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ABSTRACT. In the case of two positive numbers, the geometric mean is closer to the harmonic
than to the arithmetic mean. We derive some spectral results relating to corresponding properties
with more than two positive numbers.
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1. I NTRODUCTION

Let A, G, H denote respectively the arithmetic, geometric and harmonic means ofn positive
real numbersx1, . . . , xn, which are not all equal. It is well–known thatH < G < A. Scott [3]
has shown in the casen = 2 thatG is closer toH than toA, so that

(1.1)
A−G

A−H
>

1

2
.

He showed by a counterexample that this need not be the case whenn > 2.
Subsequently Lord [1] and Pearce and Pečarǐc [2] addressed the question of the behaviour of

the quotient

fn(x1, . . . , xn) :=
A−G

A−H

in the case of generaln. Several generalisations and extensions of (1.1) were obtained. The
following are pertinent to the present article.

Since

fn(ax1, . . . , axn) = f(x1, . . . , xn)
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2 C.E.M. PEARCE

for a > 0, it suffices to consider the values taken byfn whenx = (x1, . . . , xn) lies on the
intersection

K :=

{
x ∈ Rn : xi ≥ 0 for 1 ≤ i ≤ n and

n∑
i=1

x2
i = 1

}
of the nonnegative orthant and the surface of the unit hypersphere. The functionfn is clearly

well–defined and continuous on the interior ofK except ate :=
(

1√
n
, . . . , 1√

n

)
, where it is

undefined sinceA, G andH all coincide. In fact this singularity is removable. It is shown in
[1] that definingfn(x) = 1 for boundary points ofK (where some but not all valuesxi vanish)
andfn(e) = 1

2
makesfn continuous on the whole ofK. SinceK is compact,fn possesses and

realises an infimumαn. Further, the range offn constitutes the interval[αn, 1], the sequence
(αn)∞2 is strictly decreasing to limit zero andαn > 1

n
for n ≥ 3. The seminal paper of Scott

givesα2 = 1
2
.

In this article we continue the development of [1] and [2] and derive some striking structural
results, principally as follows. In Section 2, Theorem 2.1, we show that ifx is such thatfn(x) =
αn, then{x1, . . . , xn} contains precisely two distinct values. In Section 3, Theorem 3.3, we
show that iffn(x) = αn, then the smaller of the two distinct components ofx must occur with
multiplicity one. We conclude in Section 4 by giving characterisations ofαn and some related
infima arising naturally in our analysis.

We postpone consideration of asymptotics to a subsequent article.

2. THE DICHOTOMY THEOREM

Theorem 2.1. For n > 2, any set{x1, . . . , xn} for whichfn(x) = αn contains precisely two
distinct values.

Proof. First suppose thatS1 :=
∑n

i=1 xi andSn :=
∏n

i=1 xi are fixed. Subject to these con-
straints, the mimimum offn correspond to an extremum of

∑n
i=1

1
xi

and satisfies

∂L
∂xi

= 0 for i = 1, . . . , n,

whereL denotes the Lagrangian

L :=
n∑

i=1

1

xi

− λ

(
n∑

i=1

xi − S1

)
− µ

(
n∏

i=1

xi − Sn

)
.

Then
∂L
∂xi

= − 1

x2
i

− λ− µ
∏
j 6=i

xj = 0 (i = 1, . . . , n),

that is,
1

xi

+ λxi + µSn = 0 (i = 1, . . . , n).

Hence eachxi must be equal to one of the two solutions of the quadratic

λx2 + µSnx + 1 = 0.

For a minimum, these solutions must be distinct, sincefn(e) = 1
2

while αn < 1
2

for n ≥ 3. �

For j = 1, 2, . . . , n and fixedn > 2, define

Vj = {x : {x1, . . . , xn} contains preciselyj distinct values} ,

V∗j = {fn(x) : x ∈ Vj}

J. Inequal. Pure and Appl. Math., 4(3) Art. 58, 2003 http://jipam.vu.edu.au/

http://jipam.vu.edu.au/
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and
δj = inf V∗j .

An immediate implication of Theorem 2.1 is the following result.

Corollary 2.2. We have
δ2 = δ3 = · · · = δn = αn.

For j > 1, the setV∗j contains its infimum only forj = 2.

Proof. If 1 ≤ j ≤ n−1, any element ofVj can be approximated arbitrarily closely by elements
of Vj+1, but not conversely. SinceK is compact andfn continuous, we must therefore have that
δj+1 ≤ δj. Thus

δn ≤ δn−1 ≤ . . . ≤ δ2 ≤ δ1 =
1

2
.

On the other hand, by Theorem 2.1

δ2 = αn = inf {fn(x)} = min{δ1, δ2, . . . , δn}.

