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1. I NTRODUCTION AND REVIEW OF SOME RECENT RESULTS

For two measurable functionsf, g : [a, b] → R, define the functional, which is known in the
literature ašCebyšev’s functional, by

(1.1) T (f, g) := M (fg)−M (f)M (g) ,

where the integral mean is given by

(1.2) M (f) :=
1

b− a

∫ b

a

f (x) dx.

The integrals in (1.1) are assumed to exist.
Further, the weighteďCebyšev functional is defined by

(1.3) T (f, g; p) := M (f, g; p)−M (f ; p)M (g; p) ,

where the weighted integral mean is given by

(1.4) M (f ; p) =

∫ b

a
p (x) f (x) dx∫ b

a
p (x) dx

,
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2 P. CERONE

with 0 <
∫ b

a
p (x) dx <∞.

We note that,
T (f, g; 1) ≡ T (f, g)

and
M (f ; 1) ≡M (f) .

It is worthwhile noting that a number of identities relating to theČebyšev functional already
exist. The reader is referred to [17] Chapters IX and X. Korkine’s identity is well known, see
[17, p. 296] and is given by

(1.5) T (f, g) =
1

2 (b− a)2

∫ b

a

∫ b

a

(f (x)− f (y)) (g (x)− g (y)) dxdy.

It is identity (1.5) that is often used to prove an inequality due to Grüss for functions bounded
above and below, [17].

The Grüss inequality is given by

(1.6) |T (f, g)| ≤ 1

4
(Φf − φf ) (Φg − φg) ,

whereφf ≤ f (x) ≤ Φf for x ∈ [a, b] .
If we let S (f) be an operator defined by

(1.7) S (f) (x) := f (x)−M (f) ,

which shifts a function by its integral mean, then the following identity holds. Namely,

(1.8) T (f, g) = T (S (f) , g) = T (f, S (g)) = T (S (f) , S (g)) ,

and so

(1.9) T (f, g) = M (S (f) g) = M (fS (g)) = M (S (f)S (g))

sinceM (S (f)) = M (S (g)) = 0.
For the last term in (1.8) or (1.9) only one of the functions needs to be shifted by its integral

mean. If the other were to be shifted by any other quantity, the identities would still hold. A
weighted version of (1.9) related to

(1.10) T (f, g) = M ((f (x)− γ)S (g))

for γ arbitrary was given by Sonin [19] (see [17, p. 246]).
The interested reader is also referred to Dragomir [12] and Fink [14] for extensive treatments

of the Grüss and related inequalities.
Identity (1.5) may also be used to prove theČebyšev inequality which states that forf (·) and

g (·) synchronous, namely(f (x)− f (y)) (g (x)− g (y)) ≥ 0, a.e.x, y ∈ [a, b] , then

(1.11) T (f, g) ≥ 0.

There are many identities involving thěCebyšev functional (1.1) or more generally (1.3). Re-
cently, Cerone [2] obtained, forf, g : [a, b] → R wheref is of bounded variation andg contin-
uous on[a, b] , the identity

(1.12) T (f, g) =
1

(b− a)2

∫ b

a

ψ (t) df (t) ,

where

(1.13) ψ (t) = (t− a)G (t, b)− (b− t)G (a, t)
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ČEBYŠEV FUNCTIONAL 3

with

(1.14) G (c, d) =

∫ d

c

g (x) dx.

The following theorem was proved in [2].

Theorem 1.1. Let f, g : [a, b] → R, wheref is of bounded variation andg is continuous on
[a, b] . Then

(1.15) (b− a)2 |T (f, g)| ≤



sup
t∈[a,b]

|ψ (t)|
b∨
a

(f) ,

L
∫ b

a
|ψ (t)| dt, for f L− Lipschitzian,∫ b

a
|ψ (t)| df (t) , for f monotonic nondecreasing,

where
∨b

a (f) is the total variation off on [a, b] .

An equivalent identity and theorem were also obtained for the weightedČebyšev functional
(1.3).

The bounds for thěCebyšev functional were utilised to procure approximations to moments
and moment generating functions.

In [8], bounds were obtained for the approximations of moments although the work in [2]
places less stringent assumptions on the behaviour of the probability density function.

In a subsequent paper to [2], Cerone and Dragomir [6] obtained a refinement of the classical
Čebyšev inequality (1.11).

Theorem 1.2. Let f : [a, b] → R be a monotonic nondecreasing function on[a, b] and g :
[a, b] → R a continuous function on[a, b] so thatϕ (t) ≥ 0 for eacht ∈ (a, b) . Then one has
the inequality:

(1.16) T (f, g) ≥ 1

(b− a)2

∣∣∣∣∫ b

a

[(t− a) |G (t, b)| − (b− t) |G (a, t)|] df (t)

∣∣∣∣ ≥ 0,

where

(1.17) ϕ (t) =
G (t, b)

b− t
− G (a, t)

t− a

andG (c, d) is as defined in (1.14).

Bounds were also found for|T (f, g)| in terms of the Lebesgue norms‖φ‖p , p ≥ 1 effectively
utilising (1.15) and noting thatψ (t) = (t− a) (b− t)ϕ (t) .

