T(r, f) & \leq p k\{N(r, 0 ; \psi)+N(r, \infty ; \psi)\}+T(r, \psi)+S(r, f) \\
& \leq(2 p k+1) T(r, \psi)+S(r, f)
\end{aligned}
$$

which shows that ψ is non-constant. This proves the lemma.

Lemma 2.3. [1] Let f be a transcendental meromorphic function and $\alpha(\not \equiv$ $0, \infty)$ be a small function of f. If $\psi=\alpha(f)^{n}\left(f^{(k)}\right)^{p}$, where $n(\geq 0), p(\geq 1)$ and $k(\geq 1)$ are integers, then

$$
T(r, \psi) \leq\{n+(1+k) p\} T(r, f)+S(r, f) .
$$

Inequalities Arising out of the Value Distribution of a Differential Monomial

Indrajit Lahiri and Shyamali Dewan

Title Page
Contents
Go Back
Close
Page 7 of 13

3. Theorems

In this section we prove the main results of the paper.
Theorem 3.1. Let f be a transcendental meromorphic function and $\alpha(\not \equiv 0, \infty)$ be a small function of f. Suppose that b and c are any two finite non-zero distinct complex numbers. If $\psi=\alpha(f)^{n}\left(f^{(k)}\right)^{p}$, where $n(\geq 0), p(\geq 1)$ and $k(\geq 1)$ are integers, then

$$
\begin{aligned}
(p+n) T(r, f) \leq(p+n) N(r, 0 ; f) & +N(r, b ; \psi)+N(r, c ; \psi) \\
& -N(r, \infty ; f)-N\left(r, 0 ; \psi^{\prime}\right)+S(r, f)
\end{aligned}
$$

Proof. By Lemma 2.2 we see that ψ is non-constant. We now get

$$
\begin{aligned}
m\left(r, \frac{1}{\alpha(f)^{p+n}}\right) & \leq m(r, 0 ; \psi)+m\left(r,\left(\frac{f^{(k)}}{f}\right)^{p}\right)+O(1) \\
m\left(r, \frac{1}{\alpha(f)^{p+n}}\right) & =T\left(r, \alpha(f)^{p+n}\right)-N\left(r, 0 ; \alpha(f)^{p+n}\right)+O(1)
\end{aligned}
$$

and

$$
m(r, 0 ; \psi)=T(r, \psi)-N(r, 0 ; \psi)+O(1)
$$

Hence we obtain

$$
\begin{align*}
T\left(r, \alpha(f)^{p+n}\right) \leq & N\left(r, 0 ; \alpha(f)^{p+n}\right)+T(r, \psi)-N(r, 0 ; \psi) \tag{3.1}\\
& \quad+m\left(r,\left(\frac{f^{(k)}}{f}\right)^{p}\right)+O(1) \\
= & N\left(r, 0 ; \alpha(f)^{p+n}\right)+T(r, \psi)-N(r, 0 ; \psi)+S(r, f)
\end{align*}
$$

Inequalities Arising out of the Value Distribution of a Differential Monomial

Indrajit Lahiri and Shyamali Dewan

Title Page

Contents
Go Back
Close
Quit
Page 8 of 13

By the second fundamental theorem we get
(3.2) $T(r, \psi) \leq N(r, 0 ; \psi)+N(r, b ; \psi)+N(r, c ; \psi)-N_{1}(r, \psi)+S(r, \psi)$,
where $N_{1}(r, \psi)=2 N(r, \infty ; \psi)-N\left(r, \infty ; \psi^{\prime}\right)+N\left(r, 0 ; \psi^{\prime}\right)$.
Let z_{0} be a pole of f with multiplicity $q(\geq 1) . \psi$ and ψ^{\prime} have a pole with multiplicities $n q+(q+k) p+t$ and $n q+(q+k) p+1+t$ respectively, where $t=0$ if z_{0} is neither a pole nor a zero of $\alpha, t=s$ if z_{0} is a pole of α with multiplicity s and $t=-s$ if z_{0} is a zero of α with multiplicity s, where s is a positive integer.

