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ABSTRACT. Carleman’s inequality reads

a1 +
√

a1a2 + ... + k
√

a1...ak < e (a1 + a2 + ....) ,

whereak , k = 1, 2, ...., are positive numbers. In this paper we present some simple proofs of and
several remarks (e.g. historical) about the inequality and its corresponding continuous version.
Moreover, we discuss and comment on some very new results. We also include some new proofs
and results e.g. a weight characterization of a general weighted Carleman type inequality for the
case 0< p≤ q <∞. We also include some facts about T. Carleman and his work.

Key words and phrases:Inequalities, Carleman’s inequality, Pólya-Knopp’s inequality, Sharp constants, Proofs, Weights, His-
torical remarks.
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1. I NTRODUCTION

In this paper we discuss the following remarkable inequality:

(1.1) a1 +
√

a1a2 + · · ·+ k
√

a1a2 · · · ak < e (a1 + a2 + · · · ) ,

wherea1, a2, ... are positive numbers and
∑∞

i=1 ai is convergent. This inequality was pre-
sented in 1922 in [8] by the Swedish mathematician Torsten Carleman (1892-1942) and it is
called Carleman’s inequality. Carleman discovered this inequality during his important work
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2 MARIA JOHANSSON, LARS-ERIK PERSSON, AND ANNA WEDESTIG

on quasianalytical functions and he could hardly have imagined at that time that this discovery
would be an object of such great interest. The continuous version of (1.1) reads

(1.2)
∫ ∞

0

exp

(
1

x

∫ x

0

ln f(t)dt

)
dx < e

∫ ∞

0

f(x)dx,

wheref(t) > 0 and it is sometimes called Knopp’s inequality with reference to [32] (cf. Remark
3.2). However, it seems that it was G. Pólya who first discovered this inequality (see Remark
2.3). Therefore we prefer to call itPólya-Knopp’s inequality.

In Section 2 of this paper we present several proofs of and remarks on (1.1). In Section 3 we
prove that (1.2) implies (1.1) and present some proofs of (1.2) (and thus some more proofs of
(1.1)).

In Section 4 we give some examples of recently published generalizations of (1.1) and (1.2).
We discuss and comment on these results and put them into the frame presented above. We
also include some new proofs and results, namely, we prove a new weight characterization of
a general weighted Carleman type inequality for the case0 < p ≤ q < ∞, i.e., we prove a
necessary and sufficient condition on the sequences{bk}∞k=1 and{dk}∞k=1 so that the inequality

(1.3)

(
∞∑

k=1

( k
√

a1a2 · · · ak)
q
bk

) 1
q

≤ C

(
∞∑

k=1

ap
kdk

) 1
p

holds for some finite and positive constantC and for all sequences{ak}∞k=1of non-negative
numbers. Moreover, we give upper and lower estimates of the best constantC in the inequality
(the corresponding operator norm). Finally, we include some facts about Torsten Carleman
and his work, which we have found, for example, by studying [31] and [58] and this partly
complements the information given by Professor Lars Gårding in his excellent description in
[19].

2. SOME PROOFS OF (1.1)

Proof 1.(Rough sketch of Carleman’s original proof) Carleman first noted that the problem can
be solved by finding a maximum of the expression

k∑
i=1

(a1a2 · · · ai)
1
i

under the constraint
k∑

i=1

ai = 1.

He then substitutedai = e−xi and obtained the simpler problem:
Find a maximumMk for k = 1, 2, . . . of

G =
k∑

i=1

e−
x1+x2+···+xi

i

under the constraint

H =
k∑

i=1

e−xi = 1.

This problem can be solved by using the Lagrange multiplier method. Unfortunately this leads
to some technical calculations, which of course Carleman carried out in an elegant way. We
leave out these calculations here, and only refer to Carleman’s paper [8], where all the details
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CARLEMAN ’ S INEQUALITY 3

are presented. The result is thatMk < e for all k ∈ Z+. Carleman then showed separately that
the inequality (1.1) is strict when the sum on the left hand side converges.

�

Remark 2.1. In the same paper [8], Carleman proved that the inequality (1.1) does not hold in
general for any constantC < e, i.e., that the constante is sharp.

Proof 2.(via Hardy’s inequality)
The discrete version of Hardy’s inequality reads (see [21], [23])

(2.1)
∞∑

k=1

(
1

k

k∑
i=1

ai

)p

<

(
p

p− 1

)p ∞∑
k=1

ap
k, p > 1.

Replaceai with a
1
p

i and note that by using thatx = eln x and the definition of the derivative we
find that (

1

k

k∑
i=1

a
1
p

i

)p

= exp
1

p

(
ln

k∑
i=1

a
1
p

i − ln
k∑

i=1

a0
i

)

→ exp

([
D(ln

k∑
i=1

ax
i )

]
x=0

)
(whenp →∞)

= exp

([
k∑

i=1

ax
i ln ai/

k∑
i=1

ax
i

]
x=0

)

= exp
1

k

k∑
i=1

ln ai =

(
k∏

i=1

ai

) 1
k

and we see that (2.1) leads to the non-strict inequality (1.1) since
(

p
p−1

)p

→ e whenp → ∞.

