Journal of Inequalities in Pure and Applied Mathematics

http://jipam.vu.edu.au/
Volume 4, Issue 2, Article 30, 2003

AN ASYMPTOTIC EXPANSION

GABRIEL MINCU
Universitatea Bucureşti
Facultatea de Matematică
Str. Academiei nr. 14, RO-70109,
București, RomÂnia gamin@al.math.unibuc.ro

Received 24 December, 2002; accepted 12 May, 2003
Communicated by L. Tóth

Abstract. In this paper we study the asymptotic behaviour of the sequence $\left(r_{n}\right)_{n}$ of the powers of primes. Calculations also yield the evaluation $\sqrt{r_{n}}-p_{n}=o\left(\frac{n}{\log ^{s} n}\right)$ for every positive integer s, p_{n} denoting the n-th prime.

Key words and phrases: Powers of primes, Inequalities, Asymptotic behaviour.

2000 Mathematics Subject Classification. 11N05, 11N37.

1. Introduction

One denotes by:

- p_{n} the n-th prime
- r_{n} the n-th number (in increasing order) which can be written as a power $p^{m}, m \geq 2$, of a prime p.
- $\pi(x)$ the number of prime numbers not exceeding x.
- $\tilde{\pi}(x)$ the number of prime powers $p^{m}, m \geq 2$, not exceeding x.

The asymptotic equivalences

$$
\begin{equation*}
\pi(x) \sim \frac{x}{\log x} \tag{1.1}
\end{equation*}
$$

and

$$
\begin{equation*}
p_{n} \sim n \log n \tag{1.2}
\end{equation*}
$$

are well known.
M. Cipolla [1] proves the relations

$$
\begin{equation*}
p_{n}=n(\log n+\log \log n-1)+o(n) \tag{1.3}
\end{equation*}
$$

[^0]and
\[

$$
\begin{equation*}
p_{n}=n\left(\log n+\log \log n-1+\frac{\log \log n-2}{\log n}\right)+o\left(\frac{n}{\log n}\right) \tag{1.4}
\end{equation*}
$$

\]

that he generalizes to
Theorem 1.1. There exists a sequence $\left(P_{m}\right)_{m \geq 1}$ of polynomials with integer coefficients such that, for any integer m,

$$
\begin{equation*}
p_{n}=n\left[\log n+\log \log n-1+\sum_{j=1}^{m} \frac{(-1)^{j-1} P_{j}(\log \log n)}{\log ^{j} n}+o\left(\frac{1}{\log ^{m} n}\right)\right] \tag{1.5}
\end{equation*}
$$

In the same paper, M. Cipolla gives recurrence formulae for P_{m}; he finds that every P_{m} has degree m and leading coefficient $(m-1)$!.

As far as $\left(r_{n}\right)_{n}$ is concerned, L. Panaitopol [2] proves the asymptotic equivalence

$$
\begin{equation*}
r_{n} \sim n^{2} \log ^{2} n \tag{1.6}
\end{equation*}
$$

We prove in this paper that $\left(r_{n}\right)_{n}$ has an asymptotic expansion comparable to that of Theorem 1.1.

We will need the next results of L. Panaitopol:

$$
\begin{equation*}
\tilde{\pi}(x)-\pi(\sqrt{x})=O(\sqrt[3]{x}) \tag{1.7}
\end{equation*}
$$

(from [2]), and
Proposition 1.2. There exist a sequence of positive integers k_{1}, k_{2}, \ldots and for every $n \geq 1 a$ function $\alpha_{n}, \lim _{x \rightarrow \infty} \alpha_{n}(x)=0$, such that:

$$
\begin{equation*}
\pi(x)=\frac{x}{\log x-1-\frac{k_{1}}{\log x}-\frac{k_{2}}{\log ^{2} x}-\cdots-\frac{k_{n}\left(1+\alpha_{n}(x)\right)}{\log ^{n} x}} . \tag{1.8}
\end{equation*}
$$

Moreover, k_{1}, k_{2}, \ldots are given by the recurrence relation

$$
\begin{equation*}
k_{n}+1!\cdot k_{n-1}+2!\cdot k_{n-2}+\cdots+(n-1)!\cdot k_{1}=n \cdot n!, \quad n \geq 1 \tag{1.9}
\end{equation*}
$$

(from [3]).
We will also establish a result similar to Proposition 1.2 for $\tilde{\pi}(x)$ and the evaluation

$$
\sqrt{r_{n}}-p_{n}=o\left(\frac{n}{\log ^{s} n}\right)
$$

for every positive integer s.