Thus,

$$
\begin{aligned}
2\{n q+(q+k) p+ & t\}-\{n q+(q+k) p+1+t\} \\
& =n q+(q+k) p+t-1 \\
& =q+t+n q+(q+k) p-q-1 \\
& \geq q+t
\end{aligned}
$$

because

$$
n q+(q+k) p-q-1 \geq k-1 \geq 0
$$

Since $T(r, \alpha)=S(r, f)$, it follows that

$$
\begin{equation*}
N_{1}(r, \psi) \geq N(r, \infty ; f)+N\left(r, 0 ; \psi^{\prime}\right)+S(r, f) \tag{3.3}
\end{equation*}
$$

Now, we get from (3.1), (3.2) and (3.3) in view of Lemma 2.3

$$
\begin{aligned}
T\left(r, \alpha(f)^{p+n}\right) \leq N\left(r, 0 ; \alpha(f)^{p+n}\right)+ & N(r, b ; \psi)+N(r, c ; \psi) \\
& -N(r, \infty ; f)-N\left(r, 0 ; \psi^{\prime}\right)+S(r, f)
\end{aligned}
$$

Inequalities Arising out of the Value Distribution of a Differential Monomial

Indrajit Lahiri and Shyamali Dewan

Title Page
Contents

Go Back
Close
Quit
Page 9 of 13

$$
\begin{aligned}
(p+n) T(r, f) \leq(p+n) N(r, 0 ; f) & +N(r, b ; \psi)+N(r, c ; \psi) \\
& -N(r, \infty ; f)-N\left(r, 0 ; \psi^{\prime}\right)+S(r, f)
\end{aligned}
$$

This proves the theorem.
Theorem 3.2. Let f be a transcendental meromorphic function and $\alpha(\not \equiv 0, \infty)$ be a small function of f. If $\psi=\alpha(f)^{n}\left(f^{(k)}\right)^{p}$, where $n(\geq 0), p(\geq 1), k(\geq 1)$ are integers, then for any small function $a(\not \equiv 0, \infty)$ of ψ,
$(p+n) T(r, f) \leq \bar{N}(r, \infty ; f)+\bar{N}(r, 0 ; f)+p N_{k}(r, 0 ; f)+\bar{N}(r, a ; \psi)+S(r, f)$.
Proof. Since by Lemma 2.2ψ is non-constant, by Nevanlinna's three small functions theorem ([3, p. 47]) we get

$$
T(r, \psi) \leq \bar{N}(r, 0 ; \psi)+\bar{N}(r, \infty ; \psi)+\bar{N}(r, a ; \psi)+S(r, \psi)
$$

So from (3.1) we obtain

$$
\begin{aligned}
T\left(r, \alpha(f)^{p+n}\right) \leq N\left(r, 0 ; \alpha(f)^{p+n}\right)+ & \bar{N}(r, 0 ; \psi)+\bar{N}(r, \infty ; \psi) \\
& +\bar{N}(r, a ; \psi)-N(r, 0 ; \psi)+S(r, \psi) .
\end{aligned}
$$

Since by Lemma 2.3 we can replace $S(r, \psi)$ by $S(r, f)$ and $\bar{N}(r, \infty ; \psi)=$ $\bar{N}(r, \infty ; f)+S(r, f)$, we get
(3.4) $(p+n) T(r, f) \leq N\left(r, 0 ;(f)^{p+n}\right)+\bar{N}(r, 0 ; \psi)+\bar{N}(r, \infty ; f)$

$$
+\bar{N}(r, a ; \psi)-N(r, 0 ; \psi)+S(r, f)
$$

Inequalities Arising out of the Value Distribution of a Differential Monomial

Indrajit Lahiri and Shyamali Dewan

Title Page
Contents
Go Back
Close
Quit
Page 10 of 13

Let z_{0} be a zero of f with multiplicity $q(\geq 1)$. It follows that z_{0} is a zero of ψ with multiplicity $n q+t$ if $q \leq k$ and $n q+(q-k) p+t$ if $q \geq 1+k$, where $t=0$ if z_{0} is neither a pole nor a zero of $\alpha, t=s$ if z_{0} is a zero of α with multiplicity s and $t=-s$ if z_{0} is a pole of α with multiplicity s, where s is a positive integer.