The first part of the corollary follows.
The second part follows by invoking Theorem 2.1 again. �

3. COMPARISON RESULTS

In the remaining sections of the paper we examine more closely the central case when
{x1, . . . , xn} contains only two distinct values, that isx ∈ V2. We may assume without loss of
generality an ordering

x1 ≤ x2 ≤ · · · ≤ xn.

We decompose

V2 =
n−1⋃
k=1

Uk,

where
Uk = {x : x1 = x2 = · · · = xk < xk+1 = · · · = xn} (1 ≤ k < n).

Forx ∈ Uk we have for thek equal points denoted byx and the rest byy that

A−G

A−H
=

k
n
x +

(
1− k

n

)
y − xk/ny1−k/n

k
n
x +

(
1− k

n

)
y − n

/(
k
x

+ n−k
y

) .

If we setβ = k/n andu = x/y, this gives

fn(x) =
βu + 1− β − uβ

βu + 1− β − 1
/(

β
u

+ 1− β
)

with β ∈
{

1
n
, 2

n
, . . . , n−1

n

}
and0 < u < 1.

This may be rearranged as

(3.1) fn(x) = 1− u

(u− 1)2
g(u, β),

where

(3.2) g(u, β) =
uβ − 1

β
+

u−(1−β) − 1

1− β
.
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4 C.E.M. PEARCE

We shall find it convenient to have alternative sets of variables and functions. Setv = u1/n.
Then forx ∈ Uk we put

hk(n, v) = fn(x) and φk(v) = g

(
u,

k

n

)
.

Proposition 3.1. For fixedn ≥ 3 andv ∈ (0, 1), the sequence(hk(n, v))n−1
k=1 is strictly increas-

ing.

Proof. By virtue of the representation (3.1), (3.2), it suffices to prove that the sequence(φk(v))n−1
k=1

is strictly decreasing. To show thatφk(v) > φk+1(v), we need to establish the inequality

vk − 1

k
+

v−(n−k) − 1

n− k
>

vk+1 − 1

k + 1
+

v−(n−k−1) − 1

n− k − 1
,

which on multiplication byvn−k becomes

Θ(v) < 0,

whereΘ is the polynomial

(3.3) Θ(v) =
vn+1

k + 1
− vn

k
+ vn−k

[
1

k
+

1

n− k
− 1

k + 1
− 1

n− k − 1

]
+

v

n− k − 1
− 1

n− k
.

Sincen + 1 > n > n − k > 1 > 0, (3.3) expressesΘ in descending powers ofv. The
coefficients taken in sequence have exactly three changes in sign, regardless of whether the
expression in brackets is positive, negative or zero. Hence by Descartes’ rule of signs the
polynomial equation

(3.4) Θ(w) = 0

has at most three positive solutions.
Now by elementary algebra we have that

Θ(1) = Θ′(1) = Θ′′(1) = 0,

so thatw = 1 is a triple zero ofΘ(w). HenceΘ(w) has no zeros on(0, 1) and therefore must
have constant sign on(0, 1). BecauseΘ(0) < 0, we thus haveΘ(w) < 0 throughout(0, 1) and
we are done. �

For1 ≤ k < n, put

U∗k = {fn(x) : x ∈ Uk}
and

εk = inf U∗k .

Lemma 3.2. For eachn ≥ 3 we have

εk


<

1

2
for 1 ≤ k <

n

2

=
1

2
for

n

2
≤ k ≤ n− 1.
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Proof. Sincev = 1 givesfn = 1
2

andv = 0 givesfn = 1, a necessary and sufficient condition
thatεk < 1

2
is that there should existv ∈ (0, 1) for which

nvn

(1− vn)2

[
vk − 1

k
+

v−(n−k) − 1

n− k

]
>

1

2
or

(3.5) Ω(v) < 0,

where

Ω(v) = v2n − 2n

k
vn+k + 2vn

[
n

k
+

n

n− k
− 1

]
− vk 2n

n− k
+ 1

= v2n − 2n

k
vn+k + 2vn

[
n

k
+

k

n− k

]
− vk 2n

n− k
+ 1.

The polynomialΩ has four changes of sign in its coefficients, and so has at most four positive
zeros. We may verify readily that

(3.6) Ω(1) = Ω′(1) = Ω′′(1) = 0,

while

(3.7) Ω′′′(1) = 2n2(n− 2k).

If n
2

< k ≤ n − 1, thenΩ(v) has a triple zero atv = 1 and so can have at most one zero on
(0, 1). SinceΩ(0) > 0, condition (3.5) can thus be satisfied if and only if there is such a zero,
in which caseΩ(1−∆) < 0 for all ∆ > 0 sufficiently small. But by Taylor’s theorem

Ω(1−∆) = Ω(1)−∆Ω′(1) +
∆2

2!
Ω′′(1)− ∆3

3!
Ω′′′(1) + 0(∆4)

≈ −∆3

3
n2(n− 2k),(3.8)

which is positive.
Hence we must haveεk ≥ 1

2
. But sincee can be approximated arbitrarily closely by elements

of Uk by lettingv → 1, we must haveεk ≤ fn(e) = 1
2
. Thusεk = 1

2
.