It should be mentioned here that the author in [3] demonstrated relationships between the
Čebyšev functionalT (f, g; a, b) , the generalised trapezoidal functionalGT (f ; a, x, b) and the
Ostrowski functionalΘ (f ; a, x, b) defined by

T (f, g; a, b) := M (fg; a, b)−M (f ; a, b)M (g; a, b)

GT (f ; a, x, b) :=

(
x− a

b− a

)
f (a) +

(
b− x

b− a

)
f (b)−M (f ; a, b)

and
Θ (f ; a, x, b) := f (x)−M (f ; a, b)
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4 P. CERONE

where the integral mean is defined by

(1.18) M (f ; a, b) :=
1

b− a

∫ b

a

f (x) dx.

This was made possible through the fact that bothGT (f ; a, x, b) andΘ (f ; a, x, b) satisfy
identities like (1.12) involving appropriate Peano kernels. Namely,

GT (f ; a, x, b) =

∫ b

a

q (x, t) df (t) , q (x, t) =
t− x

b− a
; x, t ∈ [a, b]

and

Θ (f ; a, x, b) =

∫ b

a

p (x, t) df (t) , (b− a) p (x, t) =

 t− a, t ∈ [a, x]

t− b, t ∈ (x, b]

respectively.
The reader is referred to [10], [13] and the references therein for applications of these to

numerical quadrature.
For other Grüss type inequalities, see the books [17] and [18], and the papers [9] – [14],

where further references are given.
Recently, Cerone and Dragomir [7] have pointed out generalisations of the above results for

integrals defined on two different intervals[a, b] and[c, d] .
Define the functional (generalisedČebyšev functional)

(1.19) T (f, g; a, b, c, d) := M (fg; a, b) +M (fg; c, d)

−M (f ; a, b)M (g; c, d)−M (f ; c, d)M (g; a, b)

then Cerone and Dragomir [7] proved the following result.

Theorem 1.3. Let f, g : I ⊆ R → R be measurable onI and the intervals[a, b] , [c, d] ⊂ I.
Assume that the integrals involved in (1.19) exist. Then we have the inequality

(1.20) |T (f, g; a, b, c, d)|

≤
[
T (f ; a, b) + T (f ; c, d) + (M (f ; a, b)−M (f ; c, d))2] 1

2

×
[
T (g; a, b) + T (g; c, d) + (M (g; a, b)−M (g; c, d))2] 1

2

where

(1.21) T (f ; a, b) :=
1

b− a

∫ b

a

f 2 (x) dx−
(

1

b− a

∫ b

a

f (x) dx

)2

,

and the integrals involved in the right of (1.20) exist andM (f ; a, b) is as defined by (1.18).

They used a generalisation of the classical identity due to Korkine namely,

(1.22) T (f, g; a, b, c, d) =
1

(b− a) (d− c)

∫ b

a

∫ d

c

(f (x)− f (y)) (g (x)− g (y)) dydx

and the fact that

(1.23) T (f, f ; a, b, c, d) = T (f ; a, b) + T (f ; c, d) + (M (f ; a, b)−M (f ; c, d))2 .

From the Grüss inequality (1.6), then from (1.21) we obtain forf (and equivalent expressions
for g)

T (f ; a, b) ≤
(
M1 −m1

2

)2

and T (f ; c, d) ≤
(
M2 −m2

2

)2

,
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ČEBYŠEV FUNCTIONAL 5

wherem1 ≤ f ≤M1 a.e. on[a, b] andm2 ≤ f ≤M2 a.e. on[c, d] .
Cerone and Dragomir [6] procured bounds for the generalisedČebyšev functional (1.19) in

terms of the integral means and bounds, off andg over the two intervals.
The following result was obtained in [1] forf andg of Hölder type involving the generalised

Čebyšev functional (1.19) with (1.18).

Theorem 1.4. Let f, g : I ⊆ R → R be measurable onI and the intervals[a, b], [c, d] ⊂ I.
Further, suppose thatf andg are of Hölder type so that forx ∈ [a, b], y ∈ [c, d]

(1.24) |f (x)− f (y)| ≤ H1 |x− y|r and |g (x)− g (y)| ≤ H2 |x− y|s ,
whereH1, H2 > 0 and r, s ∈ (0, 1] are fixed. The following inequality then holds on the
assumption that the integrals involved exist. Namely,

(1.25) (θ + 1) (θ + 2) |T (f, g; a, b, c, d)|

≤ H1H2

(b− a) (d− c)

[
|b− c|θ+2 − |b− d|θ+2 + |d− a|θ+2 − |c− a|θ+2

]
,

whereθ = r + s andT (f, g; a, b, c, d) is as defined by (1.19) and (1.18).

Another generaliseďCebyšev functional involving the mean of the product of two functions,
and the product of the means of each of the functions, where one is over a different interval was
examined in [7]. Namely,

(1.26) T (f, g; a, b, c, d) := M (fg; a, b)−M (f ; a, b)M (g; c, d) ,

which may be demonstrated to to satisfy the Körkine like identity

(1.27) T (f, g; a, b, c, d) =
1

(b− a) (d− c)

∫ b

a

∫ d

c

f (x) (g (x)− g (y)) dydx.

It may be noticed from (1.26) and (1.1) that2T (f, g; a, b; a, b) = T (f, g; a, b).
It may further be noticed that (1.15) is related to (1.19) by the identity

(1.28) T (f, g; a, b, c, d) = T (f, g; a, b, c, d) + T (g, f ; c, d, a, b) .