Observe that this method does not automatically prove that we have strict inequality in (1.2)
and this has to be proved separately (see for example our later proofs).

�

Remark 2.2. G.H. Hardy formulated his inequality (2.1) in 1920 in [20] and proved it in 1925
[21] but it seems that Carleman did not know about the inequality (2.1) at this time, since he does
not refer to the simple connection that holds according to the proof above. This is somewhat
remarkable since Carleman worked together with Hardy at that time, see for example their joint
paper [9].

Remark 2.3. The above means that (1.1) may be considered as a limit inequality for the scale
(2.1) of Hardy inequalities. This was pointed out by G.H. Hardy in 1925 in the paper [21, p.
156], but he pronounced that it was G. Pólya who made him aware of this interesting fact.

We now present two proofs which are based on variations of the arithmetic-geometric mean
inequality (the AG-inequality).

Proof 3.We use the AG-inequality together with the fact that

(2.2)
(k + 1)k

k!
=

(
1 +

1

1

)(
1 +

1

2

)2

· · ·
(

1 +
1

k

)k

< ek
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4 MARIA JOHANSSON, LARS-ERIK PERSSON, AND ANNA WEDESTIG

to obtain
∞∑
i=1

ai =
∞∑
i=1

iai

∞∑
k=i

1

k(k + 1)

=
∞∑

k=1

1

k(k + 1)

k∑
i=1

iai

=
∞∑

k=1

a1 + 2a2 + · · ·+ kak

k(k + 1)

>

∞∑
k=1

1

k + 1

(
k!

k∏
1

ai

) 1
k

=
∞∑

k=1

(
k!

(k + 1)k

) 1
k
(

k∏
i=1

ai

) 1
k

≥ 1

e

∞∑
k=1

(
k∏

i=1

ai

) 1
k

.

This strict inequality holds, since we cannot have equality at the same time in all terms of the
inequality. This can only occur ifak = c

k
for somec > 0 but this cannot hold since

∑∞
1 ak is

convergent.
�

Remark 2.4. In the paper [20, p. 77], G.H. Hardy presented essentially this proof but he also
pronounced that it was G. Knopp who pointed out this proof to him.

Proof 4.Because of the AG-inequality the following holds for everyi = 1, 2, . . . , everyk and
all ci > 0:

(2.3)

(
k∏
1

ai

) 1
k

=

(
k∏
1

ci

)− 1
k
(

k∏
1

ciai

) 1
k

≤

(
k∏
1

ci

)− 1
k

1

k

k∑
i=1

ciai.

We now chooseci = (1+i)i

ii−1 , i = 1, 2, . . . , k. Then

(2.4)

(
k∏
1

ci

) 1
k

= k + 1

and (2.3) and (2.4) give that
∞∑

k=1

k
√

a1a2 · · · ak ≤
∞∑

k=1

1

k (k + 1)

k∑
i=1

ciai

=
∞∑
i=1

ciai

∞∑
k=i

1

k (k + 1)

=
∞∑
i=1

ciai/i =
∞∑
i=1

ai

(
1 +

1

i

)i

≤ e
∞∑
i=1

ai.

The strict inequality can be proved in a similar manner to Proof 3.
�

Remark 2.5. This proof was presented by G. Pólya (see [47, p. 249]) but here we follow the
presentation which can be found in Professor Lars Hörmander’s book [26, p. 24].
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Proof 5.(Carleson’s proof)
We first note that we can assume thata1 ≥ a2 ≥ · · · (because the sum on the left hand side of
(1.1) obviously becomes the greatest if the sequence{ai} is rearranged in non-increasing order
while the sum at the right hand side will be the same for every rearrangement). Letm(x) be a

polygon through the points(0, 0) and
(
k,
∑k

1 log(1/ai)
)

, k = 1, 2, . . . The functionm(x) is

obviously convex and because of that it holds that for everyr > 1

(2.5) m(rx) ≥ m(x) + (r − 1)xm′(x).

Furthermore

(2.6) m′(x) = log(1/ak), x ∈ (k − 1, k) ,

and sincem (0) = 0 andm is convex we have

m(x)

x
=

m(x)−m(0)

x
≤ m(k)−m(0)

k
(2.7)

=
m(k)

k
=

1

k

k∑
1

log(1/ai) for all x ≤ k.

We now make a substitution and use Hölder’s inequality and (2.5). Then, we find, for every
A > 0 andr > 1,

1

r

∫ A

0

e−m(x)/xdx ≤ 1

r

∫ rA

0

e−m(x)/xdx

=

∫ A

0

e−m(rx)/rxdx

≤
∫ A

0

e−m(x)/rx−((r−1)/r)m′(x)dx

≤
(∫ A

0

e−m(x)/xdx

) 1
r
(∫ A

0

e−m′(x)dx

) (r−1)
r

so that ∫ A

0

e−m(x)/xdx ≤ r
r

r−1

∫ A

0

e−m′(x)dx.

