Journal of Inequalities in Pure and
Applied Mathematics
http://jipam.vu.edu.au/
Volume 4, Issue 3, Article 54, 2003

ANDERSSON'S INEQUALITY AND BEST POSSIBLE INEQUALITIES

A.M. FINK
Mathematics Department
Iowa State University
Ames, IA 50011
fink@math.iastate.edu

Received 08 October, 2002; accepted 01 May, 2003
Communicated by D. Hinton

Abstract. We investigate the notion of 'best possible inequality' in the context of Andersson's Inequality.

Key words and phrases: Convex, Best possible inequality.
2000 Mathematics Subject Classification. 26A51, 26D15.
Andersson [1] proved that if for each $i, f_{i}(0)=0$ and f_{i} is convex and increasing, then

$$
\begin{equation*}
\int_{0}^{1} \prod_{1}^{n} f_{i}(x) d x \geq \frac{2^{n}}{n+1} \prod_{1}^{n} \int_{0}^{1} f_{i}(x) d x \tag{1}
\end{equation*}
$$

with equality when each f_{i} is linear.
Elsewhere [2] we have proved that if $f_{i} \in M=\left\{f \mid f(0)=0\right.$ and $\frac{f(x)}{x}$ is increasing and bounded $\}$ and

$$
d \sigma \in \widehat{M}=\left\{d \sigma \mid \int_{0}^{t} x d \sigma(x) \geq 0, \int_{t}^{1} x d \sigma(x) \geq 0 \text { for } t \in[0,1], \text { and } \int_{0}^{1} x d \sigma(x)>0\right\}
$$

then

$$
\begin{equation*}
\int_{0}^{1} \prod_{1}^{n} f_{i}(x) d \sigma(x) \geq \frac{\int_{0}^{1} x^{n} d \sigma(x)}{\left(\int_{0}^{1} x d \sigma(x)\right)^{n}} \prod_{1}^{n} \int_{0}^{1} f_{i}(x) d \sigma(x) \tag{2}
\end{equation*}
$$

One notices that if f is convex and increasing with $f(0)=0$ then $f \in M$. For $\frac{f(x)}{x}=$ $\int_{0}^{1} f^{\prime}(x t) d t$ when f^{\prime} exists. The question arises if in fact Andersson's inequality can be extended beyond (2).

Lemma 1 (Andersson). If $f_{i}(0)=0$, increasing and convex, $i=1,2$ and $f_{2}^{*}=\alpha_{2} x$ where α_{2} is chosen so that $\int_{0}^{1} f_{2}=\int_{0}^{1} f_{2}^{*}$ then $\int_{0}^{1} f_{1} f_{2} \geq \int_{0}^{1} f_{1} f_{2}^{*}$.

[^0]We will examine whether Andersson's Lemma is best possible. We now discuss the notion of best possible.

An (integral) inequality $I(f, d \mu) \geq 0$ is best possible if the following situation holds. We consider both the functions and measures as 'variables'. Let the functions be in some universe U usually consisting of continuous functions and the measures in some universe \widehat{U}, usually regular Borel measures. Suppose we can find $M \subset U$ and $\widehat{M} \subset \widehat{U}$ so that $I(f, d \mu) \geq 0$ for all $f \in M$ if and only if $\mu \in \widehat{M}$ (given that $\mu \in \widehat{U}$) and $I(f, d \mu) \geq 0$ for all $\mu \in \widehat{M}$ if and only if $f \in M$ (given that $f \in U$). We then say the pair (M, \widehat{M}) give us a best possible inequality.

As an historical example, Chebyshev [3] in 1882 submitted a paper in which he proved that

$$
\begin{equation*}
\int_{a}^{b} f(x) g(x) p(x) d x \int_{a}^{b} p(x) d x \geq \int_{a}^{b} f(x) p(x) d x \int_{a}^{b} g(x) p(x) d x \tag{3}
\end{equation*}
$$

provided that $p \geq 0$ and f and g were monotone in the same sense. Even before this paper appeared in 1883, it was shown to be not best possible since the pairs f, g for which (3) holds can be expanded. Consider the identity

$$
\begin{equation*}
\frac{1}{2} \int_{a}^{b} \int_{a}^{b}(f(x)-f(y)][g(x)-g(y)] p(x) p(y) d x d y=\int_{a}^{b} f g p \int_{a}^{b} p-\int_{a}^{b} f p \int_{a}^{b} g p \tag{4}
\end{equation*}
$$

So (3) holds if f and g are similarly ordered, i.e.

$$
\begin{equation*}
[f(x)-f(y)][g(x)-g(y)] \geq 0, x, y \in[a, b] \tag{5}
\end{equation*}
$$

For example x^{2} and x^{4} are similarly ordered but not monotone.
Jodeit and Fink [4] invented the notion of 'best possible' in a manuscript circulated in 1975 and published in parts in [3] and [4]. They showed that if we take U to be pairs of continuous functions and \widehat{U} to be regular Borel measures μ with $\int_{a}^{b} d \mu>0$, then

$$
\begin{equation*}
\int_{a}^{b} f g d \mu \int_{a}^{b} d \mu \geq \int_{a}^{b} f d \mu \int_{a}^{b} g d \mu \tag{6}
\end{equation*}
$$

is a best possible inequality if $M_{1}=\{(f, g) \mid(5)$ holds $\} \subset U$ and $\widehat{M}_{1}=\{\mu \mid \mu \geq 0\}$ i.e.
(6) holds for all pairs in M_{1} if and only if $\mu \in \widehat{M}_{1}$, and
(6) holds for all $\mu \in \widehat{M}_{1}$ if and only if $(f, g) \in M_{1}$.