Theorem 1.5. Let f, g : I ⊆ R → R be measurable onI and the intervals[a, b] , [c, d] ⊂ I. In
addition, letm1 ≤ f ≤ M1 andn1 ≤ g ≤ N1 a.e. on[a, b] with n2 ≤ g ≤ N2 a.e. on[c, d].
Then the following inequalities hold

|T (f, g; a, b, c, d)|(1.29)

≤
[
T (f ; a, b) +M2 (f ; a, b)

] 1
2

×
{
T (g; a, b) + T (g; c, d) + [M (g; a, b)−M (g; c, d)]2

} 1
2

≤

[(
M1 −m1

2

)2

+M2 (f ; a, b)

] 1
2

×

{(
N1 − n1

2

)2

+

(
N2 − n2

2

)2

+ [M (g; a, b)−M (g; c, d)]2
} 1

2

,

whereT (f ; a, b) is as given by (1.21) andM (f ; a, b) by (1.18).

The generaliseďCebyšev functional (1.26) and Theorem 1.5 was used in [4] to obtain bounds
for a generalised Steffensen functional. It is also possible as demonstrated in [7] to recapture
the Ostrowski functional (1.7) from (1.26) by using a limiting argument.
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6 P. CERONE

2. THE ČEBYŠEV FUNCTIONAL IN A M EASURABLE SPACE SETTING

Let (Ω,A, µ) be a measurable space consisting of a setΩ, aσ – algebraA of parts ofΩ and
a countably additive and positive measureµ onA with values inR ∪ {∞} .

For aµ−measurable functionw : Ω → R, with w (x) ≥ 0 for µ – a.e.x ∈ Ω, consider the
Lebesgue spaceLw (Ω,A, µ) := {f : Ω → R, f isµ−measurable and

∫
Ω
w (x) |f (x)| dµ (x) <

∞}. Assume
∫

Ω
w (x) dµ (x) > 0.

If f, g : Ω → R areµ−measurable functions andf, g, fg ∈ Lw (Ω,A, µ) , then we may
consider thěCebyšev functional

(2.1) Tw (f, g) = Tw (f, g; Ω) :=
1∫

Ω
w (x) dµ (x)

∫
Ω

w (x) f (x) g (x) dµ (x)

− 1∫
Ω
w (x) dµ (x)

∫
Ω

w (x) f (x) dµ (x)

× 1∫
Ω
w (x) dµ (x)

∫
Ω

w (x) g (x) dµ (x) .

Remark 2.1. We note that a new measureν (x) may be defined such thatdν (x) ≡ w (x) dµ (x)
however, in the current article the weightw (x) and measureµ (x) are separated.

The following result is known in the literature as the Grüss inequality

(2.2) |Tw (f, g)| ≤ 1

4
(Γ− γ) (∆− δ) ,

provided

(2.3) −∞ < γ ≤ f (x) ≤ Γ <∞, −∞ < δ ≤ g (x) ≤ ∆ <∞

for µ – a.e.x ∈ Ω.
The constant1

4
is sharp in the sense that it cannot be replaced by a smaller quantity.

With the above assumptions and iff ∈ Lw (Ω,A, µ) then we may define

Dw (f) := Dw,1 (f)(2.4)

:=
1∫

Ω
w (x) dµ (x)

∫
Ω

w (x)

×
∣∣∣∣f (x)− 1∫

Ω
w (y) dµ (y)

∫
Ω

w (y) f (y) dµ (y)

∣∣∣∣ dµ (x) .

The following fundamental result was proved in [5].

Theorem 2.2. Letw, f, g : Ω → R beµ−measurable functions withw ≥ 0 µ− a.e. onΩ and∫
Ω
w (y) dµ (y) > 0. If f, g, fg ∈ Lw (Ω,A, µ) and there exists the constantsδ,∆ such that

(2.5) −∞ < δ ≤ g (x) ≤ ∆ <∞ for µ− a.e.x ∈ Ω,

then we have the inequality

(2.6) |Tw (f, g)| ≤ 1

2
(∆− δ)Dw (f) .

The constant1
2

is sharp in the sense that it cannot be replaced by a smaller quantity.
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ČEBYŠEV FUNCTIONAL 7

For f ∈ Lw,p (Ω,A, µ) :=
{
f : Ω → R,

∫
Ω
w (x) |f (x)|p dµ (x) <∞

}
, 1 ≤ p < ∞ and

f ∈ L∞ (Ω,A, µ) :=

{
f : Ω → R, ‖f‖Ω,∞ := ess sup

x∈Ω
|f (x)| <∞

}
, we may also define

Dw,p (f) :=

[
1∫

Ω
w (x) dµ (x)

∫
Ω

w (x)(2.7)

×
∣∣∣∣f (x)− 1∫

Ω
w (y) dµ (y)

∫
Ω

w (y) f (y) dµ (y)

∣∣∣∣p dµ (x)

] 1
p

=

∥∥∥f − 1∫
Ω wdµ

∫
Ω
wfdµ

∥∥∥
Ω,p[∫

Ω
w (x) dµ (x)

] 1
p

where‖·‖Ω,p is the usualp−norm onLw,p (Ω,A, µ) , namely,

‖h‖Ω,p :=

(∫
Ω

w |h|p dµ
) 1

p

, 1 ≤ p <∞,

and onL∞ (Ω,A, µ)

‖h‖Ω,∞ := ess sup
x∈Ω

|h (x)| <∞.

Cerone and Dragomir [5] produced the following result.