If k = n
2
, thenΩ(v) has exactly four positive zeros, all atv = 1, soΩ has constant sign on

(0, 1). SinceΩ(0) > 0, we thus haveΩ(v) > 0 on (0, 1). Arguing as in the previous paragraph,
we derive again thatεk = 1

2
.

Finally, if k < n
2
, we have by (3.8) thatΩ(1 −∆) < 0 for ∆ > 0 sufficiently small, so that

condition (3.5) is satisfied. This completes the proof. �

Theorem 3.3.The sequence(εk)1≤k< n
2

is strictly increasing.

Proof. The desired result is equivalent to(ξk)1≤k< n
2

being strictly decreasing, where

ξk = sup
u∈(0,1)

u

(1− u)2
φk(u) = 1− εk.

By Proposition 3.1,
u

(1− u)2
φk(u) >

u

(1− u)2
φk+1(u)

for eachu ∈ (0, 1), so that

ξk ≥ ξk+1 for 1 ≤ k ≤ n− 1.

Further,ξk is realised for some choice ofu, for u = uk, say, and arguing as in Lemma 3.2 we
must haveuk ∈ (0, 1) for 1 ≤ k < n

2
.
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To show the inequalities are strict, suppose if possible that equality holds for some value of
k, so that

(3.9)
uk

(1− uk)2
φk(uk) =

uk+1

(1− uk+1)2
φk+1(uk+1).

By Proposition 3.1,

uk+1

(1− uk+1)2
φk(uk+1) >

uk+1

(1− uk+1)2
φk+1(uk+1),

so that by (3.9)
uk+1

(1− uk+1)2
φk(uk+1) >

uk

(1− uk)2
φk(uk) = ξk,

contradicting the definition ofξk. �

4. CHARACTERISATION OF εk

In the previous section we saw that for1 ≤ k < n
2

the supremumξk is realised for some
u = uk ∈ (0, 1). We now consider the determination ofuk. For convenience we again employ
vk = u

1/n
k .

Theorem 4.1. (i) For 1 ≤ k < n
2
, v = vk is the unique solution on(0, 1) of the equation

(4.1) Φk(v) = 0,

where

Φk(v) = (vn − 1)

[
vn n + k

k
− vn−k

(
n

k
+

n

n− k

)
+

k

n− k

]
− 2nvn

[
vn

k
− vn−k

(
1

k
+

1

n− k

)
+

1

n− k

]
.

(ii) If v ∈ (0, 1), thenv < vk or v > vk according asΦk(v) < 0 or Φk(v) > 0.

Proof. Sincefn achieves a minimum atv = vk ∈ (0, 1), we have that

d

dv

{
nvn

(vn − 1)2
·
[
vk − 1

k
+

v−(n−k) − 1

n− k

]}
= 0

for v = vk, this value ofv corresponding to a local maximum of the differentiated expression.
The left–hand side is the quotient of

n(vn − 1)2

[
vn+k−1n + k

k
− vn−1

(
n

k
+

n

n− k

)
+ vk−1 k

n− k

]
− 2n2(vn − 1)2vn−1

[
vn+k

k
− vn

(
1

k
+

1

n− k

)
+

vk

n− k

]
by (vn − 1)4. Removing this denominator and the factorn(vn − 1)vk−1 from the numerator
gives thatv = vk satisfies (4.1). Statement (i) will therefore follow if it can be shown that (4.1)
has a unique solution on(0, 1). Uniqueness gives that the differentiated expression has positive
gradient forv < vk and negative gradient forv > vk. Statement (ii) will then follow, since the
term cancelled is negative.
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It therefore remains only to show thatΦk(v) has a unique zero on(0, 1). This we do as
follows. The polynomialΦk(v) may be written in descending powers ofv as

− v2n n− k

k
+ v2n−k

(
n

k
+

n

n− k

)
− vn

(
2n− k

n− k
+

n + k

k

)
+ vn−k

(
n

k
+

n

n− k

)
− k

n− k
,

the coefficients of which exhibit four changes of sign. Hence by Descartes’ rule of signs,Φk(v)
has at most four positive zeros.

By elementary algebra,

(4.2) Φk(1) = Φ′k(1) = Φ′′k(1) = 0, Φ′′′k (1) = n2(2k − n),

so thatΦk(v) has a triple zero atv = 1. HenceΦk(v) has at most one zero on(0, 1).
Now Φk(v) < 0 and for∆ > 0 small

Φk(1−∆) = −∆3

3!
Φ′′′k (1) + 0(∆4) > 0,

by Taylor’s theorem and (4.2). HenceΦk(v) has a zero on(0, 1) and this must be unique. �
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