The sufficiency in both cases is the identity corresponding to (4). If $d \mu=\delta_{x}+\delta_{y}$ where x and $y \in[a, b]$, the inequality (6) gives (5), and if $f=g=x_{A}, A \subset[a, b]$, then (6) is $\mu(A) \mu(a, b) \geq \mu(A)^{2}$ which gives $\mu(A) \geq 0$. Strictly speaking this pair is not in M_{1}, but can be approximated in L_{1} by continous functions.

If we return to Chebyshev's hypothesis that f and g are monotone in the same sense, let us take U be the class of pairs of continuous functions, neither of which is a constant and \widehat{U} as above, $M_{0}=\{f, g \in U \mid f$ and g are simularly monotone $\}$ and

$$
\widehat{M}_{0}=\left\{\mu \mid \int_{a}^{t} d \mu \geq 0, \int_{t}^{b} d \mu \geq 0 \text { for } a \leq t \leq b\right\}
$$

Lemma 2. The inequality (6) holds for all $(f, g) \in M_{0}$ if and only if $\mu \in \widehat{M}_{0}$.
Proof. There exist measures $d \tau$ and $d \lambda$ such that $f(x)=\int_{0}^{x} d \tau$ and $g(x)=\int_{0}^{x} d \lambda$. We may assume $f(0)=g(0)$ since adding a constant to a function does not alter (6). Letting $x_{+}^{0}=0$ if
$x \leq 0$ and 1 if $x>0$ we can rewrite (6) after an interchange of order of integration as

$$
\begin{align*}
\int_{0}^{1} \int_{0}^{1} d \lambda(s) d \tau(t)\left[\int_{0}^{1} d \mu \int_{0}^{1}\right. & (x-t)_{+}^{0}(x-s)_{+}^{0} d \mu(x) \tag{7}\\
& \left.-\int_{0}^{1}(x-t)_{+}^{0} d \mu(x) \int_{0}^{1}(x-s)_{+}^{0} d \mu(x)\right] \geq 0 .
\end{align*}
$$

Since f, g are arbitrary increasing functions, $d \lambda$ and $d \tau \geq 0$ so (6) holds if and only if the [] ≥ 0 for each t and s. For example we may take both these measures, $d \tau, d \lambda$ to be point atoms. The equivalent condition then is that

$$
\begin{equation*}
\int_{0}^{1} d \mu \int_{t \vee s}^{1} d \mu \geq \int_{t}^{1} d \mu \int_{s}^{1} d \mu \tag{8}
\end{equation*}
$$

By symmetry we may assume that $t \geq s$ so that (8) may be written $\int_{0}^{s} d \mu \int_{t}^{1} d \mu \geq 0$. Consequently, if $d \mu \in \widehat{M}_{0}$ (6) holds and (6) holds for all $f, g \in M_{0}$ only if $\int_{0}^{s} d \mu \int_{t}^{1} d \mu \geq 0$. But for $s=t$ this is the product of two numbers whose sum is positive so each factor must be non-negative, completing the proof.

Lemma 3. Suppose f and g are bounded integrable functions on $[0,1]$. If (6) holds for all $\mu \in \widehat{M}_{0}$ then f and g are both monotone in the same sense.

Proof. First let $d \mu=\delta_{x}+\delta_{y}$ where δ_{x} is an atom at x. Then (6) becomes $[f(x)-f(y)][g(x)-$ $g(y)] \geq 0$, i.e. f and g are similarly ordered. If $x<y<z$, take $d \tau=\delta_{x}-\delta_{y}+\delta_{z}$ so that $\mu \in M_{0}$. To ease the burden of notation let the values of f at x, y, z be a, b, c and the corresponding values of g be A, B, C. By (6) we have

$$
\begin{equation*}
a A-b B+c C \geq(a-b+c)(A-B+C) \tag{9}
\end{equation*}
$$

By similar ordering we have

$$
\begin{equation*}
(a-b)(A-B) \geq 0,(a-c)(A-C) \geq 0, \text { and }(b-c)(B-C) \geq 0 ; \tag{10}
\end{equation*}
$$

and (9) may be rewritten as

$$
\begin{equation*}
(a-b)(C-B)+(c-b)(A-B) \leq 0 \tag{11}
\end{equation*}
$$

Now if one of the two terms in (10) is positive, the other is negative and all the factors are non-zero. By (10) the two terms are the same sign. Thus

$$
\begin{equation*}
(a-b)(C-B) \leq 0 \text { and }(c-b)(A-B) \leq 0 \tag{12}
\end{equation*}
$$

Now (10) and (12) hold for any triple. We will show that if f is not monotone, then g is a constant.