Corollary 2.3. With the assumptions of Theorem 2.2, we have

|Tw (f, g)|(2.8)

≤ 1

2
(∆− δ)Dw (f)

≤ 1

2
(∆− δ)Dw,p (f) if f ∈ Lw,p (Ω,A, µ) , 1 < p <∞;

≤ 1

2
(∆− δ)

∥∥∥∥f − 1∫
Ω
wdµ

∫
Ω

wfdµ

∥∥∥∥
Ω,∞

if f ∈ L∞ (Ω,A, µ) .

Remark 2.4. The inequalities in (2.8) are in order of increasing coarseness. If we assume that
−∞ < γ ≤ f (x) ≤ Γ <∞ for µ – a.e.x ∈ Ω, then by the Grüss inequality forg = f we have
for p = 2

(2.9)

[∫
Ω
wf 2dµ∫
Ω
wdµ

−
(∫

Ω
wfdµ∫

Ω
wdµ

)2
] 1

2

≤ 1

2
(Γ− γ) .

By (2.8), we deduce the following sequence of inequalities

|Tw (f, g)| ≤ 1

2
(∆− δ)

1∫
Ω
wdµ

∫
Ω

w

∣∣∣∣f − 1∫
Ω
wdµ

∫
Ω

wfdµ

∣∣∣∣ dµ(2.10)

≤ 1

2
(∆− δ)

[∫
Ω
wf 2dµ∫
Ω
wdµ

−
(∫

Ω
wfdµ∫

Ω
wdµ

)2
] 1

2

≤ 1

4
(∆− δ) (Γ− γ)

for f, g : Ω → R, µ – measurable functions and so that−∞ < γ ≤ f (x) < Γ < ∞,
−∞ < δ ≤ g (x) ≤ ∆ < ∞ for µ – a.e.x ∈ Ω. Thus the first inequality in (2.10) or (2.6) is a
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8 P. CERONE

refinement of the third which is the Grüss inequality (2.2). Further, (2.6) is also a refinement of
the second inequality in (2.10). We note that all the inequalities in (2.8) – (2.10) are sharp.

The second inequality in (2.10) under a less general setting was termed as a pre-Grüss in-
equality by Matíc, Pěcaríc and Ujevíc [16]. Bounds for thěCebyšev functional have been put
to good use by a variety of authors in providing perturbed numerical integration rules (see for
example the book [13]).

3. GENERALISED ČEBYŠEV FUNCTIONAL IN A M EASURABLE SPACE SETTING

Let the conditions of the previous section hold. Further, letχ, κ be two measurable subsets
of Ω andf, g : Ω → R be measurable functions such thatf, g, fg ∈ Lw (Ω,A, µ) then consider
the generaliseďCebyšev functional

(3.1) T ∗w (f, g;χ, κ) := Mw (fg;χ) +Mw (fg;κ)−Mw (f ;χ) · Mw (g;κ)

−Mw (g;χ) · Mw (f ;κ) ,

where

(3.2) Mw (f ;χ) :=
1∫

χ
w (x) dµ (x)

∫
χ

w (x) f (x) dµ (x) .

We note that ifχ ≡ κ ≡ Ω then,T ∗w (f, g; Ω,Ω) = 2Tw (f, g; Ω) .
The following theorem providing bounds on (3.1) then holds.

Theorem 3.1. Letw, f, g : Ω → R beµ−measurable functions withw ≥ 0, µ – a.e. onΩ and∫
χ
w (x) dµ (x) > 0,

∫
κ
w (x) dµ (x) > 0 for χ, κ ⊂ Ω. Further, letf, g, f 2, g2 ∈ Lw (Ω,A, µ) ,

then

(3.3) |T ∗w (f, g;χ, κ)| ≤ [Bw (f ;χ, κ)]
1
2 [Bw (g;χ, κ)]

1
2 ,

where

(3.4) Bw (f ;χ, κ) = Tw (f ;χ) + Tw (f ;κ) + [Mw (f ;χ)−Mw (f ;κ)]2

which, from (2.1)

(3.5) Tw (f ;χ) := Tw (f, f ;χ) = Mw

(
f 2;χ

)
− [Mw (f ;χ)]2

andMw (f ;χ) is as defined by (3.2).

Proof. It is a straight forward matter to demonstrate the following Korkine type identity for
T ∗w (f, g;χ, κ) holds. Namely,

(3.6) T ∗w (f, g;χ, κ) =
1∫

χ
w (x) dµ (x)

∫
κ
w (y) dµ (y)

×
∫

χ

∫
κ

w (x)w (y) (f (x)− f (y)) (g (x)− g (y)) dµ (y) dµ (x) .
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ČEBYŠEV FUNCTIONAL 9

Now, using the Cauchy-Buniakowski-Schwartz inequality for double integrals, we have from
(3.6)

|T ∗w (f, g;χ, κ)|2 ≤ 1∫
χ
w (x) dµ (x)

∫
κ
w (y) dµ (y)

×
∫

χ

∫
κ

w (x)w (y) (f (x)− f (y))2 dµ (y) dµ (x)

×
∫

χ

∫
κ

w (x)w (y) (g (x)− g (y))2 dµ (y) dµ (x)

= Tw (f, f ;χ, κ)Tw (g, g;χ, κ) .