We letA →∞, r → 1+ and note thatr
r

r−1 → e so that

(2.8)
∫ ∞

0

e−m(x)/xdx ≤ e

∫ ∞

0

e−m′(x)dx.

We now use (2.6) and (2.7) and get∫ ∞

0

e−m′(x)dx =
∞∑

k=1

∫ k

k−1

e−m′(x)dx =
∞∑

k=1

e− log(1/ak) =
∞∑

k=1

ak,

respectively,∫ ∞

0

e−m(x)/xdx =
∞∑

k=1

∫ k

k−1

e−m(x)/xdx

≥
∞∑

k=1

exp

(
−1

k

k∑
i=1

log

(
1

ai

))
=

∞∑
k=1

(
k∏

i=1

ai

) 1
k

.
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6 MARIA JOHANSSON, LARS-ERIK PERSSON, AND ANNA WEDESTIG

The non-strict inequality (1.1) follows by using these estimates and (2.8). The strict inequality
follows from the fact that we cannot have equality in (2.7) at the same time for allx andk.

�

Remark 2.6. This is L. Carleson’s proof (see [10]) and in fact he proved that the even more
general inequality (2.8) holds for every piecewise differentiable convex functionm(x) on [0,∞]
such thatm(0) = 0. In fact, Carleson formulated his inequality in the following slightly more
general form:

(2.9)
∫ ∞

0

xke−m(x)/xdx ≤ ek+1

∫ ∞

0

xke−m′(x)dx, k > −1.

Proof 6. (via Redheffer’s inequality) R.M. Redheffer proved in 1967 the following interesting
inequality (see [48] and also [49]):

(2.10) nGn +
n∑

k=1

k (bk − 1) Gk ≤
n∑

k=1

akb
k
k,

which holds for alln = 1, 2, . . . and all positive sequences{bk} and whereGk =
(∏k

i=1 ai

) 1
k
.

In particular, we see that if

a) bk = 1, k = 1, 2, . . . , thenGn ≤ 1
n

∑n
k=1 ak = An, i.e. the AG-inequality,

b) bk = 1 + 1
k
, k = 1, 2, . . . , thennGn +

∑n
k=1 Gk ≤

∑n
k=1

(
1 + 1

k

)k
ak,

which implies that the non-strict inequality (1.1) follows whenn → ∞. The strict inequality
can also be proved by using the arguments in the following proof of the inequality (2.10). We
use the elementary inequality

(2.11) 1 + a (x− 1) ≤ xa, x > 0, a > 1,

(a simple proof of (2.11) can be obtained by puttingα = 1
a

and replacingx with xa in the
following form of the AG-inequality:xα11−α ≤ αx + (1− α) 1). We now use (2.11) with
a = k andx = Gk

Gk−1
bk (k ≥ 2) to obtain

1 + k

(
Gk

Gk−1

bk − 1

)
≤
(

Gk

Gk−1

bk

)k

=
ak

Gk−1

bk
k,

which can be written as

(2.12) Gk−1 + k (Gkbk −Gk−1) ≤ akb
k
k.

We use (2.12) withk = n to get

Gn−1 + n (Gnbn −Gn−1) ≤ anb
n
n

i.e.
nGn + n (bn − 1) Gn − anb

n
n ≤ (n− 1) Gn−1.

In the same way we have, by using (2.12) withk = n− 1, n− 2, . . . , 2,

(n− 1) Gn−1 + (n− 1) (bn−1 − 1) Gn−1 − an−1b
n−1
n−1 ≤ (n− 2) Gn−2

...
2G2 + 2 (b2 − 1) G2 − a2b

2
2 ≤ G1.

ObviouslyG1 = a1 so thatG1 + (b1 − 1) G1 − a1b1 = 0 and the inequality (2.10) follows by
summing the inequalities above.

�
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CARLEMAN ’ S INEQUALITY 7

Remark 2.7. The proof above is somewhat more complicated than the other proofs but it leads
to a better result. In fact, this method of proving inequalities uses a well-known principle which
is sometimes referred to as Redheffer’s recursion principle (see [48]). This principle can also
be used to improve several other classical inequalities.

Leta(n) = {a1, a2, . . . , an} be a positive sequence(n = 1, 2, . . . ). We define the powermeans
Mr,n of a(n) in the following way:

Mr,n = Mr,n

(
a(n)
)

=



(
1
n

n∑
k=1

ar
k

) 1
r

, r 6= 0,

(
n∏

k=1

ak

) 1
n

, r = 0.

Note thatAn = M1,n, Gn = M0,n andHn = M−1,n are the usual arithmetic, geometric and
harmonic means, respectively. We also look at the following sequence of powermeans:

M r,n = (Mr,1, Mr,2, . . . ,Mr,n) .

In 1996 B. Mond and J. Pečaríc proved the following interesting inequality (between iterative
powermeans), (see [38]):

(2.13) Ms,n (M r,n) ≤ Mr,n (M s,n) ,

for everyr ≤ s. We have equality if and only ifa1 = · · · = an. The next proof is based on this
result.