We say that we have configuration I if $a<b$ and $c<b$, and configuration II if $a>b$ and $c>b$.

We claim that for both configurations I and II we must have $A=B=C$. Take configuration I. Now $b-a>0$ implies that $B-A \geq 0$ by (10) and $C-B \geq 0$ by (12). Also $b-c>0$ yields $(B-C) \geq 0$ by (10) and $A-B \geq 0$ by (12). Combining these we have $A=B=C$. The proof for configuration II is the same.

Assume now that configuration I exists, so $A=B=C$. Let $x<x_{0}<y$. If $a_{0}<b$ $\left(a_{0}=f\left(x_{0}\right)\right)$ then x_{0}, y, z form a configuration I and $A_{0}=B$. If $a_{0} \geq b$, then x, x_{0}, z form a configuration I and $A_{0}=B$. If $x_{0}<x$ and $a_{0}<b$, then again x_{0}, y, z form a configuration I and $A_{0}=B$. Finally if $a_{0} \geq b$ and $x_{0}<x$ then x_{0}, x, b for a configuration II and $A_{0}=B$. Thus for $x<y g(0) \equiv g(y)$. The proof for $x>y$ is similar yielding that g is a constant.

If a configuration II exists, then the proof is similar, or alternately we can apply the configuration I argument to the pair $-f,-g$.

Finally if f is not monotone on $[0,1]$ then either a configuration I or II must exist and g is a constant. Consequently, if neither f nor g are constants, then both are monotone and by similar ordering, monotone in the same sense.

Note that if one of f, g is a constant, then (6) is an identity for any measure.

Theorem 4.

i) Let M be defined as above and $N=\{g \mid g(0)=0$ and g is increasing and bounded $\}$. Then for $F(x) \equiv \frac{f(x)}{x}$

$$
\begin{equation*}
\int_{0}^{1} f g d \sigma(x) \geq\left(\int_{0}^{1} x d \sigma(x)\right)^{-1}\left(\int_{0}^{1} F(x) x d \sigma\right)\left(\int_{0}^{1} g(x) x d \sigma(x)\right) \tag{13}
\end{equation*}
$$

holds for all pairs $(f, g) \in M \times N$ if and only if $d \sigma \in \widehat{M}$.
ii) Let $f(0)=g(0)=0$ and $\frac{f}{x}$ and g be of bounded variation on $[0,1]$. If (13) holds for all $d \sigma \in \widehat{M}$ then either $\frac{f}{x}$ or g is a constant (in which case (13) is an identity) or $\left(\frac{f}{x}, g\right) \in M \times N$.
The proof starts with the observation that (13) is in fact a Chebyshev inequality

$$
\begin{equation*}
\int_{0}^{1} F g d \tau \int_{0}^{1} d \tau \geq \int_{0}^{1} F d \tau \int_{0}^{1} g d \tau \tag{14}
\end{equation*}
$$

where $d \tau=x d \sigma$; and F, g are the functions. The theorem is a corollary of the two lemmas.
Andersson's inequality (2) now follows by induction, replacing one f by f^{*} at a time. Note that the case $n=2$ of Andersson's inequality (2) has the proof

$$
\int_{0}^{1} f_{1} f_{2} \geq \int_{0}^{1} f_{1}^{*} f_{2} \geq \int_{0}^{1} f_{1}^{*} f_{2}^{*}
$$

and it is only the first one which is best possible! The inequality between the extremes is perhaps 'best possible'.
Remark 5. Of course x can be replaced by any function that is zero at zero and positive elsewhere, i.e. $\frac{f(x)}{x}$ can be replaced by $\frac{f(x)}{p(x)}$ and the measure $d \tau=p(x) d \sigma(x)$.

References

[1] B.J. ANDERSSON, An inequality for convex functions, Nordisk Mat. Tidsk, 6 (1958), 25-26.
[2] A.M. FINK, Andersson's inequality, Math Ineq. and Applic., to appear.
[3] P.L. C̆EBYŠEV, O priblizennyh vyraženijah odnih integralov čerez drugie. Soobščenija i Protokoly Zasedamiĭ Matematis̆eskogo Obs̆estva pri Imperatorskom Har'kovskom Universite, 2 (1882), 93-98, Polnoe Sobranie Soc̆inenii P.L. Čebys̆eva. Moskva, Leningrad 1948, pp. 128-131.
[4] A.M. FINK AND M. JODEIT, Jr., On Čhebyšhev's other inequality, 1984. Inequalities in Statistics and Probability (Lecture Notes IMS No. 5) Inst. Math. Statist. Hayward Calif., 115-129.
[5] A.M. FINK, Toward a theory of best possible inequalities, Nieuw Archief Voor Wiskunde, 12 (1994), 19-29.

[^0]: ISSN (electronic): 1443-5756
 (c) 2003 Victoria University. All rights reserved.

 106-02