However, by the Fubini theorem,

Tw (f, f ;χ, κ) =
1∫

χ
w (x) dµ (x)

∫
χ

w (x) f 2 (x) dµ (x)

+
1∫

κ
w (y) dµ (y)

∫
κ

w (y) f 2 (y) dµ (y)

− 2
1∫

χ
w (x) dµ (x)

∫
χ

w (x) f (x) dµ (x)

∫
κ

w (y) f (y) dµ (y)

= Tw (f ;χ) + Tw (f ;κ) + [Mw (f ;χ)−Mw (f ;κ)]2

and a similar expression holds forg.
Hence (3.3) holds where from (3.4),Bw (f ;χ, κ) = Tw (f, f ;χ, κ) andTw (f ;χ) is as given

by (3.5). �

Corollary 3.2. Let the conditions of Theorem 3.1 persist and in addition let

m1 ≤ f ≤M1 a.e. onχ andm2 ≤ f ≤M2 a.e. onκ,

n1 ≤ g ≤ N1 a.e. onχ andn2 ≤ g ≤ N2 a.e. onκ.

Then we have the inequality

(3.7) |T ∗w (f, g;χ, κ)|

≤

[(
M1 −m1

2

)2

+

(
M2 −m2

2

)2

+ (Mw (f ;χ)−Mw (f ;κ))2

] 1
2

×

[(
N1 − n1

2

)2

+

(
N2 − n2

2

)2

+ (Mw (g;χ)−Mw (g;κ))2

] 1
2

.

Proof. The proof follows directly from (3.3) – (3.5), where by the Grüss inequality (2.2)

Tw (f ;χ) = Tw (f, f ;χ) ≤
(
M1 −m1

2

)2

.

Similar inequalities forTw (f ;κ) , Tw (g;χ) andTw (g;κ) readily produce (3.7). �

Remark 3.3. If χ ≡ κ ≡ Ω andm1 = m2 =: m andM1 = M2 =: M thenMw (f ;χ) =
Mw (f ;κ) . If n1 = n2 =: n andN1 = N2 =: N with χ ≡ κ ≡ Ω we haveMw (g;χ) =
Mw (g;κ) . Thus we recapture the Grüss inequality

|T ∗w (f, g; Ω,Ω)| = 2 |Tw (f, g; Ω)| ≤ 2 ·
(
M −m

2

)(
N − n

2

)
.
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Following in the same spirit as (1.23) consider the generalisedČebyšev functional

(3.8) T †w (f, g;χ, κ) := Mw (fg;χ)−Mw (g;χ)Mw (f ;κ) ,

whereMw (f ;χ) is as defined by (3.2) andχ, κ ⊂ Ω.
T †w (f, g;χ, κ) may be shown to satisfy a Körkine type identity

(3.9) T †w (f, g;χ, κ) =
1∫

χ
w (x) dµ (x)

∫
κ
w (y) dµ (y)

×
∫

χ

∫
κ

w (x)w (y) g (x) (f (x)− f (y)) dµ (y) dµ (x) .

The following theorem then provides bounds for (3.8) using (3.9), where the proof mimicks
that used in obtaining bounds forT ∗w (f, g;χ, κ) and will thus be omitted.

Theorem 3.4. Let w, f, g : Ω → R be µ−measurable functions withw ≥ 0, µ – a.e. on
Ω and

∫
χ
w (x) dµ (x) > 0 and

∫
κ
w (x) dµ (x) > 0 whereχ, κ ⊂ Ω. Further, letf, g, fg ∈

Lw (Ω,A, µ) then, form1 ≤ g ≤ M1 andn1 ≤ f ≤ N1 a.e. onχ with n2 ≤ f ≤ N2 a.e. onκ,
the following inequalities hold. Namely,∣∣T †w (f, g;χ, κ)

∣∣(3.10)

≤
[
Tw (g;χ) +M2

w (g;χ)
] 1

2

×
{
Tw (f ;χ) + Tw (f ;κ) + [Mw (f ;χ)−Mw (f ;κ)]2

} 1
2

≤

[(
M1 −m1

2

)2

+M2
w (g;χ)

] 1
2

×

{(
N1 − n1

2

)2

+

(
N2 − n2

2

)2

+ [Mw (f ;χ)−Mw (f ;κ)]2
} 1

2

,

whereTw (f ;χ) andMw (f ;χ) are as defined in (3.5) and (3.2) respectively.

4. FURTHER GENERALISED ČEBYŠEV FUNCTIONAL BOUNDS

Let the conditions as described in Section 2 continue to hold. Letχ, κ be measurable subsets
of Ω and define

D†
w (f ;χ, κ) := D†

w,1 (f ;χ, κ)(4.1)

:= Mw (|f (x)−Mw (f ;κ)| , χ) ,

whereMw (f ;χ) is as defined by (3.9).
The following theorem holds providing bounds for the generalisedČebyšev functionalT †w (f, g;χ, κ)

defined by (3.4).

Theorem 4.1. Let w, f, g : Ω → R be µ−measurable functions withw ≥ 0 µ−a.e. on
Ω. Further, let χ, κ ⊂ Ω and

∫
χ
w (x) dµ (x) > 0 and

∫
κ
w (y) dµ (y) > 0. If f, g, fg ∈

Lw (Ω,A, µ) and there are constantsδ,∆ such that

−∞ < δ ≤ g (x) ≤ ∆ <∞ for µ− a.e. x ∈ χ,
then we have the inequality

(4.2)

∣∣∣∣T †w (f, g;χ, κ)− ∆ + δ

2
[Mw (f ;χ)−Mw (f ;κ)]

∣∣∣∣ ≤ ∆− δ

2
D†

w (f ;χ, κ) ,
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whereD†
w (f ;χ, κ) is as defined by (4.1).