2. ON THE ASYMPTOTIC BEHAVIOUR OF $\tilde{\pi}$

Proposition 2.1. For every positive integer n, there exists a function $\beta_{n}, \lim _{x \rightarrow \infty} \beta_{n}(x)=0$, such that

$$
\begin{equation*}
\tilde{\pi}(x)=\frac{\sqrt{x}}{\log \sqrt{x}-1-\frac{k_{1}}{\log \sqrt{x}}-\ldots-\frac{k_{n-1}}{\log ^{n-1} \sqrt{x}}-\frac{k_{n}\left(1+\beta_{n}(x)\right)}{\log ^{n} \sqrt{x}}}, \tag{2.1}
\end{equation*}
$$

$\left(k_{n}\right)_{n}$ being the sequence of (1.9).
Proof. Let us set

$$
\begin{equation*}
\tilde{\pi}(x)=\frac{\sqrt{x}}{\log \sqrt{x}-1-\frac{k_{1}}{\log \sqrt{x}}-\ldots-\frac{k_{n-1}}{\log ^{n-1} \sqrt{x}}-\frac{k_{n}\left(1+\beta_{n}(x)\right)}{\log ^{n} \sqrt{x}}} . \tag{2.2}
\end{equation*}
$$

(1.8) and (1.7) give us:

$$
\begin{equation*}
\sqrt{x} \cdot \frac{k_{n}\left[\beta_{n}(x)-\alpha_{n}(\sqrt{x})\right]}{\log ^{n+2} x}=O(\sqrt[3]{x}) \tag{2.3}
\end{equation*}
$$

SO

$$
\begin{equation*}
k_{n}\left[\beta_{n}(x)-\alpha_{n}(\sqrt{x})\right]=O\left(\frac{\log ^{n+2} x}{\sqrt[6]{x}}\right) \tag{2.4}
\end{equation*}
$$

leading to $\lim _{x \rightarrow \infty} \beta_{n}(x)=0$.

3. INITIAL ESTIMATES FOR r_{n}

Equation (2.1) gives:

$$
\begin{equation*}
\tilde{\pi}(x) \sim \frac{2 \sqrt{x}}{\log x} \tag{3.1}
\end{equation*}
$$

If we put $x=r_{n}$, we get

$$
\begin{equation*}
n \sim \frac{2 \sqrt{r_{n}}}{\log r_{n}} \tag{3.2}
\end{equation*}
$$

so

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left(\log 2+\log \sqrt{r_{n}}-\log n-\log \log r_{n}\right)=0 \tag{3.3}
\end{equation*}
$$

whence

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{\log \sqrt{r_{n}}}{\log n}=1 \tag{3.4}
\end{equation*}
$$

leading to:

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left(\log \log r_{n}-\log 2-\log \log n\right)=0 \tag{3.5}
\end{equation*}
$$

(3.3) and (3.5) give:

$$
\begin{equation*}
\log \sqrt{r_{n}}=\log n+\log \log n+o(1) \tag{3.6}
\end{equation*}
$$

(2.1) implies

$$
\begin{equation*}
\tilde{\pi}(x)=\frac{\sqrt{x}}{\log \sqrt{x}-1+o(1)} \tag{3.7}
\end{equation*}
$$

For $x=r_{n}$ we get (in view of (3.6):

$$
\begin{equation*}
\frac{\sqrt{r_{n}}}{n}=\log n+\log \log n-1+o(1) \tag{3.8}
\end{equation*}
$$

By taking logarithms of both sides we get:

$$
\begin{equation*}
\log \sqrt{r_{n}}-\log n=\log \log n+\log \left[1+\frac{\log \log n-1}{\log n}+o\left(\frac{1}{\log n}\right)\right] \tag{3.9}
\end{equation*}
$$

For big enough n we have $\left|\frac{\log \log n-1}{\log n}+o\left(\frac{1}{\log n}\right)\right|<1$, which means that we can expand the logarithm. We derive:

$$
\begin{equation*}
\log \sqrt{r_{n}}=\log n+\log \log n+\frac{\log \log n-1}{\log n}+o\left(\frac{1}{\log n}\right) \tag{3.10}
\end{equation*}
$$