Proof 7.We use (2.13) withs = 1 andr = 0 to obtain

(2.14)
1

n

n∑
k=1

Gk ≤

(
n∏

k=1

(
1

k

k∑
i=1

ai

)) 1
n

.

By using this inequality and the fact that
k∑

i=1

ai ≤
n∑

i=1

ai , k ≤ n,

we find that

(2.15)
n∑

k=1

Gk ≤
n

n
√

n!

n∑
k=1

ak.

We use our previous estimate (2.2) withk = n− 1 and get

nn

n!
=

nn−1

(n− 1)!
< en−1 , i.e.,

n
n
√

n!
< e1− 1

n .

By combining this inequality with (2.14) we have

(2.16)
n∑

k=1

(
k∏

i=1

ai

) 1
k

< e1− 1
n

n∑
k=1

ak.

The non-strict inequality (1.1) follows when we letn →∞. The fact that the inequality actually
is strict follows from the fact that equality in (2.15) only can occur when allai are equal, but
this cannot be true under our assumption that

∑∞
k=1 ak is convergent.

�
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8 MARIA JOHANSSON, LARS-ERIK PERSSON, AND ANNA WEDESTIG

Remark 2.8. More information about how (2.13) can be used to prove and improve inequalities
can be found in the fairly new papers [11] and [12].

Remark 2.9. We note that if we, in the proof above, combine (2.14) with the following variant
of the AG-inequality(

n∏
k=1

1

k

k∑
i=1

ai

) 1
n

=

(
1

n!

) 1
n

(a1 (a1 + a2) · · · (a1 + a2 + · · ·+ an))
1
n

≤
(

1

n!

) 1
n (na1 + (n− 1) a2 + · · ·+ an)

n
,

we obtain the following strict improvement of (2.16):

n∑
k=1

(
k∏

i=1

ai

) 1
k

< e1− 1
n

n∑
k=1

(
1− k − 1

n

)
ak.

3. PÓLYA -K NOPP’ S I NEQUALITY (1.2)

We begin by proving that (1.2) implies (1.1). As before we note that it is enough to prove
(1.1) when{ak}∞1 is a non-increasing sequence. Use (1.2) with the functionf(x) = ak ,
x ∈ [k − 1, k), k = 1, 2, . . . . Then

(3.1)
∫ ∞

0

f(x)dx =
∞∑

k=1

ak

and

(3.2)
∫ ∞

0

exp

(
1

x

∫ x

0

ln f(t)dt

)
dx =

∞∑
k=1

∫ k

k−1

exp

(
1

x

∫ x

0

ln f(t)dt

)
dx.

Furthermore, it yields that

(3.3)
∫ 1

0

exp

(
1

x

∫ x

0

ln f(t)dt

)
dx = a1

and, fork = 1, 2, . . . ,∫ k

k−1

exp

(
1

x

∫ x

0

ln f(t)dt

)
dx =

∫ k

k−1

exp

(
1

x

k−1∑
i=1

ln ai +
x− (k − 1)

x
ln ak+1)

)
dx(3.4)

≥
∫ k

k−1

exp

(
1

k

k∑
i=1

ln ai

)
dx =

(
k∏

i=1

ai

) 1
k

.

The crucial inequality in (3.4) depends on the fact that the integrand is a weighted arithmetic
mean of the numbersln ai, i = 1, 2, . . . , k, with weights1

x
, . . . , 1

x
(k − 1 weights) andx−(k−1)

k
.

Herek − 1 ≤ x ≤ k and since the sequence is decreasing the mean value is smallest forx = k
i.e., when all weights= 1

k
. Now (1.1) follows by combining (3.1) - (3.4).

We now present some simple proofs of (1.2) ( and thereby some more proofs of (1.1)).

J. Inequal. Pure and Appl. Math., 4(3) Art. 53, 2003 http://jipam.vu.edu.au/

http://jipam.vu.edu.au/


CARLEMAN ’ S INEQUALITY 9

Proof 8.We note that the functionm (x) = −
∫ x

0
ln f ∗ (t) dt fulfils the conditions to use Car-

leson’s inequality (2.9) (heref ∗ (t) is the decreasing rearrangement of the functionf ). There-
fore, according to (2.9), it holds that

(3.5)
∫ ∞

0

xp exp

(
1

x

∫ x

0

ln f ∗ (t) dt

)
dx ≤ ep+1

∫ ∞

0

xpf ∗ (x) dx,

for everyp > −1. Carleson’s argument shows that we in fact have strict inequality in (3.5) and
especially forp = 0 we thereby get Pólya-Knopp’s inequality (1.2).

�

Remark 3.1. Carleson did not note this fact explicitly in his paper [10] since he was obviously
only interested in giving a simple proof of the inequality (1.1).

We now present two other proofs of (1.2) and thereby of (1.1) which, like Carleson’s proof,
only are based on convexity arguments.

Proof 9.First we note that

exp

(
1

x

∫ x

0

ln f(t)dt

)
= exp

(
1

x

∫ x

0

ln tf(t)dt− 1

x

∫ x

0

ln tdt

)
(3.6)

= exp

(
1

x

∫ x

0

ln tf(t)dt

)
exp

(
−1

x

∫ x

0

ln tdt

)
.