The constant1
2

is sharp in (4.2) in that it cannot be replaced by a smaller quantity.

Proof. From (3.4) we have the identity

(4.3) T †w (f, g;χ, κ) =
1∫

χ
w (x) dµ (x)

∫
χ

w (x) g (x) (f (x)−Mw (f ;κ)) dµ (x) .

Consider the measurable subsetsχ+ andχ− of χ defined by

(4.4) χ+ := {x ∈ χ|f (x)−Mw (f ;κ) ≥ 0}

and

(4.5) χ− := {x ∈ χ|f (x)−Mw (f ;κ) < 0}

so thatχ = χ+ ∪ χ− andχ+ ∩ χ− = ∅.
If we define

I+ (f, g, w) :=

∫
χ+

w (x) g (x) (f (x)−Mw (f ;κ)) dµ (x) and(4.6)

I− (f, g, w) :=

∫
χ−

w (x) g (x) (f (x)−Mw (f ;κ)) dµ (x)

then we have from (4.3)

(4.7) T †w (f, g;χ, κ)

∫
χ

w (x) dµ (x) = I+ (f, g, w) + I− (f, g, w) .

Since−∞ < δ ≤ g (x) ≤ ∆ <∞ for µ -a.e.x ∈ χ andµ−a.e.x ∈ Ω we may write

(4.8) I+ (f, g, w) ≤ ∆

∫
χ+

w (x) (f (x)−Mw (f ;κ)) dµ (x)

and

(4.9) I− (f, g, w) ≤ δ

∫
χ−

w (x) (f (x)−Mw (f ;κ)) dµ (x) .

Now, the identity

[Mw (f ;χ)−Mw (f ;κ)]

∫
χ

w (x) dµ (x)(4.10)

=

∫
χ

w (x) (f (x)−Mw (f ;κ)) dµ (x)

=

∫
χ+

w (x) (f (x)−Mw (f ;κ)) dµ (x)

+

∫
χ−

w (x) (f (x)−Mw (f ;κ)) dµ (x)

holds so that we have from (4.9)

(4.11) I− (f, g, w) ≤ −δ
∫

χ+

w (x) (f (x)−Mw (f ;κ)) dµ (x)

+ δ [Mw (f ;χ)−Mw (f ;κ)]

∫
χ

w (x) dµ (x) .
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That is, combining (4.8) and (4.11) we have from (4.7)

(4.12) T †w (f, g;χ, κ) ≤ ∆− δ∫
χ
w (x) dµ (x)

∫
χ+

w (x) (f (x)−Mw (f ;κ)) dµ (x)

+ δ [Mw (f ;χ)−Mw (f ;κ)] .

Further, we have∫
χ

w (x) |f (x)−Mw (f ;κ)| dµ (x) =

∫
χ+

w (x) (f (x)−Mw (f ;κ)) dµ (x)

−
∫

χ−

w (x) (f (x)−Mw (f ;κ)) dµ (x) ,

giving, from (4.10),

(4.13)
∫

χ

w (x) |f (x)−Mw (f ;κ)| dµ (x)

+ [Mw (f ;χ)−Mw (f ;κ)]

∫
χ

w (x) dµ (x)

= 2

∫
χ+

w (x) (f (x)−Mw (f ;κ)) dµ (x) .

Substitution of (4.13) into (4.12) produces

(4.14) T †w (f, g;χ, κ) ≤ ∆− δ

2
· 1∫

χ
w (x) dµ (x)

∫
χ

w (x) |f (x)−Mw (f ;κ)| dµ (x)

+
∆ + δ

2
[Mw (f ;χ)−Mw (f ;κ)] .

Now, we may see from (4.14) that

T †w (−f, g;χ, κ) = −T †w (f, g;χ, κ)

and so

(4.15) − T †w (f, g;χ, κ)

≤ ∆− δ

2
· 1∫

χ
w (x) dµ (x)

∫
χ

w (x) |f (x)−Mw (f ;κ)| dµ (x)

− ∆ + δ

2
[Mw (f ;χ)−Mw (f ;κ)] .

Combining (4.14) and (4.15) gives the result (4.2).
Now for the sharpness of the constant1

2
.

To show this, it is perhaps easiest to letMw (f ;χ) = Mw (f ;κ) in which instance the result
of Theorem 2.2, namely, (2.6) is recaptured which was shown to be sharp in [5].

The proof is now complete. �

Remark 4.2. It should be noted that the result of Theorem 4.1 is a generalisation of Theorem
2.2 to involving means over different setsχ andκ. If we takeχ = κ = Ω in (4.2) then the result
(2.6), which was proven in [5] is regained.

Following in the spirit of Section 2, we may define forχ, κ measurable subsets ofΩ

(4.16) D†
w,p (f ;χ, κ) := [Mw (|f (·)−Mw (f ;κ)|p ;χ)]

1
p , 1 ≤ p <∞
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and

(4.17) D†
w,∞ (f ;χ, κ) := ess sup

x∈χ
|f (x)−Mw (f ;κ)| .

The following corollary then holds.