(2.1) also gives:

$$
\begin{equation*}
\tilde{\pi}(x)=\frac{\sqrt{x}}{\log \sqrt{x}-1-\frac{1}{\log \sqrt{x}}+o\left(\frac{1}{\log x}\right)} . \tag{3.11}
\end{equation*}
$$

For $x=r_{n}$ and in view of (3.4), we obtain:

$$
\begin{equation*}
\frac{\sqrt{r_{n}}}{n}=\log \sqrt{r_{n}}-1-\frac{1}{\log \sqrt{r_{n}}}+o\left(\frac{1}{\log n}\right) \tag{3.12}
\end{equation*}
$$

(3.10) and (3.12) allow us to write

$$
\begin{align*}
\frac{\sqrt{r_{n}}}{n}=\log n+\log \log n & -1+\frac{\log \log n-1}{\log n} \tag{3.13}\\
& -\frac{1}{\log n\left[1+\frac{\log \log n}{\log ^{n}}+\frac{\log \log n-1}{\log ^{2} n}+o\left(\frac{1}{\log ^{2} n}\right)\right]}+o\left(\frac{1}{\log n}\right)
\end{align*}
$$

For big enough n we have

$$
\left|\frac{\log \log n}{\log n}+\frac{\log \log n-1}{\log ^{2} n}+o\left(\frac{1}{\log ^{2} n}\right)\right|<1 ;
$$

we can therefore use the expansion of $\frac{1}{1+x}$ in 3.13 and we get

$$
\begin{equation*}
\sqrt{r_{n}}=n\left(\log n+\log \log n-1+\frac{\log \log n-2}{\log n}\right)+o\left(\frac{n}{\log n}\right) . \tag{3.14}
\end{equation*}
$$

4. Main Result

Theorem 4.1. For every positive integer s we have

$$
\begin{equation*}
\frac{\sqrt{r_{n}}-p_{n}}{n}=o\left(\frac{1}{\log ^{s} n}\right) . \tag{4.1}
\end{equation*}
$$

Proof. Induction with respect to s.
For $s=1$ the statement is true because of (1.4) and (3.14).
Now let $s \geq 1$; suppose that

$$
\begin{equation*}
\frac{\sqrt{r_{n}}-p_{n}}{n}=o\left(\frac{1}{\log ^{s} n}\right) . \tag{4.2}
\end{equation*}
$$

(4.2) and (1.5) lead to

$$
\begin{equation*}
\sqrt{r_{n}}=n\left[\log n+\log \log n-1+\sum_{j=1}^{s} \frac{(-1)^{j-1} P_{j}(\log \log n)}{\log ^{j} n}+o\left(\frac{1}{\log ^{s} n}\right)\right] . \tag{4.3}
\end{equation*}
$$

By taking logarithms of both sides in (1.5) we derive
(4.4) $\log p_{n}=\log n+\log \log n$

$$
+\log \left[1+\frac{\log \log n-1}{\log n}+\sum_{j=1}^{s} \frac{(-1)^{j-1} P_{j}(\log \log n)}{\log ^{j+1} n}+o\left(\frac{1}{\log ^{s+1} n}\right)\right]
$$

(1.8) gives us

$$
\begin{equation*}
\pi(x)=\frac{x}{\log x-1-\frac{k_{1}}{\log _{x}}-\frac{k_{2}}{\log ^{2} x}-\ldots-\frac{k_{s+1}}{\log ^{s+1} x}+o\left(\frac{1}{\log ^{s+1} x}\right)} . \tag{4.5}
\end{equation*}
$$

For $x=p_{n}$, this relation becomes (in view of (1.2)):

$$
\begin{equation*}
\frac{p_{n}}{n}=\log p_{n}-1-\frac{k_{1}}{\log p_{n}}-\ldots-\frac{k_{s+1}}{\log ^{s+1} p_{n}}+o\left(\frac{1}{\log ^{s+1} n}\right) . \tag{4.6}
\end{equation*}
$$

By taking logarithms of both sides in (4.3) we get
(4.7) $\log \sqrt{r_{n}}=\log n+\log \log n$

$$
+\log \left[1+\frac{\log \log n-1}{\log n}+\sum_{j=1}^{s} \frac{(-1)^{j-1} P_{j}(\log \log n)}{\log ^{j+1} n}+o\left(\frac{1}{\log ^{s+1} n}\right)\right] .
$$