Hence $(p+n) q+1-n q-t=p q+1-t$ if $q \leq k$ and $(p+n) q+1-n q-$ $(q-k) p-t=p k+1-t$ if $q \geq 1+k$. Since $T(r, \alpha)=S(r, f)$, we get

$$
\begin{align*}
N\left(r, 0 ; \alpha(f)^{p+n}\right)+\bar{N}(r, 0 ; \psi) & -N(r, 0 ; \psi) \tag{3.5}\\
& \leq \bar{N}(r, 0 ; f)+p N_{k}(r, 0 ; f)+S(r, f)
\end{align*}
$$

Now the theorem follows from (3.4) and (3.5). This proves the theorem.
Hayman [2] proved that if f is a transcendental meromorphic function and $n(\geq 3)$ is an integer then $(f)^{n} f^{\prime}$ assumes all finite values, except possibly zero, infinitely often.

In the following corollary of Theorem 3.2 we improve this result.
Corollary 3.3. Let f be a transcendental meromorphic function and $\psi=$ $\alpha(f)^{n}\left(f^{(k)}\right)^{p}$, where $n(\geq 3), k(\geq 1), p(\geq 1)$ are integers and $\alpha(\not \equiv 0, \infty)$ is a small function of f, then

$$
\Theta(a ; \psi) \leq \frac{(1+k) p+2}{(1+k) p+n}
$$

for any small function $a(\not \equiv 0, \infty)$ of f.

Inequalities Arising out of the Value Distribution of a Differential Monomial

Indrajit Lahiri and Shyamali Dewan

Title Page
Contents

Page 11 of 13

$$
\begin{equation*}
T(r, f) \leq B T(r, \psi) \tag{3.6}
\end{equation*}
$$

holds except possibly for a set of r of finite linear measure, where B is a constant (see [6]), it follows that if $a(\not \equiv 0, \infty)$ is a small function of f, then it is also a small function of ψ.

Hence by Theorem 3.2 we get

$$
(n-2) T(r, f) \leq \bar{N}(r, a ; \psi)+S(r, f)
$$

and so by Lemma 2.3 and (3.6) we obtain

$$
\frac{n-2}{(1+k) p+n} T(r, \psi) \leq \bar{N}(r, a ; \psi)+S(r, \psi)
$$

from which the corollary follows. This proves the corollary.
nequalities Arising out of the Value Distribution of a Differential Monomial

Indrajit Lahiri and Shyamali Dewan

Title Page

Contents
Go Back
Close
Quit
Page 12 of 13

References

[1] W. DOERINGER, Exceptional values of differential polynomials, Pacific J. Math., 98(1) (1982), 55-62.
[2] W.K. HAYMAN, Picard values of meromorphic functions and their derivatives, Ann. Math., 70 (1959), 9-42.
[3] W.K. HAYMAN, Meromorphic Functions, The Clarendon Press, Oxford (1964).
[4] W.K. HAYMAN AND J. MILES, On the growth of a meromorphic function and its derivatives, Complex Variables, 12 (1989), 245-260.
[5] K.L. HIONG, Sur la limitation de $T(r, f)$ sans intervention des pôles, Bull. Sci. Math., 80 (1956), 175-190.
[6] L.R. SONS, Deficiencies of monomials, Math. Z., 111 (1969), 53-68.
[7] K.W. YU, A note on the product of meromorphic functions and its derivatives, Kodai Math. J., 24(3) (2001), 339-343.
[8] K.W. YU, On the value distribution of $\phi(z)[f(z)]^{n-1} f^{(k)}(z)$, J. Inequal. Pure Appl. Math., 3(1) (2002), Article 8. [ONLINE http://jipam.vu.edu.au/v3n1/037_01.html]
[9] Q.D. ZHANG, On the value distribution of $\phi(z) f(z) f^{\prime}(z)$ (in Chinese), Acta Math. Sinica, 37 (1994), 91-97.

Inequalities Arising out of the Value Distribution of a Differential Monomial

Indrajit Lahiri and Shyamali Dewan

Title Page
Contents

Page 13 of 13