Furthermore, it yields that

(3.7) −1

x

∫ x

0

ln tdt = −1

x
[t ln t− t]x0 = − ln x + 1

and, in view of Jensen’s inequality (or the AG-inequality),

(3.8) exp

(
1

x

∫ x

0

ln tf(t)dt

)
≤ 1

x

∫ x

0

tf(t)dt.

We integrate, use (3.6) – (3.8), change the order of integration and find that∫ ∞

0

exp

(
1

x

∫ x

0

ln f(t)dt

)
dx ≤

∫ ∞

0

e− ln x+1 1

x

(∫ x

0

tf(t)dt

)
dx

= e

∫ ∞

0

1

x2

(∫ x

0

tf(t)dt

)
dx

= e

∫ ∞

0

tf(t)

∞∫
t

1

x2
dx

= e

∫ ∞

0

f(t)dt.

The strict inequality follows since equality in Jensen’s inequality requires thattf(t) is constant
a.e. but this cannot occur since

∫∞
0

f(x)dx is convergent.

�

Remark 3.2. The proof above is partly related to Knopp’s original idea (see [32, p. 211]).
However, Knopp worked with the interval[1, x] instead of[0, x] and hence Jensen’s inequality
can not be used. Moreover, Knopp never wrote out the inequality (1.2) explicitly even if it is
sometimes referred in the literature as this is the case, see for example [23, p. 250] and [37, p.
143].
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10 MARIA JOHANSSON, LARS-ERIK PERSSON, AND ANNA WEDESTIG

Remark 3.3. By modifying the proof above we can easily prove even some weighted versions
of (1.2), for instance the following∫ ∞

0

exp

(
1

x

∫ x

0

ln f(t)dt

)
xpdx <

e

1− p

∫ ∞

0

f(x)xpdx

for everyp < 1 which is more general than (1.2) and also than (3.5) forp < 0.

Proof 10.We first note that if we replacef(t) by f(t)/t in (1.2), then the left hand side in (1.2)
equals∫ ∞

0

exp

(
1

x

(∫ x

0

ln f(t)dt−
∫ x

0

ln tdt

))
dx = e

∫ ∞

0

exp

(
1

x

∫ x

0

ln f(t)dt

)
dx

x

since

−1

x

∫ x

0

ln tdt = −1

x
[t ln t− t]x0 = − ln x + 1.

Thus, (1.2) can be written in the equivalent and maybe more natural form

(3.9)
∫ ∞

0

exp

(
1

x

∫ x

0

ln f(t)dt

)
dx

x
< 1

∫ ∞

0

f(x)
dx

x
.

In order to prove (3.9) we use the fact that the functionf(u) = eu is convex and Jensen’s
inequality: ∫ ∞

0

exp

(
1

x

∫ x

0

ln f(t)dt

)
dx

x
≤
∫ ∞

0

1

x2

(∫ x

0

f(t)dt

)
dx

=

∫ ∞

0

f(t)

(∫ ∞

t

1

x2
dx

)
dt

=

∫ ∞

0

f(t)
dt

t
.

The strict inequality follows in the same way as in Proof 9.

�

4. FURTHER RESULTS AND REMARKS

Remark 4.1. Proof 9 is of course similar to Proof 10 but it contains the important information
that (1.1) can be equivalently rewritten in the form (3.9) with the best constant1. By using this
observation and modifying the proof, we find that, in fact, the following more general theorem
holds (cf. [29, Theorem 4.1]):

Theorem 4.2.Letφ be a positive and convex function on the range of the measurable function
f . Then

(4.1)
∫ ∞

0

φ

(
1

x

∫ x

0

f(t)dt

)
dx

x
<

∫ ∞

0

φ (f(x))
dx

x
.

Remark 4.3. By choosingφ (u) = eu and replacingf (x) with ln f (x) we see that (4.1) be-
comes (3.9) and thereby the equivalent inequality (1.1) and by choosingφ (u) = up we find that
(4.1) implies Hardy’s inequality in the form

(4.2)
∫ ∞

0

(
1

x

∫ x

0

f(t)dt

)p
dx

x
<

∫ ∞

0

fp(x)
dx

x
, p ≥ 1,
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which for the casep > 1 (after some substitutions) can be written in the usual form

(4.3)
∫ ∞

0

(
1

x

∫ x

0

g(t)dt

)p

dx <

(
p

p− 1

)p ∫ ∞

0

gp(x)dx, p > 1,

whereg (x) = f
(
x1− 1

p

)
x−

1
p . Note especially that Hardy’s inequality written in the form (4.2)

holds even whenp = 1 but that the inequality (4.3) then has no meaning.