(2.1) gives

$$
\begin{equation*}
\tilde{\pi}(x)=\frac{x}{\log \sqrt{x}-1-\frac{k_{1}}{\log \sqrt{x}}-\frac{k_{2}}{\log ^{2} \sqrt{x}}-\cdots-\frac{k_{s+1}}{\log ^{s+1} \sqrt{x}}+o\left(\frac{1}{\log ^{s+1} \sqrt{x}}\right)} . \tag{4.8}
\end{equation*}
$$

For $x=r_{n}$, this relation becomes (in view of (3.4)):

$$
\begin{equation*}
\frac{\sqrt{r_{n}}}{n}=\log \sqrt{r_{n}}-1-\frac{k_{1}}{\log \sqrt{r_{n}}}-\cdots-\frac{k_{s+1}}{\log ^{s+1} \sqrt{r_{n}}}+o\left(\frac{1}{\log ^{s+1} n}\right) . \tag{4.9}
\end{equation*}
$$

If x and y are ≥ 1, Lagrange's theorem gives us the inequality

$$
\begin{equation*}
|\log y-\log x| \leq|y-x| ; \tag{4.10}
\end{equation*}
$$

with (4.4) and (4.7), it leads to:

$$
\begin{equation*}
\log \sqrt{r_{n}}-\log p_{n}=o\left(\frac{1}{\log ^{s+1} n}\right) . \tag{4.11}
\end{equation*}
$$

This last relation gives for every $t \in\{1,2, \ldots, s+1\}$

$$
\begin{equation*}
\frac{1}{\log ^{t} p_{n}}-\frac{1}{\log ^{t} \sqrt{r_{n}}}=o\left(\frac{1}{\log ^{s+t+2} n}\right)=o\left(\frac{1}{\log ^{s+1} n}\right) . \tag{4.12}
\end{equation*}
$$

(4.6), (4.9), (4.11) and (4.12) give

$$
\begin{equation*}
\frac{\sqrt{r_{n}}-p_{n}}{n}=o\left(\frac{1}{\log ^{s+1} n}\right) \tag{4.13}
\end{equation*}
$$

and the proof is complete.
Theorem 4.2. There exists a unique sequence $\left(R_{m}\right)_{m \geq 1}$ of polynomials with integer coefficients such that, for every positive integer m,

$$
\begin{align*}
& r_{n}=n^{2}\left[\log ^{2} n+2(\log \log n-1) \log n+(\log \log n)^{2}\right. \tag{4.14}\\
&\left.-3+\sum_{j=1}^{m} \frac{(-1)^{j-1} R_{j}(\log \log n)}{(j+1)!\cdot \log ^{j} n}\right]+o\left(\frac{n^{2}}{\log ^{m} n}\right) .
\end{align*}
$$

Proof. (4.9) allows us to write

$$
\begin{equation*}
r_{n}=n^{2}\left[\log n+\log \log n-1+\sum_{j=1}^{m+1} \frac{(-1)^{j+1} P j(\log \log n)}{j!\cdot \log ^{j} n}+o\left(\frac{1}{\log ^{m+1} n}\right)\right]^{2} . \tag{4.15}
\end{equation*}
$$

If we set

$$
\begin{equation*}
R_{1}:=4(X-1) P_{1}-2 P_{2} \tag{4.16}
\end{equation*}
$$

and

$$
\begin{equation*}
R_{j}:=-2 P_{j+1}+2(j+1)(X-1) P_{j}-\sum_{i=1}^{j-1}(j+1)\binom{j}{i} P_{i} P_{j-i} \quad, j \geq 2 \tag{4.17}
\end{equation*}
$$