Corollary 4.3. Let the conditions of Theorem 4.1 persist, then we have∣∣∣∣T †w (f, g;χ, κ)− ∆ + δ

2
[Mw (f ;χ)−Mw (f ;κ)]

∣∣∣∣(4.18)

≤ ∆− δ

2
D†

w,1 (f ;χ, κ)

≤ ∆− δ

2
D†

w,p (f ;χ, κ) , f ∈ Lw,p (Ω,A, µ) , 1 ≤ p <∞,

≤ ∆− δ

2
D†

w,∞ (f ;χ, κ) , f ∈ L∞ (Ω,A, µ) ,

whereD†
w,p (f ;χ, κ) andD†

w,∞ (f ;χ, κ) are as defined in (4.16) and (4.17) respectively.
The constant1

2
is sharp in all the above inequalities.

Proof. From the Sonin type identity (4.3) we have

(4.19) T †w (f ;χ, κ)− ∆ + δ

2
[Mw (f ;χ)−Mw (f ;κ)]

=
1∫

χ
w (x) dµ (x)

∫
χ

w (x)

(
g (x)− ∆ + δ

2

)
(f (x)−Mw (f ;κ)) dµ (x) .

Now, the first result in (4.18) was obtained in Theorem 4.1 in the guise of (4.2). However, it
may be obtained directly from the identity (4.19) since∣∣∣∣T †w (f ;χ, κ)− ∆ + δ

2
[Mw (f ;χ)−Mw (f ;κ)]

∣∣∣∣(4.20)

≤ 1∫
χ
w (x) dµ (x)

∫
χ

w (x)

∣∣∣∣g (x)− ∆ + δ

2

∣∣∣∣ |f (x)−Mw (f ;κ)| dµ (x)

≤ ess sup
x∈χ

∣∣∣∣g (x)− ∆ + δ

2

∣∣∣∣D†
w,1 (f ;χ, κ) .

Now, for−∞ < δ ≤ g (x) ≤ ∆ <∞ for x ∈ χ, then

(4.21) ess sup
x∈χ

∣∣∣∣g (x)− ∆ + δ

2

∣∣∣∣ =
∆− δ

2

and so the first inequality in (4.17) results.
Further, we have, using Hölder’s inequality

D†
w,1 (f ;χ, κ) =

1∫
χ
w (x) dµ (x)

∫
χ

w (x) |f (x)−Mw (f ;κ)| dµ (x)

≤ D†
w,p (f ;χ, κ)

≤ D†
w,∞ (f ;χ, κ) ,

where we have used (4.16) and (4.17) producing the remainder of the results in (4.18) from
(4.20) and (4.21).

The sharpness of the constants follows from Hölder’s inequality and the sharpness of the first
inequality proven earlier. �
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Remark 4.4. We note that

(4.22) T †w (f, g;χ, κ)− ∆ + δ

2
[Mw (f ;χ)−Mw (f ;κ)]

= Tw (f, g;χ) +

[
Mw (g;χ)− ∆ + δ

2

]
[Mw (f ;χ)−Mw (f ;κ)]

so that

T †w (f, g;χ, κ) = Tw (f, g;χ)

if either or bothMw (g;χ) ≡ ∆+δ
2

andMw (f ;χ) ≡Mw (f ;κ) hold.
Thus Theorem 4.1 and Corollary 4.3 are generalisations of Theorem 2.2 and Corollary 2.3

respectively.

Corollary 4.5. Let the conditions in Theorem 4.1 hold and further assume thatκ is chosen in
such a way thatMw (f ;κ) = 0, then∣∣∣∣Mw (fg;χ)− ∆ + δ

2
Mw (f ;χ)

∣∣∣∣(4.23)

≤ ∆− δ

2
Mw (|f | ;χ)

≤ ∆− δ

2
[Mw (|f |p ;χ)]

1
p , f ∈ Lw,p (Ω,A, µ) ,

≤ ∆− δ

2
ess sup

x∈χ
|f (x)| , f ∈ L∞ (Ω,A, µ) ,

The constant1
2

is sharp in the above inequalities.

Proof. TakingMw (f ;κ) = 0 in (4.18) and , using (3.8), (4.16) and (4.17) readily produces the
stated result. �

Remark 4.6. The result (4.23) provides ǎCebyšev-like expression in which the arithmetic
average of the upper and lower bounds of the functiong (·) is in place of the traditional integral
mean. The above formulation may be advantageous if the norms off (·) are known or are more
easily calculated than the shifted norms.

Remark 4.7. Similar results as procured forT †w (f, g;χ, κ) may be obtained for the generalised
Čebyšev functionalT ∗w (f, g;χ, κ) as defined by (3.1). We note that

T ∗w (f, g;χ, κ) = T †w (f, g;χ, κ) + T †w (f, g;κ, χ)(4.24)

=
1∫

χ
w (x) dµ (x)

∫
χ

w (x) g (x) (f (x)−Mw (f ;κ)) dµ (x)

+
1∫

κ
w (y) dµ (y)

∫
κ

w (y) g (y) (f (y)−Mw (f ;χ)) dµ (y) .

As an example, we consider a result corresponding to (4.2). Assume that the conditions of
Theorem 4.1 hold and let

−∞ < δ1 ≤ g (x) ≤ ∆1 <∞ for µ− a.e.x ∈ χ

with

−∞ < δ2 ≤ g (x) ≤ ∆2 <∞ for µ− a.e.x ∈ κ.
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Then from (4.24), we have

(4.25)

∣∣∣∣T ∗w (f, g;χ, κ)−
(

∆2 + δ2
2

+
∆1 + δ1

2

)
[Mw (f ;χ)−Mw (f ;κ)]

∣∣∣∣
≤ ∆1 − δ1

2
D†

w (f ;χ, κ) +
∆2 − δ2

2
D†

w (f ;κ, χ) .

whereD†
w (f ;χ, κ) is as defined in (4.1). We notice from (4.25) that

|T ∗w (f, g;χ, κ)− (∆ + δ) [Mw (f ;χ)−Mw (f ;κ)]|

≤ ∆− δ

2

[
D†

w (f ;χ, κ) +D†
w (f ;κ, χ)

]
,

whereδ1 = δ2 = δ and∆1 = ∆2 = ∆.