Remark 4.4. This result and proof can be found in the relatively new paper [29]. We note that
the same proof shows that also the more general inequality∫ b

0

φ

(
1

x

∫ x

0

f(t)dt

)
dx

x
≤
∫ b

0

φ (f (x))
(
1− x

b

) dx

x

holds for every positive and convex functionφ on the range of the measurable functionφ and
0 < b ≤ ∞. Especially, this means that if we argue as in Remark 4.3, we get the following
improvement of the Pólya-Knopp and Hardy inequalities for finite intervals(0, b) , b < ∞:∫ b

0

exp

(
1

x

∫ x

0

f(t)dt

)
dx ≤ e

∫ b

0

(
1− x

b

)
f (x) dx

respectively∫ b0

0

(
1

x

∫ x

0

g(t)dt

)p

dx ≤
(

p

p− 1

)p ∫ b0

0

(
1−

(
x

b0

) p−1
p

)
g(x)dx,

whereb0 = bp/(p−1) andg (x) = f
(
x(p−1)/p

)
x−

1
p as before. These inequalities have recently

been proved in the paper [11] (see also [12] ) with a different method which is built on the
inequalities between mixed means (cf. our Proof 7). The idea in this remark is further developed
and applied in [13].

Another interesting question which has recently been studied is to find general weighted
versions of the inequality (1.2). Partly guided by the development concerning Hardy type in-
equalities (see for example the books [33] and [42]) one has asked:
Let 0 < p, q < ∞. Find necessary and sufficient conditions for the weights (i.e. the positive
and measurable functions)u (x) andv (x) so that

(4.4)

(∫ ∞

0

(
exp

(
1

x

∫ x

0

ln f(t)dt

))q

u (x) dx

) 1
q

≤ C

(∫ ∞

0

fp(x)v (x) dx

) 1
p

holds with a stable estimate of the operator norm (= the smallest constantC so that (4.4) holds).
The following has recently been proved:

Theorem 4.5.Let0 < p ≤ q < ∞. Then the inequality (4.4) holds if and only if

D := sup
x>0

x−
1
p

(∫ x

0

w(s)ds

) 1
q

< ∞,

where

w (s) =

(
exp

(
1

s

∫ s

0

ln
1

v (t)
dt

)) q
p

u (s)

and
D ≤ C ≤ e

1
p D.
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12 MARIA JOHANSSON, LARS-ERIK PERSSON, AND ANNA WEDESTIG

Theorem 4.6.Let0 < q < p < ∞, 1
r

= 1
q
− 1

p
. Then the inequality (4.4) holds if and only if

B : =

(∫ ∞

0

(
1

x

∫ x

0

w(x)dx

) r
p

w(x)dx

) 1
r

,

wherew(x) is defined as in Theorem 4.5, andC ≈ B.

Remark 4.7. These results were recently proved in [45]. We also refer the reader to some earlier
results of this type which can be found in the papers [25], [41] and [46]. Further developments
of Theorems 4.5 and 4.6 can be found in [40] and the new Ph.D thesis by Maria Nassyrova [39].

We will now present an example of a new generalization of (1.1) (see [29, Theorem 2.1]).

Theorem 4.8. Let {ak}∞1 be a sequence of positive numbers and putxi = iai

(
1 + 1

i

)i
, i =

1, 2, . . . . Then the following holds forN ∈ Z+ :

(4.5)
N∑

k=1

Gk +
N∑

k=1

lk
k (k + 1)

≤
N∑

k=1

(
1− k

N + 1

)(
1 +

1

k

)k

ak,

where

Gk := k
√

a1a2 · · · ak andlk :=

[x]∑
i=1

(√
x∗k−i+1 −

√
x∗i

)2

.

Here [x] is the usual integer part ofx and {x∗k} is the sequence{xk} rearranged in non-
increasing order.

Remark 4.9. For previous results of this type we also refer to the papers [2], [3], [4], [44], [54],
[56] and the references found there. We note that by using the estimateslk ≥ 0,

(
1 + 1

k

)k
< e

and lettingN →∞ we get (1.1) as a special case of (4.5).

Remark 4.10. Refinements of Carleman’s inequality (1.1) withe replaced by
(
1 + 1

k

)k
have

been known since at least 1967 (see [48] and [49] and compare with our Proof 6). We also note
that the factor1− k

N+1
in (4.5) means that the “usual” sum on the right hand side of the inequality

has been replaced by the equivalent Cesaro sum, i.e., we have calculated the arithmetic mean of
partial sums. This mean value is of course strictly less than the “usual” sum since the terms are
positive.

Remark 4.11. In the paper [54], P. Yan and G. Sun proved Carleman’s inequality (1.1) can be
improved in the following way:

(4.6)
∞∑

k=1

(
k∏

i=1

ai

) 1
k

< e

∞∑
k=1

(
1 +

1

k + 1
5

)− 1
2

ak.

This result easily follows from (4.5) by estimating the important factor
(
1 + 1

k

)k
in the following

way:

(4.7)

(
1 +

1

k

)k

≤ e

(
1 +

1

k + c∗

)− 1
2

,

wherec∗ = 8−e2

e2−4
≈ 0, 1802696 < 1

5
. The inequality (4.7) does not hold for numbers smaller

thanc∗. (See [29, Remark 12]). This means that by using (4.5) we see that (4.6) actually can be
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replaced with the sharper inequality

∞∑
k=1

(
k∏

i=1

ai

) 1
k

+
∞∑

k=1

lk
k (k + 1)

< e

∞∑
k=1

(
1 +

1

k + c∗

)− 1
2

ak.