(4.15) gives for every $m \geq 1$:

$$
\begin{aligned}
r_{n}=n^{2}\left[\log ^{2} n+2(\log \log n-1) \log n\right. & +(\log \log n)^{2} \\
& \left.-3+\sum_{j=1}^{m} \frac{(-1)^{j-1} R_{j}(\log \log n)}{(j+1)!\cdot \log ^{j} n}\right]+o\left(\frac{n^{2}}{\log ^{m} n}\right)
\end{aligned}
$$

so the existence is proved.
Suppose now the existence of two different sequences $\left(R_{m}\right)_{m \geq 1}$ and $\left(S_{m}\right)_{m \geq 1}$ satisfying the conditions of the theorem. For the least j such as $S_{j} \neq R_{j}$ we can write

$$
\frac{R_{j}(\log \log n)-S_{j}(\log \log n)}{(j+1)!\cdot \log ^{j} n}=o\left(\frac{1}{\log ^{j} n}\right)
$$

so $R_{j}(\log \log n)-S_{j}(\log \log n)=o(1)$, a contradiction.
Corollary 4.3. We have

$$
r_{n}=n^{2} \log ^{2} n+2 n^{2}(\log \log n-1) \log n+n^{2}(\log \log n)^{2}-3 n^{2}+o\left(n^{2}\right)
$$

5. Computing the Coefficients of the Polynomial R_{m}

Proposition 5.1. For every $m \geq 1$, the degree of R_{m} is $m+1$ and its leading coefficient is $2(m-1)$!.
Proof. If we recall from the introduction that every P_{n} has degree n and leading coefficient $(n-1)$!, the statement follows from (4.16) and 4.17).
(1.4) gives

$$
P_{1}(X)=X-2
$$

We can easily derive from M. Cipolla's paper [1] the relations

$$
P_{k}^{\prime}=k(k-1) P_{k-1}+k \cdot P_{k-1}^{\prime} \quad, k \geq 2
$$

and

$$
\begin{aligned}
P_{k+1}(0)=-k\left\{\sum_{j=1}^{k-1}\binom{k-1}{j} P_{j}(0)\left[P_{k-j}(0)+P_{k-j}^{\prime}(0)\right]+\right. & {\left.\left[P_{k}(0)+P_{k}^{\prime}(0)\right]\right\} } \\
& -(k+1) P_{k}(0)-P_{k+1}^{\prime}(0)
\end{aligned}
$$

Computations gave him

$$
\begin{aligned}
& P_{2}(X)=X^{2}-6 X+11 \\
& P_{3}(X)=2 X^{3}-21 X^{2}+84 X-131 \\
& P_{4}(X)=6 X^{4}-92 X^{3}+588 X^{2}-1908 X+2666 \\
& P_{5}(X)=24 X^{5}-490 X^{4}+4380 X^{3}-22020 X^{2}+62860 X-81534 \\
& P_{6}(X)=120 X^{6}-3084 X^{5}+35790 X^{4}-246480 X^{3}+1075020 X^{2}-2823180 X+3478014 \\
& P_{7}(X)=720 X^{7}-22428 X^{6}+322224 X^{5}-2838570 X^{4}+16775640 X^{3}-66811920 X^{2} \\
& +165838848 X-196993194
\end{aligned}
$$

In view of (4.16) and (4.17), we get in turn:
$R_{1}(X)=2 X^{2}-14 ;$
$R_{2}(X)=2 X^{3}-6 X^{2}-42 X+172 ;$
$R_{3}(X)=4 X^{4}-24 X^{3}-144 X^{2}+1544 X-3756 ;$
$R_{4}(X)=12 X^{5}-110 X^{4}-600 X^{3}+12300 X^{2}-64060 X+122298 ;$
$R_{5}(X)=48 X^{6}-600 X^{5}-2940 X^{4}+102000 X^{3}-842520 X^{2}+3319512 X-5484780 ;$
$R_{6}(X)=240 X^{7}-3836 X^{6}-16380 X^{5}+913080 X^{4}-10543400 X^{3}+63989100 X^{2}-215203884 X$ +323035480 .

References

[1] M. CIPOLLA, La determinazione assintotica dell $n^{i m o}$ numero primo, Rend. Acad. Sci. Fis. Mat. Napoli, Ser. 3,. 8 (1902), 132-166.
[2] L. PANAITOPOL, On some properties of the $\pi^{*}(x)-\pi(x)$ function, Notes Number Theory Discrete Math., 6(1) (2000), 23-27.
[3] L. PANAITOPOL, A formula for $\pi(x)$ applied to a result of Koninck-Ivić, Nieuw Arch. Wiskunde, 5(1) (2000), 55-56.

[^0]: ISSN (electronic): 1443-5756
 (c) 2003 Victoria University. All rights reserved.

 153-02