Similar results forT ∗w (f, g;χ, κ) to those expounded in Corollary 4.3 forT †w (f, g;χ, κ) may
be obtained, however these will not be considered any further here.

5. SOME SPECIFIC I NEQUALITIES

Some particular specialisation of the results in the previous sections will now be examined.
New results are provided by these specialisations.
A. Letw, f, g : I → R be Lebesgue integrable functions withw ≥ 0 a.e. on the intervalI
and

∫
I
w (x) dx > 0. If f, g, fg ∈ Lw,1 (I) , where

Lw,p (I) :=

{
f : I → R

∣∣∣∣∫
I

w (x) |f (x)|p dx <∞
}

and
L∞ (I) := ess sup

x∈I
|f (x)|

and
−∞ < δ ≤ g (x) ≤ ∆ <∞ for x ∈ [a, b] ⊂ I,

then we have the inequality, for[c, d] ⊂ I,∣∣∣∣T †w (f, g; [a, b] , [c, d])− ∆ + δ

2
[Mw (f ; [a, b])−Mw (f ; [c, d])]

∣∣∣∣(5.1)

≤ ∆− δ

2
Mw (|f (·)−Mw (f ; [c, d])| ; [a, b])

≤ ∆− δ

2
[Mw (|f (·)−Mw (f ; [c, d])|p ; [a, b])]

1
p , f ∈ Lw,p [I]

≤ ∆− δ

2
ess sup

x∈[a,b]

|f (x)−Mw (f ; [c, d])| , f ∈ L∞ [I] ,

where
T †w (f, g; [a, b] , [c, d]) = Mw (fg; [a, b])−Mw (g; [a, b])Mw (f ; [c, d])

and

Mw (f ; [a, b]) :=
1∫ b

a
w (x) dx

∫ b

a

w (x) f (x) dx.

The constant1
2

is sharp for all the inequalities in (5.1).
To obtain the result (5.1), we have identified[a, b] with χ and[c, d] with κ in the preceding

work specifically in (4.2).
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If we take[a, b] = [c, d] then results obtained in [5] are captured. Further, takingw (x) = 1,
x ∈ I produces a result obtained in [11] from the first inequality in (5.1).

B. Let ā = (a1, . . . , an) , b̄ = (b1, . . . , bn) , p̄ = (p1, . . . , pn) ben−tuples of real numbers
with pi ≥ 0, i ∈ {1, 2, . . . , n} and withPk =

∑k
i=1 pi, Pn = 1. Further, if

b ≤ bi ≤ B, i ∈ {1, 2, . . . , n}

then form ≤ n∣∣∣∣∣
n∑

i=1

piaibi −
B + b

2

[
n∑

i=1

piai −
1

Pm

m∑
j=1

pjaj

]
− 1

Pm

m∑
j=1

pjaj ·
n∑

i=1

pibi

∣∣∣∣∣(5.2)

≤ B − b

2

n∑
i=1

pi

∣∣∣∣∣ai −
1

Pm

m∑
j=1

pjaj

∣∣∣∣∣
≤ B − b

2

[
n∑

i=1

pi

∣∣∣∣∣ai −
1

Pm

m∑
j=1

pjaj

∣∣∣∣∣
α] 1

α

, 1 < α <∞

≤ B − b

2
max
i∈1,n

∣∣∣∣∣ai −
1

Pm

m∑
j=1

pjaj

∣∣∣∣∣ .
If
∑m

j=1 pjaj = 0, then the above results simplify.
The constant1

2
is sharp for all the inequalities in (5.1).

If pi = 1, i ∈ {1, . . . , n} then the following unweighted inequalities may be stated from
(5.2). Namely, ∣∣∣∣∣ 1n

n∑
i=1

aibi −
1

m

m∑
i=1

ai ·
1

n

n∑
i=1

bi −
B + b

2

[
1

n

n∑
i=1

ai −
1

m

m∑
j=1

aj

]∣∣∣∣∣(5.3)

≤ B − b

2

1

n

n∑
i=1

∣∣∣∣∣ai −
1

m

m∑
j=1

aj

∣∣∣∣∣
≤ B − b

2

(
1

n

n∑
i=1

∣∣∣∣∣ai −
1

m

m∑
j=1

aj

∣∣∣∣∣
α) 1

α

≤ B − b

2
max
i∈1,n

∣∣∣∣∣ai −
1

m

m∑
j=1

aj

∣∣∣∣∣ .
Form = n andai = bi for eachi ∈ {1, 2, . . . , n} then from (5.2),

0 ≤
n∑

i=1

pib
2
i −

(
n∑

i=1

pibi

)2

≤ B − b

2

n∑
i=1

pi

∣∣∣∣∣bi −
n∑

j=1

pjbj

∣∣∣∣∣ ≤
(
B − b

2

)2

,

providing a counterpart to the Schwartz inequality.
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