Remark 4.12. The factor
(
1 + 1

k

)k
has also been of interest in some other new papers. For

example M. Gyllenberg and P. Yan recently proved in the paper [18] that(
1 +

1

k

)k

= e

(
1−

∞∑
n=1

an

(1 + k)n

)
,

where allan are positive and can be calculated recursively. For examplea1 = 1
2
, a2 = 1

24
, a3 =

1
48

etc. This answers an earlier question raised by Yang (see [56]).

Remark 4.13. We have noted before that Carleson’s inequality (2.9) gives both (1.1) and (1.2)
as special cases. Another inequality with that property has recently been proved, namely the
following (see [29, Theorem 3.1]):∫ B

0

exp

{
1

M(x)

∫ x

0

ln f(t)dM(t)

}
dM(x) + e

∫ B

0

(
1− M∗(x)

M(x)

)
f(x)dM(x)

≤ e

∫ B

0

(
1− M∗(x)

M(B)

)
f(x)dM(x).

HereB ∈ R+, M(x) is a right continuous and increasing function on(0,∞) andM∗(x) is a
special defined function with the property thatM∗(x) ≤ M(x). By using this theorem with
M(x) = x andB = ∞ we get (1.2) and by using it with

M(x) =


1
2
, 0 ≤ x ≤ 1,

k, k ≤ x ≤ k + 1, k = 1, 2, . . .

we get a refinement of (1.1).

In view of the questions raised in connection to (4.4) it is natural to ask the following which
is connected to (1.1): Let0 < p, q < ∞. Find necessary and sufficient conditions on the
non-negative sequences{bk}∞1 and{dk}∞1 such that

(4.8)

(
∞∑

k=1

( k
√

a1a2 · · · ak)
q
bk

) 1
q

≤ C

(
∞∑

k=1

ap
kdk

) 1
p

holds.
We have the following generalized weighted Carleman’s inequality:

Theorem 4.14.For k = 1, 2, . . . , let ak ≥ 0, bk ≥ 0 anddk > 0. If 0 < p ≤ q < ∞, then the
inequality (4.8) holds for some finite constantC > 0, if and only if

(4.9) B1 = sup
N>0

N− 1
p

N+1∑
k=1

(
k∏

i=1

di

)− q
kp

bk


1
q

< ∞.

Moreover, for the best constantC in (4.8) it yields that

(4.10) C ≈ B1.

J. Inequal. Pure and Appl. Math., 4(3) Art. 53, 2003 http://jipam.vu.edu.au/

http://jipam.vu.edu.au/


14 MARIA JOHANSSON, LARS-ERIK PERSSON, AND ANNA WEDESTIG

Proof. Assume that (4.9) holds. Let firstw1 = 0, and replaceak with ãkd
− 1

p

k in (4.8). Then
(4.8) is equivalent to ∞∑

k=1

(
k∏

i=1

ãi

) q
k
(

k∏
i=1

di

)− q
kp

bk


1
q

≤ C

(
∞∑

k=1

ãp
k

) 1
p

or, if wk =
(∏k

i=1 di

)− q
kp

bk,

(4.11) I
1
q :=

 ∞∑
k=1

(
k∏

i=1

ãi

) q
k

wk


1
q

≤ C

(
∞∑

k=1

ãp
k

) 1
p

.

Now if {a∗k}
∞
k=1is the decreasing arrangement of{ãk}∞k=1 , then ∞∑

k=1

(
k∏

i=1

ãi

) q
k

wk


1
q

≤

 ∞∑
k=1

(
k∏

i=1

a∗i

) q
k

wk


1
q

.

Let
f ∗(x) = a∗k andw(x) = wk for x ∈ [k − 1, k) .

Then  ∞∑
k=1

(
k∏

i=1

a∗i

) q
k

wk


1
q

(4.12)

=
∞∑

k=1

∫ k

k−1

[
exp

(
k∑

i=1

log a
∗ 1

k
i

)]q

wkdx

=
∞∑

k=1

∫ k

k−1

[
exp

(
1

k

k−1∑
i=1

log a∗i +
1

k
log a∗k

)]q

wkdx

≤
∞∑

k=1

∫ k

k−1

[
exp

(
1

x

k−1∑
i=1

log a∗i +
x− (k − 1)

x
log a∗k

)]q

wkdx

=
∞∑

k=1

∫ k

k−1

[
exp

(
1

x

∫ x

0

ln f ∗(t)dt

)]q

w(x)dx

=

(∫ ∞

0

[
exp

(
1

x

∫ x

0

ln f ∗(t)dt

)]q

w(x)dx

) 1
q

.

Moreover, it follows from Theorem 4.5 that if

(4.13) D = sup
x>0

x−
1
p

(∫ x

0

w(t)dt

) 1
q

< ∞,

then the inequality

(4.14)

(∫ ∞

0

(
exp

(
1

x

∫ x

0

ln f ∗(t)dt

))q

w (x) dx

) 1
q

≤ C

(∫ ∞

0

f ∗p(x)dx

) 1
p
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holds, and ifC is the best possible constant in (4.14), then

(4.15) C ≤ e
1
p D.

Hence, by combining (4.12) with (4.14), we have that(
∞∑

k=1

(
k
√

ã1ã2 · · · ãk

)q

wk

) 1
q

≤ C

(∫ ∞

0

f ∗p(x)dx

) 1
p

(4.16)

= C

(
∞∑

k=1

a∗pk

) 1
p

= C

(
∞∑

k=1

ãp
k

) 1
p

,

i.e. (4.11) (and thus (4.8)) holds whenever (4.13) holds. ForN ∈ Z+, we have

sup
N<x≤N+1

x−
1
p

(∫ x

0

w(t)dt

) 1
q

≤ N− 1
p

(
N+1∑
k=1

wk

) 1
q

.

Hence

(4.17) sup
x>0

x−
1
p

(∫ x

0

w(t)dt

) 1
q

≤ sup
N>0

N− 1
p

N+1∑
k=1

(
k∏

i=1

di

)− q
kp

bk


1
q

= B1.

If w1 6= 0, then, by using what we just have proved and an elementary inequality, we have

(4.18) I
1
q =

ãq
1w1 +

∞∑
k=2

(
k∏

i=1

ãi

) q
k

wk


1
q

≤ max
(
1, 2

1
q
−1
)(

w
1
q

1 + C

)( ∞∑
k=1

ãp
k

) 1
p

.

Therefore, by using (4.9), (4.17), (4.13) and (4.18), we conclude that (4.8) holds, and also that
the upper estimate holds in (4.10) (whenb1 = 0).

On the contrary, assume that (4.8) (and, thus, (4.11)) holds for all non-negative sequences. In
particular, let̃ak = 1, k = 1, . . . , N + 1 and ãk = 0, k > N + 1. Then the left hand side in
(4.11) can be estimated as follows: ∞∑

k=1

(
k∏

i=1

ãi

) q
k

wk


1
q

≥

N+1∑
k=1

(
k∏

i=1

ãi

) q
k

wk


1
q

=

(
N+1∑
k=1

wk

) 1
q

.

For the right hand side we have(
∞∑

k=1

ãp
k

) 1
p

=

(
N+1∑
k=1

1

) 1
p

= (N + 1)
1
p ≤ (2N)

1
p

and in view of (4.11), it follows that

(2N)−
1
p

(
N+1∑
k=1

wk

) 1
q

≤ C,

so that (4.9) and the lower estimate in (4.10) holds. The proof is complete. �

Remark 4.15. We note that our proof gives concrete values of the equivalence constants in
(4.10). For example, we always have2−

1
p B1 ≤ C and, if, in addition,b1 = 0, then

2−
1
p B1 ≤ C ≤ e

1
p B1.
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16 MARIA JOHANSSON, LARS-ERIK PERSSON, AND ANNA WEDESTIG

Remark 4.16. In [25] the weighted Carleman’s inequality (4.8) was proved with another con-
dition thanB1 and without any estimate of the best constantC.

5. FINAL REMARKS ABOUT TORSTEN CARLEMAN AND HIS WORK

Remark 5.1. A main reference concerning Torsten Carleman and his mathematics is of course
the book [19] of L. Gårding (see pp. 233–276). In this book Carleman is described in the fol-
lowing way: “With Torsten Carleman (1892-1949) Sweden got their so far most outstanding
mathematician.” It is therefore not curious that Gårding spent the next 30 pages to describe
Carleman and his mathematical work and no other mathematician was given even close to so
much space in the book. It is remarkable that (1.1) is not explicitly mentioned in Gårding’s
book, which can depend on the fact that he (as well as Carleman himself) obviously regarded
the inequality only as a necessary tool to prove his important main results concerning quasian-
alytical functions. However, as we have seen in this article, Carleman’s inequality (1.1) and its
continuous variant (Polya-Knopp’s inequality (1.2)) has attracted a lot of attention and it is even
mentioned in the title of a number of papers. See our list of references containing 58 references,
Chapter 4 in the book [37] (with 174 references), Chapter 1 in the book [33] and the recently
published review paper [44] (with 53 references). And the interest seems only to have increased
during the last few years.

Remark 5.2. (About the person Torsten Carleman). There is a lot of interesting information in
Gårding’s book [19] and some complementary information can be found in [58]. Tage Gillis
Torsten Carleman was born 8 July, 1892. He defended his Ph.D. thesis 1917 at Uppsala Uni-
versity. In 1923 he was appointed a full professor at the Lund University. Shortly after this,
and on an initiative of Professor Gösta Mittag-Leffler (which has initiated and given name of
the famous mathematical research institute in Djursholm, Sweden), he was called as professor
at Stockholms University, in 1924. He died in 1949. Carleman was a remarkable person and
there are many rumours concerning him (see e.g. Professor Bo Kjellberg’s interesting and very
personal description in [31, p. 93]).
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